McGill University
 Department of Electrical and Computer Engineering

Course: ECSE-323 Digital System Design
Winter 2008

Assignment \#11 Solutions

TOPIC: Datapath/Controller System Design

Tuesday Tutorial Session

Design a datapath/controller system that computes the arithmetic-geometric mean of two inputs \boldsymbol{x} and \boldsymbol{y}, using the following iterative process:

$$
\begin{aligned}
& a_{1}=\frac{x+y}{2} \\
& g_{1}=\sqrt{x y} \\
& a_{n+1}=\frac{a_{n}+g_{n}}{2} \\
& g_{n+1}=\sqrt{a_{n} g_{n}}
\end{aligned}
$$

As this process is iterated many times the two values \boldsymbol{a} and \boldsymbol{g} will converge to the same number, which is known as the arithmetic-geometric mean.

Assume that in addition to the two inputs \boldsymbol{x} and \boldsymbol{y}, your system has an asynchronous START input, an asynchronous RESET input, and an input $N _$ITER indicating the number of iterations to be done. The outputs of the system should be the values \boldsymbol{a} and \boldsymbol{g}, and a signal DONE which goes high once $\boldsymbol{N} _$ITER iterations have been done.
a) Write down a pseudo-code description of the process to be implemented.
b) Draw the datapath, assuming that only one adder module, one multiplier module, and one square root module are available. You can use as many other modules as you see fit.
c) Draw the state transition diagram for the controller (use a Moore machine approach).
a)

1. wait for START to go low
2. wait for START to go high
3. $a=x ; ~ g=y ; n=0 ; ~--~ i n i t i a l i z e ~$
4. $\mathrm{a}=(\mathrm{a}+\mathrm{g}) / 2 ; \mathrm{g}=$ square_root $\left(\mathrm{a}^{*} \mathrm{~g}\right) ; \mathrm{n}=\mathrm{n}+1$;
5. if $\mathrm{n}<\mathrm{N} _$ITER go to step 4
6. else assert DONE and go to step 1
b) Datapath:

c) State Diagram:

Wednesday Tutorial Session

Design a datapath/controller system that computes the natural logarithm of a number (assumed to lie in the range 1 to 2) using the following third order power series approximation:
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots \quad$ for $\quad|x| \leq 1 \quad$ unless $\quad x=-1$
a) Write down a pseudo-code description of the process to be implemented. Assume that you only need to implement the terms shown above.
b) Draw the datapath, assuming that only one adder/subtractor module and one multiplier module are available. You can use as many other modules as you see fit. Implement the division by 3 by a multiplication by 21 and a division by 64 .
c) Draw the state transition diagram for the controller (use a Moore machine approach). Your system should have as input the number \boldsymbol{y}, an asynchronous START signal, and an asynchronous reset signal. The system output should be the natural \log of \boldsymbol{y} and a DONE signal, which should go high once a valid result is available.
a)

1. wait for START to go low
2. wait for START to go high
3. $P=1 ; L=0 ;$
4. $\mathrm{L}=\mathrm{L}+\mathrm{Y}$;
5. $L=L-1 ; X=L ;-X$ and L are now $Y-1$
6. $P=X * P ;-P$ is now X
7. $P=X^{*} P$; -- P is now $X^{\wedge} 2$
8. $L=L-P / 2 ;--L$ is now $X-X \wedge 2 / 2$
9. $P=X^{*} P$; -- P is now $X^{\wedge} 3$
10. $X=21$;
11. $P=X^{*} P$;
12. $L=L+P / 64 ;--L$ is now $X-X^{\wedge} 2 / 2+X \wedge 3 / 3$
13. assert DONE and go to step 1

Note that the multiplier operands are always X and P . The output of the multiplier always gets loaded into P . One operand to the adder/subtractor is always L . The output of the adder/subtractor always gets loaded into L. Whether the add/sub module adds or subtracts is determined by the control signal ADD/SUB.
b) Datapath:

c) State Diagram:

