
Introduction to Software Engineering

ECSE-321

Unit 9 – Architectural Design

Approaches

Architectural Design

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/2

R
e
q
u
ir
e
m

e
n
t

E
lic

it
a

ti
o
n

A
n
a
ly

s
is

(S
o
ft
w

a
re

 P
ro

d
u
c
t

D
e
s
ig

n
)

A
rc

h
it
e
c
tu

ra
l
D

e
s
ig

n

D
e
ta

ile
d
 D

e
s
ig

n
SRSSRS

SADSAD
Software Architecture

Document

3

Why Architectural Design?

Architecture is often needed to

● Judge feasibility

● Convince stakeholders their needs

can be met

● Conduct tradeoff analyses

● Plan the project

4

Why Architectural Design?

Architectural design also influences the

choices for:

● Code libraries and other assets

● Organizational structure

● Knowledge and experience of designers

Architectures influence people and

organizations too

● Team that works on the project

● Organizations participating in outsourced

projects

5

Architectural Design Process

Software architecture

document

Software

requirement doc.

6

Software Architecture Document

Product Overview—Product vision,

stakeholders, target market, etc.

Architectural Models—Specification using

various models, both static and dynamic

● DeSCRIPTR

Mapping Between Models—Tables and

text relating models

Architectural Design Rationale—

Explanation of difficult, crucial, puzzling,

and hard-to-change design decisions

7

Quality Attributes

 Non-functional requirements

 Architectures have a big influence on
quality attributes

 Development or operational attributes

A quality attribute is a characteristic
or property of a software product independent of its
function that is important in satisfying stakeholder

needs.

8

Development Attributes

Maintainability—Ease with which a

product can be corrected, improved,

or ported

● Often subdivided

Reusability—Degree to which a

product’s parts can be reused in

another product

Others

9

Operational Attributes

Performance—Ability to accomplish
product functions within time or
resource limits

Availability—Readiness for use

Reliability—Ability to behave in accord
with requirements under normal
operating conditions

Security—Ability to resist being harmed
or causing harm by hostile acts or
influences

Others

10

Notations for Architectural
Specifications

Type of Specification Useful Notations

Decomposition

Box-and-line diagrams, class diagrams,

package diagrams, component diagrams,

deployment diagrams

States State diagrams

Collaborations

Sequence and communication diagrams,

activity diagrams, box-and-line diagrams, use

case models

Responsibilities Text, box-and-line diagrams, class diagrams

Interfaces Text, class diagrams

Properties Text

Transitions State diagrams

Relationships
Box-and-line diagrams, component diagrams,

class diagrams, deployment diagrams, text

11

Interfaces

An interface is a communications
boundary between entities.

An interface specification describes
the mechanism that an entity uses to
communicate with its environment.

12

Interface Specifications

Syntax—Elements of the communications
medium and how they are combined to
form messages

Semantics—The meanings of messages

Pragmatics—How messages are used in
context to accomplish tasks

 Interface specifications should cover the
syntax, semantics, and pragmatics of the
communication between a module and its
environment.

13

Interface Specification Template

1.Services Provided

For each service provided specify its

a) Syntax

b) Semantics

c) Pragmatics

2.Services Required

Specify each required service by name.

A service description may be included.

3.Usage Guide

4.Design Rationale

14

Semantic Specification

A precondition is an assertion that must

be true at the start of an activity or

operation.

A postcondition is an assertion that must

be true at the completion of an activity

or operation.

Pre- and postconditions can together

specify what happens when an

operation executes, thus explaining its

semantics.

15

Architectural Modeling Notations

Several notations for architectural
modeling
● Box-and-line diagrams

● UML package diagrams

● UML component diagrams

● UML deployment diagrams

16

Box-and-Line Diagrams

 Icons (boxes) connected with lines

No rules governing formation

Used for both static and dynamic

modeling

Good idea to include a legend

17

Box-and-Line Diagram Example

18

Box-and-Line Diagram Heuristics

Make box-and-line diagrams only when no
standard notation is adequate.

 Keep the boxes and lines simple.

Make symbols for different things look
different.

 Use symbols consistently in different
diagrams.

