
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

Datapath/Controller Lecture #1

2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Synchronous Digital Systems are often
designed in a modular hierarchical fashion.

The system consists of modular subsystems,
each of which performs some functional task,
such as addition, multiplication, storage,
counting, etc.

3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A good way to design modular digital
systems is to partition the system into two
types of modules:

Datapath Modules, which process and
manipulate data.
Control Modules, which generate control
signals that modify the processing of the
datapath modules. The datapath modules
also send status signals to the control
modules.

4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A system built in this way is said to use a
Datapath/Controller architecture.

Control
inputs

Control
signals

Control
outputs

Status
signals

Data
inputs

Data
outputs

Control
Unit Datapath

Clock

5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Examples of Control Signals:

• Multiplexers - select
• Registers - load_en, clear, set
• Shift Registers - load_en, shift_en, clear, set
• Counters - count_en, clear, set, up/down

6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Examples of Control Inputs:

• start, reset, mode, begin
• all external non-data inputs (such as button
presses)

7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Examples of Control Outputs:

• done, ready, error

8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Examples of Status Signals:

• Serial Multipliers, Adders - done, ready
• Counters - count_decode, zero
• Comparators - AeqB, AltB, AgtB

9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A Simple Example - Pushbutton Counter

Design a circuit that counts the number of times a
button has been pressed.

10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A Bad Solution:

clock

count

COUNTER

Pushbutton

11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Why is the design bad?

• The external signal from the pushbutton
can be noisy due to switch bounce,
causing multiple counts for every button
press.
• The count output changes at
unpredictable times, which could cause
difficulty (and glitches) synchronizing
with other circuits.

12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

pushbutton signal
switch bounce

The counter will increment
at each of these times!

5 msec

13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A Better Solution:

clock

count

COUNTER

Pushbutton

TIMER

enable

start timer_on

CONTROLLER

TO CE

PB

TS

TO
control input

control signals

status signal

data output

14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The timer is used to "wait out" the extra
signal transitions created by switch bounce.

timer out

pushbutton signal

switch bounce

20 msec

15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

State Diagram for Counter Controller FSM

S1

S2S3
[TS=1]
[CE=1]

TO+PB=1

TO+PB=0
PB=0

In S1 we wait for both the Timer and the
pushbutton signals to go low.

PB=1

In S2 we wait for the
pushbutton signal to go high.

In S3 we enable the counter and
start the timer, then go to S1.

16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

In general, even if you don't have to worry about
de-bouncing inputs, you should always check for
transitions on input signals in a 2-stage manner:

1. Wait for the signal to go low.
2. Wait for the signal to go high
3. (then do stuff…)

17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

This sort of 2-stage wait for a signal transition
is useful for starting a sequence of actions,
such as in a serial conversion from binary to
BCD, or in a serial multiplier…

That is, to know when the actions should
start, we check the value of the start input.
We first wait for it to go low, then we wait for
it to go high. Only then do we commence the
operation.

18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The Boss gives you a more complicated TASK:

Design a circuit that finds the minimum and
maximum values of a set of values stored in a
set of 3 registers

15, 72, 5

19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

General Approach to Design of Datapath/Controller Systems

1. Describe the function to be performed
2. Determine what datapath elements are needed
3. Specify the interconnections of the datapath elements
4. Identify the controller input and output signals
5. Sketch the sequence of control signal values needed

to carry out the desired function
6. Design a Finite State Machine that will implement the

required sequence
7. Simulate (by hand or by computer) the complete

system to verify the proper execution of the desired
function. Go back to step if there are any problems.

8. Implement and test complete system. Go back to step
2 if there are any problems with the implementation

20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Do the design by going step-by-step
through the steps outlined in the previous
slide

21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 1: Describe the function to be performed

It is usually easiest to describe the function in a "pseudo-code"
form which can be easily translated into a hardware
implementation.

