
1

McGill University ECSE-323 Digital System Design / Prof. J. Clark

ECSE-323
Digital System Design

VHDL Lecture #2



2

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Simple Concurrent Assignment Statements

signal  <= expression;

Examples:

A_Out <= not ( A_In or B_in ) and Enable;

Data <= X nor D2 xor (flag_A and flag_B);

•The “not” operator has the highest precedence.
•Operators in parentheses are evaluated first.
•All binary operators have equal precedence.
•Operators with the same precedence are evaluated left-to-right.



3

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Other Types of Assignment Statements

The descriptions of complex circuits can be tedious to write 
using just simple assignment statements 

So, VHDL gives additional types of signal assignment 
statements.

These other types of statements can also better direct 
synthesis programs in generating hardware



4

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Forms of signal assignment statements:

• Simple Concurrent Assignment
• Selected Assignment
• Conditional Assignment
• Component Instantiation
• Generate Statements
• Process Blocks



5

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Selected Signal Assignment Statements

A selected signal assignment is a means of conveniently 
describing multiplexer structures

with Dsel select

Y <=

A when "00”,

B when "01”,

C when "10”,

D when others;

Order is not
Important!



6

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Note: All conditions must be defined in a selected 
signal assignment, otherwise your code will not 
conform to the VHDL standard and you will 
probably get an error from whatever software 
happens to be reading your code.

Coverage of all conditions can be tricky to ensure 
– which is why the “when others” clause is 
useful



7

McGill University ECSE-323 Digital System Design / Prof. J. Clark

An example of possible problems -
with Dsel select

Y <=

A when “00”,

B when “01”,

C when “10”,

D when “11”;

This assignment statement will give an error if Dsel is of type 
STD_LOGIC_VECTOR (but not if Dsel is of type 
BIT_VECTOR).
Why?
Because the type of signal Dsel has more possible values 
than just 0 and 1 (e.g. a high-impedance value – Z) so that 
not all possibilities are covered.



8

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Conditional Assignment Statements

Conditional signal assignment is similar to 
selected signal assignment. It is often used for 
circuits which implement some sort of priority.

Y <=

A when DSel = "00" else

B when DSel = "01" else

C when DSel = "10" else

D;

Order is
Important!



9

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Conditional Assignment Statements

Unlike in selected assignment it is not absolutely 
required that all conditions be covered.

Y <=

A when DSel = "00" else

B when DSel = "01" else

C when DSel = "10";



10

McGill University ECSE-323 Digital System Design / Prof. J. Clark

If all conditions are not accounted for in a 
conditional assignment statement, a 
storage element (e.g. a flipflop) will be 
created, a phenomenon known as 
implied memory. 



11

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Implied Memory

Consider the following conditional statement:
Y <= A when D = ‘1’;

This statement does not say what happens when
D is 0. Therefore no events can be created on Y
when D is 0, no matter what events occur on 
other signals. Thus the value of Y is held 
(memory) when D is 0.



12

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Implied Memory

To remove the implied memory we can write:
Y <= A  when D = ‘1’ else

‘0’;

This describes a purely combinational circuit, 
with no storage elements.



13

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Conditional vs. Selected Assignment
What is the difference between a conditional assignment and a 
selected assignment? 
From a functional point of view, not much – they both can 
implement the same function.
From a synthesis point of view, quite a bit! – they both generate 
different forms of hardware.

Selected assignment ⇒ two-level, fast, high gate count and longer 
VHDL descriptions.
Conditional assignment ⇒ multi-level, slow (worst-case), low gate 
count and shorter VHDL descriptions. 



14

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Use conditional assignments if you want to implement some sort of 
priority scheme.
For example, priority encoders are often used to handle multiple
interrupt lines.

INT_VEC <=

VEC1 when Int1 = ‘1’ else

VEC2 when Int2 = ‘1’ else

VEC3 when Int3 = ‘1’ else

VEC4 when Int4 = ‘1’ else

‘0’;



15

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Priority Interrupt Encoder - as described
with conditional signal assignment.

