

1

McGill University
Department of Electrical and Computer Engineering

Course: ECSE-323 Digital System Design Winter 2008

Assignment #9 Solutions

TOPIC: VHDL for Sequential Circuits

Tutorial Session 1 (Tuesday)

Problem 1
Write a complete VHDL description of a 2-input (X1,X2) 8-bit signed counter which either
counts up on every clock cycle or counts down on every clock cycle. The circuit should count up
whenever X1 is high and X2 is low and count down whenever X2 is high and X1 is low. The
incrementing or decrementing should be disabled (i.e. no counting) whenever X1 and X2 are
either both high or both low. If the count reaches 127 then it should not increment, and if the
count reaches -127 it should not decrement. Provide an asynchronous reset which sets the count
to 0. Use a single process block. Give the circuit a count enable input.

entity counter8 is
 port (rst, clk, X1, X2, c_enable : in std_logic;
 COUNT : out integer range -127 to 127);
end counter8;

architecture Q1 of counter8 is
signal tmp : integer range -127 to 127;
begin

process(rst,clk)
begin

 if rst='1' then
 tmp <= 0;
 elsif clk='1' and clk'EVENT then
 if C_enable = ‘1’ then
 if X1= ‘1’ and X2 = ‘0’ then

if tmp < 127 then
 tmp <= tmp+1;
end if;

 elsif X1= ‘0’ and X2 = ‘1’ then
if tmp > -127 then
 tmp <= tmp-1;
end if;

 end if; -- if X1
 end if; -- if c_enable
 end if; -- if rst

2

end process;
COUNT <= tmp;

 end Q1;

Problem 2
Write a complete VHDL description of a Moore FSM that generates nonsense words (e.g. for
computer passwords) out of an alphabet of 4 consonants (B,C,D,F) and 4 vowels (A,E,I,O). This
should take as input a 1bit value, X, and output a 3-bit symbol (encoding one of the 8 possible
letters). A new letter should be generated on each rising clock edge based on the current letter
value according to the following rule:

on Reset set the output to ‘A’.
if X = 0
A -> B, or E-> C, or I->D, or O->F, or B->A, or C->E, or D->I, or F->O
if X = 1
A -> D, or E-> F, or I->B, or O->C, or B->E, or C->I, or D->O, or F->A

Write down the output letter sequence for X=11001001.

Let the encoding be A=000, E=001, I=010, O=011, B=100,
C=101, D=110, F=111

The output for X=11001001 (after a reset) is [A]DOFOCECI

entity Q2 is
 port (reset, clk, : in std_logic;
 X : in std_logic;
 s : out std_logic_vector(2 downto 0));
end Q2;

architecture FSM of Q2 is
type state_signal is (A,E,I,O,B,C,D,F);
signal state : state_signal;
begin

state_update : process(clk, reset)
 if reset = '1' then
 state <= A;
 elsif clk = '1' and clk'EVENT then
 case state is
 when A =>
 if X=’0’ then state <= B;

else state <= D;
 end if;
 when E =>

3

 if X=’0’ then state <= C;
else state <= F;

 end if;
 when I =>
 if X=’0’ then state <= D;

else state <= B;
 end if;
 when O =>
 if X=’0’ then state <= F;

else state <= C;
 end if;
 when B =>
 if X=’0’ then state <= A;

else state <= E;
 end if;
 when C =>
 if X=’0’ then state <= E;

else state <= I;
 end if;
 when D =>
 if X=’0’ then state <= I;

else state <= O;
 end if;
 when F =>
 if X=’0’ then state <= O;

else state <= A;
 end if;

 end case;
end if; -- if reset

end process;

output_logic : process(state)
begin
 s = “000”; -- default output
 case state is

 when A => s <= “000”;
 when E => s <= “001”;
 when I => s <= “010”;
 when O => s <= “011”;
 when B => s <= “100”;
 when C => s <= “101”;
 when D => s <= “110”;
 when F => s <= “111”;

 end case;
end process;
end FSM;

4

Tutorial Session 2 (Wednesday)

Problem 1
Write a complete VHDL description of a 5-bit counter circuit that counts in the “days-in-a-month”
sequence (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, repeat…). On every 4th cycle through the
sequence the second count value should be 29 instead of 28. Use a single process block. Give the
circuit an asynchronous reset, and a count enable input.

entity day_counter is
 port (rst, clk, c_enable : in std_logic;
 days : out std_logic_vector(4 downto 0));
end day_counter;

architecture Q1 of day_counter is
signal month : integer range 0 to 11;
signal year : integer range 0 to 3;
begin

process(rst,clk)
begin

 if rst='1' then
 month <= 0;
 year <= 0;
 elsif clk='1' and clk'EVENT then
 if C_enable = ‘1’ then
 month <= month+1;
 if month = 11 then
 year <= year+1;
 end if;
 case month is
 when 0 =>
 if year = 3 then days <= 29;

else days <= 28;
end if;

 when 1 => days <= 31;
 when 2 => days <= 30;
 when 3 => days <= 31;
 when 4 => days <= 30;
 when 5 => days <= 31;
 when 6 => days <= 31;
 when 7 => days <= 30;
 when 8 => days <= 31;
 when 9 => days <= 30;
 when 10 => days <= 31;
 when 11 => days <= 31;
 end case;
 end if; -- if c_enable
 end if; -- if rst

5

end process;
 end Q1;

Problem 2
Write a complete VHDL description of a Moore FSM that outputs a ‘1’ if the input stream has
had four or more ‘01’ or ‘10’ inputs since the last ‘00’ or ‘11’ input (the 2-bit input is examined
on each rising clock edge). The output should be ‘0’ otherwise.

entity Q2 is
 port (reset, clk, : in std_logic;
 X : in std_logic_vector(1 downto 0);
 s : out std_logic);
end Q2;

architecture FSM of Q2 is
type state_signal is (S0, S1, S2, S3, S4);
signal state : state_signal;
begin

state_update : process(clk, reset)
 if reset = '1' then
 state <= S0;
 elsif clk = '1' and clk'EVENT then
 case state is
 when S0 =>
 if X='01' or X=’10’ then state <= S1;

else state <= S0;
 end if;
 when S1 =>
 if X='01' or X=’10’ then state <= S2;

else state <= S0;
 end if;
 when S2 =>
 if X='01' or X=’10’ then state <= S3;

else state <= S0;
 end if;
 when S3 =>
 if X='01' or X=’10’ then state <= S4;

else state <= S0;
 end if;
 when S4 =>
 if X='01' or X=’10’ then state <= S4;

else state <= S0;
 end if;

 end case;
end if; -- if reset

end process;

6

output_logic : process(state)
begin
 s = ‘0’; -- default output
 case state is

 when S0 => s <= ‘0’;
 when S1 => s <= ‘0’;
 when S2 => s <= ‘0’;
 when S3 => s <= ‘0’;
 when S4 => s <= ‘1’;

 end case;
end process;
end FSM;

7

********** END OF ASSIGNMENT # 9 *******************

