Introduction to Software Engineering

ECSE-321

Unit 9 — Architectural Design
Approaches

Architectural Design

Software Architecture

SAD W Document
\\

= =

O O
-—— > n g)
C - © O 07
ES |4 oo S > — N

O ®© > O ©
= = © 2w > 9
5 O c o O 5 i_)
O W <z0 o ©

h - —
D: [e) e o
2 = Q

<

| SRS |

Winter 2009, Maheswaran Introduction to Software Engineering — ECSE321 Unit 7 - Analysis/2

Why Architectural Design?

Architecture is often needed to
e Judge feasibility

e Convince stakeholders their needs
can be met

e Conduct tradeoff analyses
e Plan the project

Why Architectural Design?

® Architectural design also influences the
choices for:
e Code libraries and other assets
e Organizational structure
e Knowledge and experience of designers

® Architectures influence people and
organizations too
e Team that works on the project

e Organizations participating in outsourced
¢ projects

Architectural Design Process

Software
requirement doc.

r Architectural Design Frocess

SRS Prodlem
aA0 0 Solution

SRS

—*;[Analyze SRS]

-
b

Generatefl mprove
Candidate Architectures
Evaluate Candidate
Architectures

[Select ﬂrchitecturej

[elsg]

[adequate architecture]

-

~

[Finalize Architecture)—}

SAD

Software architecture
document

Software Architecture Document

® Product Overview—Product vision,
stakeholders, target market, etc.

® Architectural Models—Specification using
various models, both static and dynamic
e DeSCRIPTR

® Mapping Between Models—Tables and
text relating models

® Architectural Design Rationale—
Explanation of difficult, crucial, puzzling,
and hard-to-change design decisions

6

Quality Attributes

A quality attribute is a characteristic
or property of a software product independent of its
function that is important in satisfying stakeholder
needs.

® Non-functional requirements

® Architectures have a big influence on
quality attributes

® Development or operational attributes

Development Attributes

® Maintainability—Ease with which a
product can be corrected, improved,
or ported

e Often subdivided

® Reusability—Degree to which a
product’s parts can be reused in
another product

® Others

Operational Attributes

® Performance—ADbility to accomplish
product functions within time or
resource limits

® Availability—Readiness for use

® Reliability—ADbility to behave in accord
with requirements under normal
operating conditions

® Security—ADbility to resist being harmed
or causing harm by hostile acts or
influences

. ® Others

Notations for Architectural
Specifications

Type of Specification

Useful Notations

Box-and-line diagrams, class diagrams,

Decomposition package diagrams, component diagrams,
deployment diagrams
States State diagrams

Collaborations

Sequence and communication diagrams,
activity diagrams, box-and-line diagrams, use
case models

Responsibilities

Text, box-and-line diagrams, class diagrams

Interfaces Text, class diagrams
Properties Text
Transitions State diagrams

Relationships

Box-and-line diagrams, component diagrams,
class diagrams, deployment diagrams, text

10

Interfaces

11

-~

\

An interface is a communications
boundary between entities.

An interface specification describes
the mechanism that an entity uses to
communicate with its environment.

/

Interface Specifications

12

® Syntax—Elements of the communications
medium and how they are combined to
form messages

® Semantics—The meanings of messages

® Pragmatics—How messages are used in
context to accomplish tasks

® Interface specifications should cover the
syntax, semantics, and pragmatics of the
communication between a module and its
environment.

Interface Specification Template

1.Services Provided
For each service provided specify its
a) Syntax
b) Semantics
c) Pragmatics
2.Services Required
Specify each required service by name.
A service description may be included.
3.Usage Guide
4.Design Rationale

13

Semantic Specification

® A precondition IS an assertion that must
be true at the start of an activity or
operation.

® A postcondition IS an assertion that must
be true at the completion of an activity
or operation.

® Pre- and postconditions can together
specify what happens when an
operation executes, thus explaining its
“ semantics.

Architectural Modeling Notations

® Several notations for architectural
modeling
e Box-and-line diagrams
e UML package diagrams
e UML component diagrams
e UML deployment diagrams

15

Box-and-Line Diagrams

16

® [cons (boxes) connected with lines
® No rules governing formation

® Used for both static and dynamic
modeling

® Good idea to include a legend

Box-and-Line Diagram Example

‘ Llser Interaction ‘

Irrigation Control ‘

‘ Monitor and Repair

Starup

Agualush
State

Agualush
Configuration

— Legend
_ Interacts \With
Functonal
Component v Reads
* Y8 whites W
E Data Store
17 *w4——y xHeadsy

18

Box-and-Line Diagram Heuristics

® Make box-and-line diagrams only when no
standard notation is adequate.

® Keep the boxes and lines simple.

® Make symbols for different things look
different.

® Use symbols consistently in different
diagrams.