INT1INT2INT3

VEC1

VEC2

VEC3
0

1

0

1

0

1

0

1

0

VEC4

INT_VEC

INT4

Maximum delay is 4 MUX gate delays



16

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The equivalent circuit description using Selected Signal 
assignment is longer:

with IntSel select

IntVec <=

Vec1 when “1000”, Vec1 when “1001”, 

Vec1 when “1010”, Vec1 when “1011”, 

Vec1 when “1100”, Vec1 when “1101”, 

Vec1 when “1110”, Vec1 when “1111”, 

Vec2 when “0100”, Vec2 when “0101”,

Vec2 when “0110”, Vec2 when “0111”,

Vec3 when “0010”, Vec3 when “0011”,

Vec4 when “0001”, ‘0’  when others;



17

McGill University ECSE-323 Digital System Design / Prof. J. Clark

To make the selected assignment statement as short as 
possible, always group the output value that has the most 
cases (for this example it is Vec1) under the "when 
others" clause:

with IntSel select

IntVec <=

Vec2 when “0100”, Vec2 when “0101”,

Vec2 when “0110”, Vec2 when “0111”,

Vec3 when “0010”, Vec3 when “0011”,

Vec4 when “0001”, '0'  when “0000”,

Vec1 when others;



18

McGill University ECSE-323 Digital System Design / Prof. J. Clark

INT1
INT2

INT3

VEC1

VEC2

INT4

Maximum delay is 1 
MUX gate delays

5
6
7
8
9
10
11
12
13
14
15

16-1 MUX

Priority Interrupt Encoder - as described
with selected signal assignment.

0 0
VEC4 1

2
VEC3 3

4

INT_VEC



19

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Usually, selected signal assignment results
in faster, but larger, circuits than using
conditional signal assignment statements.

This is true only for the worst-case speed.
The priority tree structures generated by 
conditional signal assignment have differing 
delays for different signal paths.

Some paths can have very short delays!



20

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Conditional assignment statements are often 
used to reduce delay for critical path signals.

Consider the following VHDL description that uses selected 
signal assignment:

sel <= crit or sorta_crit or 
non_crit;

with sel select

Y <=
in1 when ‘0’,   
in2 when ‘1’, 
in2 when others;

crit

non_crit

in2

in1

sel

0

1

Critical path 
has a delay of 
2 gate delays

sorta_crit

Synthesis

Y



21

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Re-design with conditional assignment statements:

Y <= in2 when crit = ‘1’       
else in2 when sorta_crit = ‘1’  
else in2 when non_crit = ‘1’ 
else in1;

crit
sorta_crit

0

1
Critical path 
has a delay of 
1 gate delay

0

1

0

1

Synthesis

A priority tree structure is synthesized

in1

in2
Ynon_crit



22

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Design Rule:

Put time-critical signals at the top levels of 
conditional assignment trees.

After circuit synthesis these signals will usually 
have the shortest path to the output.



23

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Components
Components are used to connect multiple VHDL 
design units (entity/architecture pairs) together to 
form a larger, hierarchical design. 

Hierarchy can dramatically simplify your design 
description and can make it much easier to re-use 
portions of the design in other projects.



24

McGill University ECSE-323 Digital System Design / Prof. J. Clark

XY_Gate

QZ_Gate

XY_Gate

D1

D2

X

SET

WIDGET

I1

I2

x

y

s1

s2 x

y

s1

s2
Z2

ST

Q

Z1

Gate1

Gate2

Gate3

STATUS

Q1

Q2

Example of Hierarchical Design – The design entity 
“WIDGET” contains instantiations of other design entities.



25

McGill University ECSE-323 Digital System Design / Prof. J. Clark

A component must be declared, in the 
declarations section of the architecture body, 
before it is instantiated in the concurrent 
statements area.

component component_name
port list (…);

end component;



26

McGill University ECSE-323 Digital System Design / Prof. J. Clark

XY_Gate

QZ_Gate

XY_Gate

D1

D2

X

SET

WIDGET

I1

I2

x

y

s1

s2 x

y

s1

s2
Z2

ST

Q

Z1

Gate1

Gate2

Gate3

STATUS

Q1

Q2

There are 3 component instances, but only 2 different types 
of components. Thus we need 2 component declarations.



27

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The component declarations for our example:

component XY_gate
port(X, Y: in std_logic; s1, s2: out std_logic);

end component;

component QZ_gate
port(Z1, Z2 : in std_logic; ST: out std_logic;  

Q : in std_logic_vector(7 downto 0));
end component;

Note: The port list should match the port list of the 
component’s entity declaration.



28

McGill University ECSE-323 Digital System Design / Prof. J. Clark

To actually use a component it must be 
instantiated, in the concurrent statements 
section of the architecture body.