22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Digression: Register-Transfer Language (RTL)

Datapath/Controller systems are often specified by
describing the transfer of data between registers, and the
processing applied to the data.

These descriptions use a language known as a
Register-Transfer Language, or RTL.

23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Register-Transfer Language (RTL)

RTL is a type of hardware description language.

RTL descriptions are often used by hardware design
software (simulators, synthesis) rather than VHDL,

Use of RTL can produce more efficient synthesis
(smaller circuits) since the compiler has an easier job
understanding just what it is that the designer wants.

24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

RTL statements specify how, and when
data is moved from one register to another.

The basic syntax of an RTL statement is:

R2 ←R1

This says that, on the next clock transition,
the contents of register R1 are transferred
to register R2.

25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Usually we don't want to transfer on every
clock, but only when some control condition
is asserted.

K : R2 ←R1

This says that, when Boolean condition K is
true, on the next clock transition, the contents
of register R1 are transferred to register R2.

26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Multiple transfer operations on the same clock edge
can be specified with a comma-delimited list:

K : R2 ←R1, R1 ←R2

This statement describes a register-swap operation,
controlled by signal K. In this example, when K is
true the contents of register R1 are copied to
register R2 and vice-versa.

27

McGill University ECSE-323 Digital System Design / Prof. J. Clark

You can specify multiple conditions on the comma-
delimited list:

K : R2 ←R1, K : R1 ←R2

28

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Operations on data are described as operations on
the contents of register(s):

K : A ← A + R1

This statement describes an accumulation
operation, controlled by signal K.

Whenever K is true, the contents of register A are
added to the contents of register R1 and the result
stored back into register A.

29

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Memory Operations require address operands:

READ : DR ← M([AR])
WRITE : M([AR]) ← DR

The expression [R] means the contents of register R.
The expression M(A) means the memory slot with
address A. Memory slots are treated like registers.

30

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Register-Transfer Language is not covered in
the text (except for a brief mention on p. 466)

RTL is used extensively in the specification of
computer architectures, to be covered in the
Microprocessors and Computer Architecture
courses.

31

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Returning back to the Min/Max circuit, we can write the
following RTL description of the desired operation:

RMAX ← R1, RMIN ← R1
R2<RMIN : RMIN ← R2, R2>RMAX : RMAX ← R2
R3<RMIN : RMIN ← R3, R3>RMAX : RMAX ← R3

Each line corresponds to events occuring in response to a
single clock edge. The statements are read sequentially,
top to bottom, corresponding to successive clocks.

32

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 2: Determine what datapath elements are needed

We can read off our needs from the pseudo-code:

• Two registers to store the max and min values
• Two comparators
• One multiplexers to control input to the RMAX and
RMIN registers

(note: only 1 multiplexer is needed, since the set of
possible inputs to the two registers is the same, so we can
share the multiplexer. We could use two multiplexers,
and save a clock cycle. There are usually such tradeoffs.)

33

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 3: Specify the interconnections of the datapath
elements

Think of what data sources the datapath elements will operate on.

Some of the datapath elements will serve multiple purposes
during the execution of an algorithm. Thus, different data sources
may be operated on at different time. If this is the case, then
Multiplexers should be used to choose between the different data
sources.

Often, intermediate results need to be held before they are
operated on. In this case, registers should be used to store these
values.

34

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The circuit implied by the RTL description is:

R1 R2 R3

RMAX RMIN

A B

COMPARATOR

AgtB

CONTROLLER

MUXREGSEL

RMAXLDEN RMINLDEN

REGSEL
RMAXLDEN
RMINLDEN

RESET
BleqA
AgtB

DONE

A B

COMPARATOR

BleqA

35

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Note: Multiplexers are very important in
the implementation of datapaths. They
allow datapath elements (such as adders
and registers) to be reused, thereby
reducing the size of the circuit.

36

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Tri-state busses are also sometimes used to
implement connections between datapath
elements, as they require less circuitry than
multiplexers.

