
McGill University
Department of Electrical and Computer Engineering

Course: ECSE-323 Digital System Design Winter 2008

Assignment #11 Solutions

TOPIC: Datapath/Controller System Design

Tuesday Tutorial Session

Design a datapath/controller system that computes the arithmetic-geometric mean of two inputs x and y,
using the following iterative process:

As this process is iterated many times the two values a and g will converge to the same number, which is
known as the arithmetic-geometric mean.

Assume that in addition to the two inputs x and y, your system has an asynchronous START input, an
asynchronous RESET input, and an input N_ITER indicating the number of iterations to be done. The
outputs of the system should be the values a and g, and a signal DONE which goes high once N_ITER
iterations have been done.

a) Write down a pseudo-code description of the process to be implemented.
b) Draw the datapath, assuming that only one adder module, one multiplier module, and one square

root module are available. You can use as many other modules as you see fit.
c) Draw the state transition diagram for the controller (use a Moore machine approach).

a)

1. wait for START to go low
2. wait for START to go high
3. a = x; g = y; n=0; -- initialize
4. a = (a+g)/2; g = square_root(a*g); n = n+1;
5. if n< N_ITER go to step 4
6. else assert DONE and go to step 1

b) Datapath:

A_REGISTER G_REGISTER

SQUARE
ROOT

LD_A LD_G

Divide by 2 by shifting bits right one place

COUNTER

COMPARATOR

CLR_C C_EN N_ITER

AeqB

 X M_SEL Y

c) State Diagram:

S1

[DONE]

S2

[DONE]

S3
[CLR_C]
[LD_A]
[LD_G]

[M_SEL=0]

S4

[C_EN]
 [M_SEL=1]

S5

[LD_A]
[LD_G]

 START=1

 START=1 START=0

 START=0

 AeqB=0

 AeqB=1

May need to add wait
states here.

Wednesday Tutorial Session

Design a datapath/controller system that computes the natural logarithm of a number (assumed to lie in
the range 1 to 2) using the following third order power series approximation:

a) Write down a pseudo-code description of the process to be implemented. Assume that you only
need to implement the terms shown above.

b) Draw the datapath, assuming that only one adder/subtractor module and one multiplier module
are available. You can use as many other modules as you see fit. Implement the division by 3 by a
multiplication by 21 and a division by 64.

c) Draw the state transition diagram for the controller (use a Moore machine approach). Your
system should have as input the number y, an asynchronous START signal, and an asynchronous
reset signal. The system output should be the natural log of y and a DONE signal, which should
go high once a valid result is available.

a)

1. wait for START to go low
2. wait for START to go high
3. P = 1; L = 0;
4. L = L+Y;
5. L = L-1; X = L; -- X and L are now Y-1
6. P = X*P; -- P is now X
7. P = X*P; -- P is now X^2
8. L = L-P/2; -- L is now X-X^2/2
9. P = X*P; -- P is now X^3
10. X = 21;
11. P = X*P;
12. L = L+P/64; -- L is now X-X^2/2+X^3/3
13. assert DONE and go to step 1

Note that the multiplier operands are always X and P. The output of the multiplier
always gets loaded into P. One operand to the adder/subtractor is always L. The
output of the adder/subtractor always gets loaded into L. Whether the add/sub
module adds or subtracts is determined by the control signal ADD/SUB.

b) Datapath:

L_REGISTER X_REGISTER

P_REGISTER

LD_L
CLR_L

LD_X

P

SET_X=21

Divide by shifting bits right Y 1 P/2 P/64

 ADD/SUB

L (answer)

ADD_SEL

LD_P
SET_P=1

c) State Diagram:

S1

[DONE]

S2

[DONE]

S3

[SET_P=1]
[CLR_L]

S4

[ADD/SUB=ADD]
 [ADD_SEL=Y]

[LD_L]

S5

[LD_X]
[ADD/SUB=SUB]

 [ADD_SEL=1]
[LD_L]

 START=1

 START=1 START=0

 START=0

S6

[LD_P]

S7

[LD_P]

S8

[LD_L]
[ADD/SUB=SUB]
 [ADD_SEL=P/2]

S11

[LD_L]
[ADD/SUB=SUB]
 [ADD_SEL=P/64]

S10

[LD_P]

S9

[LD_P]
[SET_X=21]