The basic template for component 
instantiation is:

instance_label: component_name
port map (

component_port1 => signal1,
component_port2 => signal2,

…

component_portn => signaln);



29

McGill University ECSE-323 Digital System Design / Prof. J. Clark

XY_Gate

QZ_Gate

XY_Gate

D1

D2

X

SET

WIDGET

I1

I2

x

y

s1

s2 x

y

s1

s2
Z2

ST

Q

Z1

Gate1

Gate2

Gate3

STATUS

Q1

Q2

There are 3 components in total of all kinds, 
so we need 3 instantiation statements.



30

McGill University ECSE-323 Digital System Design / Prof. J. Clark

The component instantiations for our 
example:

Gate1: XY_Gate port map (

x=>D1, y=>D2, s2=>I1, s1=>STATUS);
Gate2: XY_Gate port map (

x=>I1, s2=>Q2, y=>I2, s1=>Q1);
Gate3: QZ_Gate port map (

Q=>X, Z2=>I1, Z1=>SET, ST=>I2);

Now, let’s put it all together…



31

McGill University ECSE-323 Digital System Design / Prof. J. Clark

entity widget is

port ( D1, D2, SET : in std_logic;                     
X : in std_logic_vector(7 downto 0);    

Q1, Q2, STATUS : out std_logic);              
end widget;

architecture A of widget is 
signal I1, I2 : std_logic;

component XY_gate 
port(X, Y: in std_logic; s1, s2: out std_logic); 

end component;

component QZ_gate 
port(Z1, Z2 : in std_logic; ST: out std_logic;
Q : in std_logic_vector(7 downto 0));  

end component;

begin
Gate1: XY_Gate port map (x=>D1, y=>D2, s2=>I1, s1=>STATUS);
Gate2: XY_Gate port map (x=>I1, s2=>Q2, y=>I2, s1=>Q1);
Gate3: QZ_Gate port map (Q=>X, Z2=>I1, Z1=>SET, ST=>I2);
end A;



32

McGill University ECSE-323 Digital System Design / Prof. J. Clark

VHDL Libraries

Libraries are collections of signal definitions, and design 
entity definitions (for use as components).

Always declare all used libraries before the design entity

library IEEE;
use std_logic_1164.all;
library lpm;
use lpm.lpm.components.all;

entity my_design is
. . . . . . . . . . .



33

McGill University ECSE-323 Digital System Design / Prof. J. Clark

IEEE STD_LOGIC Library

This is a set of standard packages defining commonly used data
types and operations

Std_Logic_1164 Multivalue Logic System

Defines types and operations to deal with strong, weak and
high-impedance strengths, and unknown values

– Std_logic
– Std_logic_vector

Always include this library in your VHDL designs



34

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example of std_logic package usage:

library ieee;
use ieee.std_logic_1164.all;

entity nandgate is
port (A, B, OE: in std_logic; Y: out 

std_logic);
end nandgate;

architecture arch1 of nandgate is
signal n: std_logic;
begin

n <= not (A and B);
Y <= n when OE = ‘1' else 'Z';

end arch1;



35

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Altera LPM Library

This is a set of design entities which implement various logic 
blocks, ranging from simple (and gates, nor gates, etc) to 
complex (adders, multipliers, counters). 

LPM stands for Library of Parametrized Modules.

Various parameters of these modules (such as data_bus widths) 
can be adjusted (see the online MaxPlusII documentation for 
information on these parameters) using GENERICs.

You can use these as components in your VHDL designs.



36

McGill University ECSE-323 Digital System Design / Prof. J. Clark

Example of lpm package usage:
library ieee;

use ieee.std_logic_1164.all;

library lpm;

use lpm.lpm_components.all;

architecture arch1 of widget is

component lpm_inv                                
generic (LPM_WIDTH: POSITIVE;             

PORT (data : IN std_logic_vector(LPM_WIDTH-1 downto 0);     
result : OUT std_logic_vector(LPM_WIDTH-1 downto 0));

signal int1, int2 : std _logic_vector(3 downto 0));

begin

inv1 : lpm_inv generic map (LPM_WIDTH => 4)
port map( result => int1, data => int2);

end arch1;



37

McGill University ECSE-323 Digital System Design / Prof. J. Clark

OK, that’s all the VHDL for now.
More to come next month…

In the meantime, just remember…

H is for Hardware!