® Use grammatical conventions to name
elements (noun phrases for things and verb
phrases for actions)

UML Notes and Constraints

® Note—A dog-eared box connected to
model elements by a dashed line
e May contain arbitrary text
e Used for comments and specifications

® Constraint—A statement that must be true
of entities designated by model elements
e \Written inside curly brackets
e Beside single model elements

e Beside a dashed line connecting several model
elements

19

UML Properties and Stereotypes

® Property—Characteristic of an entity
designated by a model element
e List of tagged values in curly brackets
e Tagged value: tag = value
e Boolean properties that are true may drop

the value and equals sign

® Stereotype—A model element given
more specific meaning
e Shown with icons, colors, graphics

e Stereotype keywords between guillemots,
for example «interface»

20

Common Elements Example

Lamp
f h bulb A
or each bu MAX_AMPS = 20 { constant }
if bulb.isOn() { _
bulb.turnOn() [~ — — — rclick()
return
}
for each bulb {ordered }| 1..5
bulb.turnOff() «physical device»
Bulb

isLit : boolean

isOn() : boolean

turnOn()
turnOff()

21

UML Packages

® A UML package is a collection of model
elements, called package members.

® The package symbol is a file folder

e Package name in tab if body is occupied,
otherwise in the body

e Members shown in body or using a
containment symbol (circled plus sign)

22

Package Diagram Example

23

Electrical Farts

Switches

Togdle
Switch

Yiiring

Three-WWay
Switch

Twio-Wire

Dirmmer

Switch

ThreeWire

Four-\yire

Software Components

® A software component IS a reusable,
replaceable piece of software.

® Component-based development IS an
approach in which products are
designed and built using commercially
available or custom-built software
components.

24

UML Component Diagrams

® A UML component IS @ modular,
replaceable unit with well-defined
interfaces.

e Component symbols are rectangles
containing names

e Stereotyped «component»

® A UML component diagram shows
components, their relationships to their
environment, and their internal
structure.

25

UML Interfaces

® A UML interface IS @ named collection of
public attributes and abstract operations.
e Represented by special ball and socket symbols

® Provided interface—Realized by a class or
component

e Represented by a ball or lollipop symbol

® Required interface—Needed by a class or
component
e Represented by a socket symbol

26

Interface Symbols Example

provided \

Required

27

gComponents
|mageR enderer

W&r Compression ? T Eit=tring

«Components
|mageRendearer

CompressionEngine

#COomponent »

Compression

T Eit=tring

“componeants
CompressionEngine

Deployment Diagrams

® A UML deployment diagram models
computational resources, communication
paths among them, and artifacts that
reside and execute on them.

® Used to show
e Real and virtual machines used in a system
e Communication paths between machines

e Program and data files realizing the system
® Residence
® Execution

28

Deployment Diagram Rules

® Computational resources are nodes

® Communication paths are solid lines
between nodes
e May be labeled
e May have multiplicities and role names

® Artifact symbols may
e Appear within node symbols

e Be listed within node symbols

e Be connected to node symbols by dependency
arrows stereotyped with «deploy»

29

Deployment Diagram Example

«device»
«device» GameDataServer
ServerPC
: RMI «DB»
«artifact» GameData
GameServer
Rules
Boardimage
1 Tokenlmage
TCP/IP /
deplo :
«device» «aeploy» | «artifact»

ClientPC GameClient

30

Summary

® So far — for architectural design
e concepts involved in the design (last lecture)
e notations

® Next —

e generation
e evaluation

e improvement and selection of software
architectures

e Finalizing - Reviews

Winter 2009, Maheswaran Introduction to Software Engineering — ECSE321 Unit 7 - Analysis/31

Architectural Design - Generation

® Determine Functional Components—
Create components responsible for
realizing coherent collections of
functional and data requirements.

® Determine Components Based on
Quality Attributes—Form components
to meet non-functional requirements,
then add components to fill functional
and data requirements gaps.

32

Architectural Design — Generation..

® Modify an Existing Architecture—Alter an
architecture for a similar program.

® Elaborate an Architectural Style—An
architectural style IS @ paradigm of program or
system constituent types and their
interactions (more on this later). Elaborate
a style to form an architecture.

® [ransform a Conceptual Model—Modify a
conceptual model from a problem to a
solution description.

