
Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 1

CIRCUIT IMPLEMENTATION STRATEGIES
LOGIC ARRAYS

PROGRAMMING LOGIC DEVICES
PROGRAMMABLE LOGIC ARRAY (PLA)
PROGRAMMABLE ARRAY LOGIC (PAL)
COMMERCIAL PROGRAMMABLE LOGIC DEVICES (CPLD’s)
FIELD-PROGRAMMABLE GATE ARRAYS

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S AND PAL’S
COMBINATIONAL CIRCUIT DESIGN USING MSI BUILDING BLOCKS
DESIGN EXAMPLE USING SEVERAL IMPLEMENTATION STRATEGIES

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 2

PROGRAMMING LOGIC DEVICES
PROGRAMMABLE LOGIC ARRAY (PLA)

CONTAINS AN AND-ARRAY AND AN OR-ARRAY
AND-ARRAY IS USED TO IMPLEMENT BOOLEAN TERMS
OR-ARRAY IS USED TO PRODUCE THE DESIRED BOOLEAN
FUNCTION BY OR’ING THE TERMS GENERATED BY THE AND-
ARRAY
ALL TERMS PRODUCED BY THE AND-ARRAY ARE ACCESSIBLE
TO ALL OR-OUTPUT GATES OF THE OR-ARRAY, MEANING
THAT TERMS CAN BE SHARED AMONG OUTPUT
FUNCTIONS.
COMMERCIAL PLA’S USE TWO NOR PLAINS TO
IMPLEMENT THE AND- AND OR-ARRAYS

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 3

PROGRAMMING LOGIC DEVICES
PROGRAMMABLE LOGIC ARRAY (PLA)

PLA’S ARE PROGRAMMED BY ‘BURNING’ UNWANTED CONNECTIONS
EXAMPLES FROM BROWN’S TEXTBOOK PAGES 96 AND 97:

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 4

PROGRAMMING LOGIC DEVICES

PROGRAMMABLE ARRAY LOGIC (PAL)
CONTAINS AN AND-ARRAY AND AN OR-ARRAY

AND-ARRAY IS USED TO IMPLEMENT BOOLEAN TERMS
OR-ARRAY IS USED TO PRODUCE THE DESIRED BOOLEAN
FUNCTION BY OR’ING THE TERMS GENERATED BY THE AND-
ARRAY
A FIXED NUMBER OF TERMS PRODUCED BY THE AND-ARRAY
ARE ACCESSIBLE TO EACH ONE OF THE OR-OUTPUT GATES
OF THE OR-ARRAY, MEANING THAT TERMS CANNOT BE
SHARED AMONG OUTPUT FUNCTIONS.
COMMERCIAL PAL’S USE TWO NOR PLAINS TO
IMPLEMENT THE AND- AND OR-ARRAYS

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 5

PROGRAMMING LOGIC DEVICES

PROGRAMMABLE ARRAY LOGIC (PAL)
PAL’S ARE PROGRAMMED BY ‘BURNING’ UNWANTED CONNECTIONS
EXAMPLE FROM BROWN’S TEXTBOOK PAGE 98:

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 6

PROGRAMMING LOGIC DEVICES

SIMPLE COMMERCIAL PROGRAMMABLE LOGIC DEVICES
(CPLD’s)
THEY ARE GENERALLY PAL DEVICES WHERE ADDITIONAL
FEATURES HAVE BEEN ADDED, SUCH AS:

BIDIRECTIONAL OUTPUTS BY USING A TRI-STATE GATE AT
THE OUTPUT OF EACH OR-GATE.
FEEDBACK LINES
A STORAGE DEVICE (D-FLIPFLOP) AT EACH OUTPUT, TO
STORE OR NOT, THE CORRESPONDING OUTPUT FUNCTION
OR ITS COMPLEMENT.
THESE ADDITIONAL FEATURES ARE SHOWN ON THE NEXT
SLIDE

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 7

PROGRAMMING LOGIC DEVICES

SIMPLE COMMERCIAL PROGRAMMABLE LOGIC DEVICES (CPLD’s)
EXAMPLE: Extra circuitry added to OR-gate outputs of a PAL
example (From Brown’s Textbook page 99)

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 8

PROGRAMMING LOGIC DEVICES

COMPLEX COMMERCIAL PROGRAMMABLE LOGIC DEVICES (CPLD’s)
EXAMPLE: (Page 102 of Brown’s Textbook)

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 9

PROGRAMMING LOGIC DEVICES
COMPLEX COMMERCIAL PROGRAMMABLE LOGIC DEVICES (CPLD’s)

EXAMPLE: A Section of the CPLD in previous slide (Page 103 of Brown’s Textbook)

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 10

PROGRAMMING LOGIC DEVICES

FIELD-PROGRAMMABLE GATE ARRAYS (FPGA’S)
FPGA’S USE LUT’S INSTEAD OF THE AND-OR ARRAYS OF PLA’S
AND PAL’S.
THE LUT’S ARE CONNECTED (PROGRAMMED) THROUGH
INTERCONNECTION SWITCHES.
THEY HAVE EXTRA CIRCUITRY,SUCH AS STORAGE CELLS AND
MUX’s, AS IN PAL’S.
STORAGE CELLS ARE VOLATILE. AT POWER-ON, A PROM
LOADS AUTOMATICLY THE CELLS CONTENTS.
THE PROM IS HOUSED ON THE SAME CIRCUIT BOARD.

