
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

VHDL Lecture #4

2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example: 4-bit Counter with Control Signals
signal count : integer range 0 to 15;

begin –- begin architecture block
counter1 : process(reset,Clk)

begin

if reset = ‘1' then

count <= 0;

elsif Clk = '1' and Clk'event then

if enable = ‘1’ then

if load = ‘1’ then count <= ldata;

elsif updown = ‘1’ then count <= count + 1;

else count <= count – 1;

end if; -- if load

end if; -- if enable

end if; -- if reset

end process;

load

ldata
count

up/down

Clk

enable

reset

3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

How to Enable a Clocked Operation:
This is the right
way to enable a
clocked operation

elsif Clk = '1' and Clk'event then

if enable = ‘1’ then

-- do stuff when enabled

elsif Clk = '1' and enable = ‘1’ and Clk'event then

-- do stuff when enabled

This is a bad way
to enable a
clocked operation

Why is this type of VHDL construct bad?
It may confuse the compiler. It may create a gated clock
(causing clock skew and glitches and slowing down the system)

4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

architecture BEHAVIORAL of gate_clock is
signal GATECLK: STD_LOGIC;

begin
GATECLK <= (IN1 and IN2 and CLK);
GATE_PR: process (GATECLK,DATA,LOAD)
begin

if (GATECLK'event and GATECLK='1') then
if (LOAD='1') then

OUT1 <= DATA;
end if;

end if;
end process;

end BEHAVIORAL;

example is from the Xilinx Synthesis and Simulation Design Guide -
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/sim/sim.html

Implementation of
a Gated Clock

the signal GATECLK will be delayed relative to CLK

5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

architecture BEHAVIORAL of gate_clock is
signal ENABLE: STD_LOGIC;

begin
ENABLE <= IN1 and IN2 and LOAD;
EN_PR: process (ENABLE,DATA,CLOCK)
begin

if (CLOCK'event and CLOCK='1') then
if (ENABLE='1') then

DOUT <= DATA;
end if;
end if;

end process;
end BEHAVIORAL;

Implementation of
an Enabled Clock

example is from the Xilinx Synthesis and Simulation Design Guide -
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/sim/sim.html

6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Arithmetic Signal Types and Operations

std_logic_vector(N downto 0)
defines an (N+1)-bit unsigned binary number
whose LSB is bit 0 and MSB is bit N.

S<=X+Y;
This expression describes an (N+1)-bit adder
without carry in or carry out.
The signal S has N+1 bits (and not N+2).

7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Note:

VHDL requires that at least one of the operands
on the RHS have the same bit length as the LHS.

To add in a Carry input and output we can write:

S2 <= (‘0’ & X) + Y + Cin;

where S2 has one more bit than X and Y

8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

& is the VHDL concatenation operator

It combines two vectors into a single longer vector.

for example:

signal X, Y : std_logic_vector(1 downto 0);
signal Z : std_logic_vector(3 downto 0);

. . .
X <= "11";
Y <= "10";
Z <= X & Y; -- Z = "1110"

9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Question: How can we represent signed
numbers in VHDL?

Answer: define a new signal type, along
with associated arithmetic operators

10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Signed vs. Unsigned Signal Types

USE ieee.std_logic_unsigned.all
interprets all std_logic_vector signals as unsigned
binary numbers.

USE ieee.std_logic_signed.all
interprets all std_logic_vector signals as signed
binary numbers (2's complement).

11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

If you want to mix both signed and unsigned
signals then include

USE ieee.std_logic_arith.all

You must then explicitly say what types are
intended:

signal X : SIGNED;
signal X : UNSIGNED;

12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The use ieee.std_logic_arith.all
statement should be included after the
use ieee.std_logic_1164.all
statement.

13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Integer Signal Type

The integer signal type is very useful for
implementing counters.

signal X : INTEGER range -16 to 15;

If the range is left out, the default range is used:

)12(to)12(3131 −−−

14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The number of bits in an integer signal is not specified
explicitly. The compiler determines how many bits to
allocate to the signal.

The integer data type is built in to the VHDL standard,
hence no library needs to be included to use this type.

signal X : integer range -32768 to 32767;

In the above example, 16 bits would be allocated to the
signal X.

15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

There are conversion functions to convert
between the various signal types.

These conversions are often necessary because in
VHDL the types of signals on either side of an
assignment statement must be the same.