 Use grammatical conventions to name
elements (noun phrases for things and verb
phrases for actions)

19

UML Notes and Constraints

Note—A dog-eared box connected to

model elements by a dashed line

● May contain arbitrary text

● Used for comments and specifications

Constraint—A statement that must be true

of entities designated by model elements

● Written inside curly brackets

● Beside single model elements

● Beside a dashed line connecting several model

elements

20

UML Properties and Stereotypes

Property—Characteristic of an entity
designated by a model element
● List of tagged values in curly brackets

● Tagged value: tag = value

● Boolean properties that are true may drop
the value and equals sign

Stereotype—A model element given
more specific meaning
● Shown with icons, colors, graphics

● Stereotype keywords between guillemots,
for example «interface»

21

Common Elements Example

1..5

for each bulb

 if !bulb.isOn() {

 bulb.turnOn()

 return

 }

for each bulb

 bulb.turnOff()

Bulb

isLit : boolean

isOn() : boolean

turnOn()

turnOff()

Lamp

MAX_AMPS = 20 { constant }

click()

«physical device»

{ ordered }

22

UML Packages

A UML package is a collection of model

elements, called package members.

The package symbol is a file folder

● Package name in tab if body is occupied,

otherwise in the body

● Members shown in body or using a

containment symbol (circled plus sign)

23

Package Diagram Example

24

Software Components

A software component is a reusable,

replaceable piece of software.

 Component-based development is an

approach in which products are

designed and built using commercially

available or custom-built software

components.

25

UML Component Diagrams

A UML component is a modular,
replaceable unit with well-defined
interfaces.
● Component symbols are rectangles

containing names

● Stereotyped «component»

A UML component diagram shows
components, their relationships to their
environment, and their internal
structure.

26

UML Interfaces

A UML interface is a named collection of

public attributes and abstract operations.

● Represented by special ball and socket symbols

Provided interface—Realized by a class or
component
● Represented by a ball or lollipop symbol

Required interface—Needed by a class or
component
● Represented by a socket symbol

27

Interface Symbols Example

Required

provided

28

Deployment Diagrams

A UML deployment diagram models

computational resources, communication

paths among them, and artifacts that

reside and execute on them.

Used to show

● Real and virtual machines used in a system

● Communication paths between machines

● Program and data files realizing the system

Residence

Execution

29

Deployment Diagram Rules

Computational resources are nodes

Communication paths are solid lines
between nodes
● May be labeled

● May have multiplicities and role names

Artifact symbols may
● Appear within node symbols

● Be listed within node symbols

● Be connected to node symbols by dependency
arrows stereotyped with «deploy»

30

Deployment Diagram Example

«device»
GameDataServer

«device»
ClientPC

«artifact»
GameClient

TCP/IP

«device»
ServerPC

«artifact»
GameServer

«DB»
GameData

Rules

BoardImage

TokenImage

RMI

*

1

«deploy»

Summary

So far – for architectural design

● concepts involved in the design (last lecture)

● notations

Next –

● generation

● evaluation

● improvement and selection of software

architectures

● Finalizing - Reviews
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/31

32

Architectural Design - Generation

Determine Functional Components—

Create components responsible for

realizing coherent collections of

functional and data requirements.

Determine Components Based on

Quality Attributes—Form components

to meet non-functional requirements,

then add components to fill functional

and data requirements gaps.

33

Architectural Design – Generation..

Modify an Existing Architecture—Alter an

architecture for a similar program.

Elaborate an Architectural Style—An

architectural style is a paradigm of program or

system constituent types and their

interactions (more on this later). Elaborate

a style to form an architecture.

Transform a Conceptual Model—Modify a

conceptual model from a problem to a

solution description.

34

Example - Functional
Decomposition (Irrigator) (Draft 1)

35

Example - Functional
Decomposition (Draft 2)

User Interaction

Irrigation ControlMonitor and Repair

Functional

Component

Legend

Interacts

With

Startup

36

Example - Functional
Decomposition (Draft 3)

Functional

Component

Legend

Interacts With

AquaLush

State

Data Store

AquaLush

Configuration

User Interaction

Irrigation ControlMonitor and Repair

Startup

x Reads

& Writes y

x Reads y

x

x

y

y

37

Example - Functional
Decomposition (Draft 4)

Functional

Component

Legend

Interacts With

AquaLush

State

Data Store

AquaLush

Configuration

User Interaction

Irrigation ControlMonitor and Repair

Startup

x Reads

& Writes y

x Reads y

x

x

y

y

38

Improving Alternatives

Combine Alternatives—Combine the

best features of two or more

alternatives

 Impose an Architectural Style—Modify

an architecture that almost fits a style

so that it does fit the style

Apply Design Patterns—Modify an

architecture to take advantage of

known design patterns

39

Evaluating Alternatives

How can designers determine whether
a program built to an architectural
specification will satisfy its
requirements before the program is
built?

No one knows how to guarantee this,
but several techniques make it more
likely.

We examine the use of scenarios and
prototypes for evaluation.

40

Scenarios

Use case instances are interactions

between and a product and actors

Broader view because now we

consider interactions between a

product and any individual

A scenario is an interaction between
a product and particular individuals.

41

Profiles

Examples: usage profile, reliability profile

Scenarios in profiles should have

weights

Profiles are formed by choosing 3 to 10

representative scenarios from all those

that fit a profile

A profile is a set of scenarios used to
evaluate whether a product is likely to

meet a set of requirements.

42

Creating Profiles and Scenarios

A utility tree is a tree whose sub-trees are
profiles and whose leaves are scenarios.
● Label the root ―utility.‖

● Add children with profile names that reflect
product requirements.

● Fill in scenarios for each profile.
Brainstorm scenarios

Rationalize the list

Weight each scenario

Eliminate low-weight scenarios until each profile has
3 to 10 leaves

● Write scenario descriptions.

43

Example Utility Tree
Utility

Usage

Hardware Adaptability

Irrigate Automatically (H)

Irrigate Manually (M)

Repair During Irrigation (L)

Configure at Startup (H)

Simulate AquaLush (M)

Reusability

Add a Valve Type (H)

Replace the Keypad (L)

Add Timer-Based Irrigation (M)

Modify Irrigation Process (M)

Modifiability

In an Agricultural Product (L)

In a Consumer Product (M)

Reliability

Power Fails (H)

A Sensor Fails (H)

44

Evaluating and Selecting with
Scenarios

Walk through each scenario.

● Judge how well a design alternative supports

the scenario.

● Record a judgment for each scenario.

Use a selection technique to choose an

alternative.

● Pros and cons

● Multi-dimensional ranking

Scenarios weights are normalized

Judgments are quantified

45

Evaluating and Selecting with
Prototypes

Prototypes may be built to test out

design alternatives.

Scenario walkthroughs may give rise to

a need for prototyping.

Prototypes provide the factual basis for

selection using

● Pros and cons;

● Multi-dimensional ranking.

46

Summary

Several complimentary techniques can
be used to generate and improve
architectural alternatives.

Building profiles consisting of weighted
scenarios and walking through them is
a solid technique for evaluating
architectural alternatives.

Prototypes can also supply data for
architectural evaluation.

47

Finalizing Architectural Design -

Reviews

A review is an examination and evaluation of a
work product or process by a team of qualified

individuals.

 Desk Check—An assessment of a design by the

designer

 Walkthrough—An informal presentation to a team of

designers

 Inspection—A formal review by a trained inspection

team

 Audit—A review conducted by experts from outside

the design team

 Active Review—An examination by experts who

answer specific questions about the design

48

Active Design Reviews

Remedies problems with traditional

reviews

● Lack of expertise

● Cursory reviews

Forces reviewers to engage the

document in their areas of expertise by

asking them to answer specific

questions about design details

49

Active Design Review Process

...

Identify Review

Goals

Choose

Reviewers

Create

Questions

Hold an Overview

Meeting

Reviewer 1

Reviews

Reviewer 2

Reviews

Reviewer k

Reviews

Study Reviews

Active Design Review

50

Review Preparation

 Identify Review Goals—Designers
choose aspects of the design they want
checked.

Choose Reviewers—Designers identify
two to four qualified reviewers and
obtain their consent to do the review.

Create Questions—Designers formulate
questions to be answered by reviewers.
● Force reviewers to understand the design

● Ask reviewers to solve problems, explain
something, etc.

51

Review Performance

Hold an Overview Meeting—

Designers sketch the architecture,

explain the process, set deadlines,

etc.

Do Reviews—The reviewers do their

reviews on their own.

● May meet with designers are send emails

to get clarification, explanations, etc.

● Deliver their results when complete

52

Review Completion

Study Reviews—Designers study the

review results.

● May meet with reviewers or email

questions