34

Example - Functional

Decomposition (lrrigator) (Draft 1)

Startup

Irrigation Control

|ser Interaction

Monitor and Repair

Legend

]

Functional
Component

35

Example - Functional
Decomposition (Draft 2)

User Interaction

e AN

Monitor and Repair Irrigation Control

Startup

Legend
|7 Functional Interacts

Component With

36

Example - Functional
Decomposition (Draft 3)

User Interaction

Monitor and Repair Irrigation Control

Startup
Aqualush
State
Aqualush
Configuration
— Legend
) Interacts With
I:I Functional
Component X Reads
X Y & Writes y
@ Data Store
x4¢——y xReadsy

Example - Functional
Decomposition (Draft 4)

User Interaction

Monitor and Repair Irrigation Control

Startup
Aqualush
State
Aqualush
Configuration
— Legend
] — Interacts With
I:I Functional
Component x Reads
X Y & Writes y
8 Data Store
x4¢——y xReadsy

Improving Alternatives

38

® Combine Alternatives—Combine the
best features of two or more
alternatives

® Impose an Architectural Style—Modify
an architecture that almost fits a style
so that it does fit the style

® Apply Design Patterns—Modify an
architecture to take advantage of
known design patterns

Evaluating Alternatives

® How can designers determine whether
a program built to an architectural
specification will satisfy its
requirements before the program is
built”?

® No one knows how to guarantee this,
but several techniques make it more
likely.

® \Ve examine the use of scenarios and
prototypes for evaluation.

39

Scenarios

A scenario is an interaction between
a product and particular individuals.

® Use case instances are interactions
between and a product and actors

® Broader view because now we
consider interactions between a
product and any individual

40

Profiles

A profile is a set of scenarios used to
evaluate whether a product is likely to
meet a set of requirements.

® Examples: usage profile, reliability profile

® Scenarios in profiles should have
weights

® Profiles are formed by choosing 3 to 10
representative scenarios from all those
that fit a profile

41

Creating Profiles and Scenarios

® A utility tree IS a tree whose sub-trees are
profiles and whose leaves are scenarios.

e Label the root “utility.”

e Add children with profile names that reflect
product requirements.

e Fill in scenarios for each profile.
® Brainstorm scenarios
® Rationalize the list
®\\Veight each scenario

® Eliminate low-weight scenarios until each profile has
3 to 10 leaves

2= o \Write scenario descriptions.

Example Utility Tree

43

Utility

—— Usage

—— Irrigate Automatically (H)
— Irrigate Manually (M)

—— Repair During Irrigation (L)
—— Configure at Startup (H)
—— Simulate AqualLush (M)

—— Hardware Adaptability

Add a Valve Type (H)
— Replace the Keypad (L)

—— Modifiability

—— Add Timer-Based Irrigation (M)
—— Modify Irrigation Process (M)
—— Reusability

—— In an Agricultural Product (L)
L In a Consumer Product (M)
L Reliability

—— Power Fails (H)

— A Sensor Fails (H)

Evaluating and Selecting with
Scenarios

® \Walk through each scenario.

e Judge how well a design alternative supports
the scenario.

e Record a judgment for each scenario.

® Use a selection technique to choose an
alternative.
e Pros and cons

e Multi-dimensional ranking
® Scenarios weights are normalized
“ ® Judgments are quantified

45

Evaluating and Selecting with
Prototypes

® Prototypes may be built to test out
design alternatives.

® Scenario walkthroughs may give rise to
a need for prototyping.

® Prototypes provide the factual basis for
selection using

e Pros and cons;
e Multi-dimensional ranking.

Summary

® Several complimentary technigues can
be used to generate and improve
architectural alternatives.

® Building profiles consisting of weighted
scenarios and walking through them is
a solid technique for evaluating
architectural alternatives.

® Prototypes can also supply data for
architectural evaluation.

46

Finalizing Architectural Design -
Reviews

A review is an examination and evaluation of a
work product or process by a team of qualified
individuals.

® Desk Check—An assessment of a design by the

designer

® |Walkthrough—An informal presentation to a team of
designers

® /nspection—A formal review by a trained inspection
team

® Audit—A review conducted by experts from outside
the design team

® Active Review—An examination by experts who
answer specific questions about the design

47

Active Design Reviews

® Remedies problems with traditional
reviews
e Lack of expertise
e Cursory reviews

® Forces reviewers to engage the
document in their areas of expertise by
asking them to answer specific
guestions about design details

48

Active Design Review Process

\

Active Design Review 3

Identify Review
Goals

.

Choose
Reviewers

.

Create
Questions

.

Hold an Overview
Meeting

Reviewer 1 Reviewer 2 Reviewer k
Reviews Reviews Reviews

[Study Reviews]

49 _ Y,

Review Preparation

® /dentify Review Goals—Designers
choose aspects of the design they want
checked.

® Choose Reviewers—Designers identify
two to four qualified reviewers and
obtain their consent to do the review.

® Create Questions—Designers formulate
guestions to be answered by reviewers.
e Force reviewers to understand the design

e Ask reviewers to solve problems, explain
something, etc.

50

Review Performance

® Hold an Overview Meeting—
Designers sketch the architecture,
explain the process, set deadlines,
etc.

® Do Reviews—The reviewers do their
reviews on their own.

e May meet with designers are send emails
to get clarification, explanations, etc.

e Deliver their results when complete

51

Review Completion

® Study Reviews—Designers study the
review results.

e May meet with reviewers or emaill
guestions

52