16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Commonly used conversion routines are:

CONV_INTEGER(operand);
CONV_UNSIGNED(operand);
CONV_SIGNED(operand);
CONV_STD_LOGIC_VECTOR(operand,size);

operand can be of type integer, unsigned, signed, or std_logic.

Example

signal Y : integer range 0 to 100;
signal X : std_logic_vector(6 downto 0);

X <= CONV_STD_LOGIC_VECTOR(Y,7);
Y <= CONV_INTEGER(X);

17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

OK, let's look at some examples

18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

signal Q : std_logic_vector(7 downto 0);

begin –- begin architecture block
sreg1 : process(clear,Clk)

begin

if clear = ‘1' then

Q <= 0;

elsif Clk = '1' and Clk'event then

if ld_enable = ‘1’ then

Q <= ldata;

else

Q <= shift_in & Q(7 downto 1);

shift_out <= Q(0);

end if; -- if enable

end if; -- if clear

end process;

ld_enable

ldata
Q

shift_in

Clk
shift_out

enable

clear

SHIFT REGISTER

what is the
value of shift_out?

19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Q <= shift_in & Q(7 downto 1);

shift_out <= Q(0);

Suppose that Q = "11010110" going into the
process block, and that shift_in = '0'.

After evaluation of the process block we have
that Q = "01101011"

shift_out will be assigned the value of Q(0)
before the process block is evaluated, i.e.
shift_out = 0, not shift_out = 1

20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

This is because events on signals created as a
result of assignments within a process block
actually don't take effect (or aren't scheduled)
until the end of the process block is reached.

The values of all signals inside of a process
block are the values they have at the
beginning of the process block.

21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

signal count : integer range 0 to 639;

signal pulse : std_logic;

begin –- begin architecture block
div1 : process(clear,Clk)

begin

pulse <= '0'; -- give a default value
if clear = ‘1' then

count <= 639;

elsif Clk = '1' and Clk'event then

if count_enable = ‘1’ then

if count = 0 then

pulse <= '1'; count <= 639;

else count <= count - 1; -- count down
end if; -- if count

end if; -- if count_enable
end if; -- if clear

end process;

This circuit
provides a pulse
that is one clock
period wide every
640 clock pulses.

FREQUENCY DIVIDER

22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Why do we count down instead of counting up?

Because it often takes less circuitry
to detect when count = 0 than to
detect when count = 639.

23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A common use for frequency divider circuits
is to effectively slow down clocking of a
circuit.

But, you should not use the pulse signal as
a clock!

Instead, use it as a control signal, such as a
counter enable.

24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

For example, suppose we want to make a
circuit that generates a pulse once every 640
clock pulses and another one every 640*640
clock pulses.

We can do this by having one frequency
divider circuit drive another.

25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

count_enable

clock pulse

count_enable

clock pulse

BAD

This is a ripple
counter, and should
be avoided!

count_enable

clock pulse

count_enable

clock pulse

Instead, use a fully synchronous design:

26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Why are ripple counters bad?

1. Because they are slow.
2. Outputs do not all change at

the same time.

27

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Why are they slow?
1. Because the clock input to a circuit

element is delayed relative to the clock
input of the preceding element. Thus any
feedback to the preceding element (such as
in an FSM) will be delayed, requiring a
reduction in clock frequency.

2. Ripple clock signals must be routed
through logic cells (slow) rather than via
dedicated (fast) clock wiring.

28

McGill University ECSE-323 Digital System Design / Prof. J. Clark

low skew, low delay interconnects

slow pathway

fast pathway

29

McGill University ECSE-323 Digital System Design / Prof. J. Clark

30

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A complex counter example.

Suppose we want to count in the following
sequence: {0, 1, 4, 5, 8, 9, 12, 13, 0,…}

A keen observer will note that this
sequence can be obtained by adding 1 if
the count is even, and adding 3 if the count
is odd.

31

McGill University ECSE-323 Digital System Design / Prof. J. Clark

signal count : integer range 0 to 15;

signal odd : std_logic;

begin –- begin architecture block
count1 : process(clear,Clk)

begin

if clear = ‘1' then

count <= 0; odd <= '0';

elsif Clk = '1' and Clk'event then

if count_enable = ‘1’ then

odd <= not odd;

if odd = '0' then count <= count + 1;

else count <= count + 3;

end if; -- if odd

end if; -- if count_enable

end if; -- if clear

end process;

32

McGill University ECSE-323 Digital System Design / Prof. J. Clark

VHDL Description of Finite State Machines

(only in Mealy machines)

OUTPUT
LOGIC

NEXT-STATE
UPDATE
LOGIC

STATE
REGISTER

next state

CLOCK

INPUTS
OUTPUTS

present state

33

McGill University ECSE-323 Digital System Design / Prof. J. Clark

FSMs should be described using 2 process blocks

1. - one for the state update (and state storage)
2. - one for the output logic

For some Moore machines it might be more
readable to combine these two process blocks
into a single process block.