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 11

PROGRAMMING LOGIC DEVICES
FIELD-PROGRAMMABLE GATE ARRAYS: EXAMPLE FROM BROWN’S TEXTBOOK, PAGES 106, 108.

12

IMPLEMENTATION EXAMPLES
FPG’S: EXAMPLE CONTINUES FROM BROWN’S TEXTBOOK, PAGES 109.

NOTE: BLUE CONNECTIONS IN TEXTBOOK ARE SHOWN HERE WITH A CIRCLE

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 13

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S
Example 1: The PLA device shown on the next slide is to be used in the

design of a combinational circuit that will produce the following set of
switching functions:

Si = Ai !Bi !Ci-1 + !Ai Bi !Ci-1 + !Ai !Bi Ci-1 + Ai Bi Ci-1

Ci = Ai Bi + Ai Ci-1 + Bi Ci-1

where i = 0,1, which corresponds to the block diagram shown below

F u ll

A d d er

F u ll

A d d er

 S 1 C 0 S 0

C -1

 A 1 B 1 A 0 B 0

C 1

14

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S
Example 1 (Continues): Commercial PLA device to be used in this design example

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 15

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S
Example 1 (continues):

a) Give the algebraic expression of the 4 functions in such a
way that they can be produced by the given PLA device.
b) On the drawing of the PLA device, indicate the correct
connections to produce the given 4 functions.

Solution: a) The equations are
S0 = A0 !B0 !C-1 + !A0 B0 !C-1 + !A0 !B0 C-1 + A0 B0 C-1

C0 = A0 B0 + A0 C-1 + B0 C-1

S1 = A1 !B1 !C0 + !A1 B1 !C0 + !A1 !B1 C0 + A1 B1 C0

C1 = A1 B1 + A1 C0 + B1 C0

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 16

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S
Example 1 (continues):
b) Note that the adder requires 5 inputs and that there are

only 4 dedicated input pins in the given PLA device.
Bidirectional pin 5 is used as another input by conveniently
programming its tri-state gate. The carry term C0 is used to
compute S1 and C1 through the feedback line from pin 6,
thus allowing C0 to be combined with A1 and B1 as required
by the equations shown in part a).

The final circuit is shown on the next slide.

17

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PLA’S

Example (continues): Final PLA circuit

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 18

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PAL’S
Example 2: On the given PAL device drawing, shown on the next

slide, indicate the correct connections that will produce the
following set of equations:

F1 = !E F !D + !E F C + B
F2 = !D + C + !E F B
F3 = !E F B A !D

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 19

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PAL’S
Example 2 (Continues) : Drawing of the PAL to be used in this example

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 20

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PAL’S
Example 2 (Continues):
SOLUTION:

F1 = !E F !D + !E F C + B = (!E F) (!D + C) + B
F2 = !D + C + !E F B = (!D + C) + (!E F) B
F3 = !E F B A !D = (!E F) B A !D

By factoring, the feedback functions (!E F) and (!D + C) were found,
making the implementation feasible.

The complete circuit is shown on the next slide

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 21

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING PAL’S
Example 2 (Continues): Complete circuit

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 22

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING MSI BUILDING BLOCKS

A block diagram is produced using the available MSI BUILDING
BLOCKS and showing the behavior of the circuit to be designed.
Example: Design a ONE-DIGIT Binary-Coded-Decimal (BCD)-Adder
using 4-bit binary adders.

Solution: There are two cases to consider:
Case I : Let the result be Z = X + Y , where X and Y are the two decimal
digits to be added. If Z ≤ 9, then the binary sum S = Z and the binary
carry-out = 0. If Z > 9, then Z = S + 6 and decimal carry-out = 1.
Case II : When X + Y > 15 (Example: 9 + 8 =17), then the binary sum S
must be corrected by adding 6 to S to produce Z = S + 6; the binary carry-
out = 1 and the decimal carry-out =1.

THE BLOCK DIAGRAM IS SHOWN ON NEXT SLIDE

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 23

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING MSI BUILDING BLOCKS

Example (Continues): Block diagram of the ONE-DIGIT BCD-adder

decimal carry-out

(ignore)

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 24

IMPLEMENTATION EXAMPLES
COMBINATIONAL CIRCUIT DESIGN USING MSI BUILDING BLOCKS

Example (Continues): Complete Circuit

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 25

IMPLEMENTATION EXAMPLES
DESIGN EXAMPLE USING SEVERAL IMPLEMENTATION
STRATEGIES

Design a 2-bit Binary-Coded-Base-3 Multiplier using five different
implementation strategies:

Classic, two-level gate design
MUX-based design
ROM-based design
PLA-based design
PAL-based design

Show on a table the gate count and packages count for each
strategy.