Most FPGAs, however, only have a limited
number of tri-state buffer circuits, usually
located in output blocks. Therefore MUXs are
usually used in FPGA datapath designs.

37

McGill University ECSE-323 Digital System Design / Prof. J. Clark

There are usually many different ways to implement a datapath.

Expensive datapath elements (such as comparators, and
arithmetic operators) should be re-used and shared as much as
possible. For such elements, their inputs and outputs should be
connected to multiplexers which can distribute these signals to
the appropriate destinations.

Enable signals can be used instead of multiplexers in some cases.
We could use a multiplexer for each of the max and min value
registers, but this would be overkill, as we can connect the
register inputs together, and use the register load enables to
determine which gets loaded.

38

McGill University ECSE-323 Digital System Design / Prof. J. Clark

For example, we could implement the MIN-MAX
operation with just a single comparator, but it would
require using more clock cycles, since we can only have
one comparison operation per clock cycle:

RMAX ← R1, RMIN ← R1
R2<RMIN : RMIN ← R2
R2>RMAX : RMAX ← R2
R3<RMIN : RMIN ← R3
R3>RMAX : RMAX ← R3

39

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 4: Identify the controller input and output signals

Do this by looking at the control signals of the datapath elements.

• Inputs:
• RESET (external control signal)
• CLK
• AgtB, BleqA (datapath status signals)

• Outputs:
• RMINLDEN - enable loading of the RMIN register
• RMAXLDEN - enable loading of the RMAX register
• REGSEL - select the input for RMIN or RMAX
• DONE - notify the user when the sorting is done

40

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 5: Sketch the sequence of control signal values
needed to carry out the desired function

Do this by looking at the pseudocode and determining, for each clock
transition, what the datapath control signals need to be.

For example, for registers, you would decide when their load signals
should be asserted, or when they should be cleared. For counters, you
might determine when their count enables should be asserted.

41

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Going back to the pseudocode for our example:

RMAX ← R1, RMIN ← R1
R2<RMIN : RMIN ← R2, R2>RMAX : RMAX ← R2
R3<RMIN : RMIN ← R3, R3>RMAX : RMAX ← R3

We see that in the first clock we need to have the multiplexer control input set to
select the R1 input. We also assert the load signals for both RMIN and RMAX.

In the second clock, we need to have the multiplexer select set to R2. However,
we only assert the load for RMIN if the comparator signal BleqA is true (which
implies R2<RMIN), and we only assert the load for RMAX if AgtB is true
(implying R2>RMAX).

In the third clock, we need to have the multiplexer select set to R3. However, we
only assert the load for RMIN if the comparator signal BleqA is true (which
implies R3<RMIN), and we only assert the load for RMAX if AgtB is true
(implying R3>RMAX).

42

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 6: Design a Finite State Machine that will
implement the required sequence

The simplest way to do this is to specify a different state for
each line in the RTL description (or in the pseudocode). Note
that there may be loops in the pseudocode.

In our example, there would be 3 states, if we used a Mealy
Machine implementation (4 states if we use a separate DONE
state).

A Moore Machine would require more states, since we would
not be able to have two different logical conditions applied on
one clock transition.

43

McGill University ECSE-323 Digital System Design / Prof. J. Clark

S0

S1

S3

RESET

S2

Controller FSM
state diagram
(Mealy Machine)

The sorting operation
takes 3 clock cycles to
complete

REGSEL=R1

RMAXLDEN=1

RMINLDEN=1

REGSEL=R2

RMAXLDEN=AgtB

RMINLDEN=BleqA

REGSEL=R3

RMAXLDEN=AgtB

RMINLDEN=BleqA

REGSEL=R1

RMAXLDEN=0

RMINLDEN=0

DONE = 1

44

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Step 7: Simulate the complete system to verify the
proper execution of the desired function

This Works! But note that the DONE line goes high slightly
before the final value is ready. This is OK if the values are not
used until the next clock edge.