34

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Define a "state" signal type to hold the state

TYPE State_type IS (list of signal values);

The name for the new signal type

The list of values that the new
signal type can have. These can be
numerical values, or symbolic state
names, for example.

35

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example

architecture behavioural of FSM is
TYPE state_signal IS

(RESET_STATE, S1, S2, S3, DONE);
SIGNAL state : state_signal;
begin
…

You must place the signal TYPE
declaration in the declarations area
of the architecture.

36

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example of a Moore Machine

RESET_STATE

[0]

S1

[0]

S2

[0]

DONE

[1]

S3

[0]

X=0
X=0

RESET=1 (asynchronous)
X=1

X=1

X=0
X=1

X=0

X=0,1

X=1

37

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Case statements are very useful for
describing finite state machines.

38

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Description using 2 process blocks

architecture behavioural of FSM is
TYPE state_signal IS (RESET_STATE, S1, S2, S3, DONE);
SIGNAL state : state_signal;
begin
state_update : process (clk,reset)

begin
if reset = '1' then

state <= RESET_STATE;
elsif clk'EVENT and clk='1' then

case state is
when RESET_STATE =>

if x = '0' then state <= S1; end if;
when S1 =>

if x = '0' then state <= S2; end if;
when S2 =>

if x = '0' then state <= S3; end if;

39

McGill University ECSE-323 Digital System Design / Prof. J. Clark

when S3 =>
if x = '0' then state <= DONE; end if;

when DONE =>
state <= DONE;

end case;
end if; -- if reset
end process;

output_logic : process(state)
begin
case state is

when RESET_STATE => Z <= '0';
when S1 => Z <= '0';
when S2 => Z <= '0';
when S3 => Z <= '0';
when DONE => Z <= '1';

end case;
end process;

end behavioural; Note: all cases are accounted for,
so we do not need a when others

40

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example of a Mealy Machine

S0

S1

X=0/Z=0

X=0/Z=0

S2

RESET=1 (asynchronous) X=1/Z=0
X=0/Z=1

X=1/Z=0

X=1/Z=0

41

McGill University ECSE-323 Digital System Design / Prof. J. Clark

VHDL Description of a Mealy Machine
architecture behavioural of FSM is
TYPE state_signal IS (S0, S1, S2);
SIGNAL state : state_signal;
begin
state_update : process (clk,reset)

begin
if reset = '1' then

state <= RESET_STATE;
elsif clk'EVENT and clk='1' then

case state is
when S0 =>

if x = '0' then state <= S1; end if;
when S1 =>

if x = '0' then state <= S2; end if;
when S2 =>

if x = '0' then state <= S0; end if;
end case;

end if; -- if reset
end process;

42

McGill University ECSE-323 Digital System Design / Prof. J. Clark

VHDL Description of a Mealy Machine (cont.)

output_logic : process(state, X)
begin
case state is

when S0 => Z <= '0';
when S1 => Z <= '0';
when S2 => Z <= not X;

end case;
end process;

end behavioural;

Note that the sensitivity list
contains both the signals
state and X

43

McGill University ECSE-323 Digital System Design / Prof. J. Clark

State Assignment Methods

The Quartus compiler assigns the state bits for each state,
based on some state optimization procedure.

The very first state in the list in your state signal type
declaration will be assigned the state bit values of all
zeroes.

This is useful for power-on reset where upon powering
on of an FPGA all flipflops get set to zero, and will
therefore go to the first state in the list.

44

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Therefore, make the first state in the
state type list be the RESET state!
(or some initial state)

45

McGill University ECSE-323 Digital System Design / Prof. J. Clark

State Assignment Methods

If you don't like the state assignment that Quartus gives
you, or you want to use your own assignment
(to implement one-hot state encoding, for example)
you can tell the Quartus program what to use.

This is done by specifying a user-defined ATTRIBUTE

architecture behaviour of fsm is
type state_type is (S0, S2, S3);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of state_type :

TYPE IS "00 01 11";
signal states : state_type;