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 26

IMPLEMENTATION EXAMPLES

1102002

0201001

0000000
210

a
b

C ={c3, c2, c1, c0}

Design a 2-bit Binary-Coded-Base-3
Multiplier using five different
implementation strategies:

Classic, two-level gate design.
Solution: The input variables are:
a = {a1, a0}, b = {b1, b0}
The output variables are:
c = {c3, c2, c1, c0}, such that
c = a x b , where x represents
arithmetic multiplication.
The base-3 digits, “0”, “1” and “2”are
coded 00, 01, 10 respectively.
The multiplication table is

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 27

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

Classic, two-level gate design continues.
The K-maps of the output variables are

C3 = 0 C2 = a1b1 C1 = a1b0 + a0b1 C0 = a1b1 + a0b0

 a1a0

b1 b0 00 01 11 10
0 0 0 0 * 0
0 1 0 0 * 0
1 1 * * * *
1 0 0 0 * 0

 a1a0
b1 b0 00 01 11 10
0 0 0 0 * 0
0 1 0 0 * 0
1 1 * * * *
1 0 0 0 * 1

 a1a0
b1 b0 00 01 11 10
0 0 0 0 * 0
0 1 0 0 * 1
1 1 * * * *
1 0 0 1 * 0

 a1a0
b1 b0 00 01 11 10
0 0 0 0 * 0
0 1 0 1 * 0
1 1 * * * *
1 0 0 0 * 1

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 28

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

Classic, two-level gate design continues. NAND-NAND circuit.

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 29

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

MUX-based design:

Selecting a0 , a1 , as the control variables to the MUX’ s, the data line functions can be
read directly from the K-maps on the previous slide.
The resulting circuit is shown below.

S1

S4

D

C2C1 ENB

Multiplexer

S1

S4

D

C2C1 ENB

Multiplexer

S1

S4

D

C2C1 ENB

Multiplexer0
0

b 1
*

0
b 1b 0
*

b 1
b 0

*

a 0
a 1

0 c 3

c 1
c 2

c 0
0

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 30

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

ROM-based design
The address of the ROM represents the valuation of the input variables and the contents, at that
address, corresponds to the value of the output variables for that valuation of the input variables.
An address/contents table is produced and the ROM is programmed accordingly.

B A S E - 3
D I G I T S

A D D R E S S

C O N T E N T S

b a b 1 b 0 a 1 a 0 c 3 c 2 c 1 c 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
0 2 0 0 1 0 0 0 0 0
0 * 0 0 1 1 * * * *
1 0 0 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 1
1 2 0 1 1 0 0 0 1 0
1 * 0 1 1 1 * * * *
2 0 1 0 0 0 0 0 0 0
2 1 1 0 0 1 0 0 1 0
2 2 1 0 1 0 0 1 0 1
2 * 1 0 1 1 * * * *
* 0 1 1 0 0 0 0 0 0
* 1 1 1 0 1 * * * *
* 2 1 1 1 0 * * * *
* * 1 1 1 1 * * * *

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 31

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

ROM-based design: Final circuit

16 words
3-bits per

word
ROM

DATA REGISTER

c3 c2 c1 c0

A
D

D
R

ES
S

D
EC

O
D

ER
 a0

a1

b0

b1

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 32

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

PLA-based design: Note that the term a1 b1 can be shared
among output functions c0 and c2 .

 b 1 b 0 a 1 a 0

 c 3 c 2 c 1 c 0

0

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 33

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

PAL-based design: Note that NO SHARING of terms is allowed in
PAL-based design and, therefore, term a1 b1 must be implemented
twice b 1 b 0 a 1 a 0

 c 3 c 2 c 1 c 0

0

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 34

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier
IMPLEMENTATION STATEGIES COMPARISON:

In order to compare the different strategies used in this design we choose
the following metrics:

1) The number of gate-equivalences and
2) The number of packages.

We assume that the 7400 Series is used for the classic, two-level NAND-
NAND design. For example: the 7400 IC package, called QUAD, contains 4
2-input NAND gates).
The number of gates used in a 4 x 1 MUX is equal to 7 (cf. Brown’s
Textbook, 2nd Ed. Page 317). One package houses 2 MUX’s.
Finally we assume that in the ROM-based design, the decoder requires 19
gates, 16 for each minterm and 3 gates for the output level.
The following table shows the results.

Copyright © 2004 by
Miguel A. Marin
Revised 2005-02-03 35

IMPLEMENTATION EXAMPLES
Design a 2-bit Binary-Coded-Base-3 Multiplier

IMPLEMENTATION STATEGIES COMPARISON RESULTS

The design using the least number of packages and the least
number of gates is the PLA-based design.

81PAL

71PLA

191ROM

212MUX

72Gate

Total number of gate
equivalences

Number of
Packages

Design
Approach

	CIRCUIT IMPLEMENTATION STRATEGIESLOGIC ARRAYS
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	PROGRAMMING LOGIC DEVICES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES
	IMPLEMENTATION EXAMPLES

