

1

McGill University
Department of Electrical and Computer Engineering

Course: ECSE-323 Digital System Design Fall 2008

Assignment #8

TOPIC: VHDL for Sequential Circuits

Tutorial Session 1 (Monday)

Problem 1
Write a complete VHDL description of a 4-bit signed counter. The circuit should count up by the
amount X, where X is a 3-bit input, whenever X is even. The counter should count down by the
amount X whenever X is odd. If the count reaches 15 then it should not increment, and if the
count reaches 0 it should not decrement. Provide an asynchronous reset which sets the count to
0. Give the circuit a count enable input. Use a single process block.

entity counter4 is
 port (rst, clk, c_enable : in std_logic;
 X : in std_logic_vector(2 downto 0);
 COUNT : out integer range 0 to 15);
end counter4;

architecture Q1 of counter4 is
signal tmp : integer range 0 to 15;
begin

process(rst,clk)
begin

 if rst='1' then
 tmp <= 0;
 elsif clk='1' and clk'EVENT then
 if C_enable = ‘1’ then
 if X(0) = ‘0’ then -- even

if tmp < 15 then
 tmp <= tmp+conv_integer(X);
end if;

 else
if tmp > 0 then
 tmp <= tmp-conv_integer(X);
end if;

 end if; -- if X(0)
 end if; -- if c_enable
 end if; -- if rst
end process;

2

COUNT <= tmp;
 end Q1;

Problem 2
Write a complete VHDL description of a Moore FSM that detects occurrences of the 4-bit
sequence 1101 in a sequential stream of input bits. The output Z should go high each time the
final bit of this sequence is detected. This should take as input a 1-bit value, X.
For example, the output Z for the input stream X(t) = 110110101101 should be 000100100001.

entity Q2 is
 port (reset, clk, : in std_logic;
 X : in std_logic;
 Z : out std_logic);
end Q2;

architecture FSM of Q2 is
type state_signal is (S0,S1,S11,S110,S1101);
signal state : state_signal;
begin

state_update : process(clk, reset)
 if reset = '1' then
 state <= S0;
 elsif clk = '1' and clk'EVENT then
 case state is
 when S0 =>
 if X=’0’ then state <= S0;

else state <= S1;
 end if;
 when S1 =>
 if X=’0’ then state <= S0;

else state <= S11;
 end if;
 when S11 =>
 if X=’0’ then state <= S110;

else state <= S11;
 end if;
 when S110 =>
 if X=’0’ then state <= S0;

else state <= S1101;
 end if;
 when S1101 =>
 if X=’0’ then state <= S0;

else state <= S11;
 end if;

3

 end case;
end if; -- if reset

end process;

output_logic : process(state)
begin
 case state is

 when S1101 => Z <= ‘1’;
 when others Z <= ‘0’;

 end case;
end process;
end FSM;

4

Tutorial Session 2 (Wednesday)

Problem 1
Write a complete VHDL description of a 16-bit counter circuit that counts in a “factorial” sequence
(1!,2!,3!,4!,5!,6!,7!,8!, repeat…). Use a single process block. Give the circuit an asynchronous reset,
and a count enable input.

entity fact_counter is
 port (rst, clk, c_enable : in std_logic;
 COUNT : out std_logic_vector(15 downto 0));
end counter4;

architecture Q1 of fact_counter is
signal tmp : std_logic_vector(15 downto 0);
signal max : std_logic_vector(15 downto 0);
begin
 max <= “1001110110000000”; -- 8! = 40320

process(rst,clk)
begin

 if rst='1' then
 tmp <= “0000000000000001”;
 elsif clk='1' and clk'EVENT then
 if C_enable = ‘1’ then
 if tmp < max then
 tmp <= tmp*(tmp+1);
 else
 tmp <= “0000000000000001”;
 end if; -- if tmp
 end if; -- if c_enable
 end if; -- if rst
end process;
COUNT <= tmp;

 end Q1;

Problem 2
Write a complete VHDL description of a Moore FSM that has two 1-bit inputs X,Y, and a single
output, Z. The output Z should be set high whenever X=Y=1 for 2 consecutive clock cycles, and
go low whenever X=Y=0 for 2 consecutive clock cycles, and should hold its value otherwise.
Provide an asynchronous reset, which should set Z=0.

entity Q2 is
 port (reset, clk, : in std_logic;
 X, Y : in std_logic;
 Z : out std_logic);
end Q2;

5

architecture FSM of Q2 is
type state_signal is (Ra,Rb,S0a,S0b,S0c,S1a,S1b,S1c);
signal state : state_signal;
begin

state_update : process(clk, reset)
 if reset = '1' then
 state <= Ra;
 elsif clk = '1' and clk'EVENT then
 case state is
 when Ra =>
 if (X=’0’ and Y=’0’) then state <= Rb;
 elsif (X=’1’ and Y=’1’) then state <= S0c;

else state <= Ra;
 end if;
 when Rb =>
 if (X=’0’ and Y=’0’) then state <= S0a;
 elsif (X=’1’ and Y=’1’) then state <= S0c;

else state <= Ra;
 end if;
 when S0a =>
 if (X=’0’ and Y=’0’) then state <= S0a;
 elsif (X=’1’ and Y=’1’) then state <= S0c;

else state <= S0b;
 end if;
 when S0b =>
 if (X=’1’ and Y=’1’) then state <= S0c;

else state <= S0b;
 end if;
 when S0c =>
 if (X=’1’ and Y=’1’) then state <= S1a;

else state <= S0b;
 end if;
 when S1a =>
 if (X=’0’ and Y=’0’) then state <= S1c;
 elsif (X=’1’ and Y=’1’) then state <= S1a;

else state <= S1b;
 end if;
 when S1b =>
 if (X=’0’ and Y=’0’) then state <= S1c;

else state <= S1b;
 end if;
 when S1c =>
 if (X=’0’ and Y=’0’) then state <= S0a;

else state <= S1b;
 end if;

end case;
end if; -- if reset

6

end process;

output_logic : process(state)
begin
 case state is

 when S1a => Z <= ‘1’;
 when S1b => Z <= ‘1’;
 when S1c => Z <= ‘1’;
 when others Z <= ‘0’;

 end case;
end process;
end FSM;

********** END OF ASSIGNMENT # 9 *******************

