
Introduction to Software Engineering

ECSE-321

Unit 8 – Architectural Design

Before Architectural Design

Requirements Elicitation

● Understand the user’s needs, desires

Analysis (Software Product Design)

● Structure and formalize the requirements

● Produce a model of the system

From user’s perspective

Still NO implementation-specific information

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/2

Architectural Design

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/3

R
e
q
u
ir
e
m

e
n
t

E
lic

it
a

ti
o
n

A
n
a
ly

s
is

(S
o
ft
w

a
re

 P
ro

d
u
c
t

D
e
s
ig

n
)

A
rc

h
it
e
c
tu

ra
l
D

e
s
ig

n

D
e
ta

ile
d
 D

e
s
ig

n

In Software Product Design

We treated the software as a “black box”

● refined the user needs to arrive a software

requirements specification

● only external form and behaviours were

specified

● details that can go inside the black box were left

out

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/4

Architectural Design

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/5

Higher level structure

among the constituent black

boxes is established

during architectural design

Higher level structure

among the constituent black

boxes is established

during architectural design

@ Software product design

Each box is further refined during

detailed design

Architectural Design

Architectural design is the activity of

specifying a program’s major parts

● responsibilities of the major parts

● properties of the major parts

● interfaces of the major parts

● relationships among the major parts

● interactions among the major parts

Goal: determine the high-level structure –

or software architecture
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/6

Detailed Design

Detailed Design is the activity of specifying

the internal elements of all major parts

● structure of major parts

● relationships

● processing including algorithms and data

structures

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/7

Architectural Design Specification

Following items appear in the software

architecture specification:

Decomposition – extent depends on the

size of the product

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/8

Simulation

Device Interface

User Interface

Irrigation

Startup
Modules

of a automated water

irrigation control system

Architectural Design Specfications

 Responsibilities
● each module must be in charge of certain data and

activities

● “startup” module above configures the system the
irrigator at power up

● “user interface” is responsible for tracking the state of
the user interface and changing it to respond to user
actions and system state

● “irrigation” module tracks the state of the valve, sensors,
and controls irrigation

● “device interface” module provides a unified way of
connecting to a multitude of devices

● “simulation” provides a simulation mode for evaluating
different irrigation schemes

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/9

Architectural Design Specifications

 Interfaces - boundary across which

modules communicate

 Interface specification – description of the

mechanisms used for communication over

an interface

 Important to have interface specifications

for modules – so they can be developed

independently

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/10

Architectural Design Specifications

Collaborations

● modules collaborate to achieve their processing

goals

● for example, in the irrigator example, the “user

interface” module is responsible for displaying

the progress of irrigation. The irrigation module

needs to update its state to the “user interface”

and also the “user interface” may want to pull

information from “irrigation”.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/11

Architectural Design Specifications

Relationships

● architectural design can impose restrictions on

the ways modules communicate

● for example, with “layered” modules, only

adjacent modules can communicate.

● The activities in a module can depend only on

modules directly below/above it.

● A module can impact a module that is only

directly above/below it.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/12

Architectural Design Specifications

Properties

● Modules can properties such as timing

restrictions and resource usage restrictions

● For example, we can say “simulation” module

should complete a given simulation in 10

seconds. Additionally, there could be a memory

restriction on the “simulation” module as well.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/13

Architectural Design Specifications

States and State Transitions

● modules have important states that affect their

externally observable behaviour

● these states should be specified as part of the

architectural design

● for example, the irrigator can have two modes:

manual and automatic. the “irrigator” module

provides this state but is should be available to

the “user interface” module.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/14

Architectural Design - Summary

How to remember all of what goes on in

architectural design?

DeSCRIPTR: Decomposition, States,

Collaborations, Responsbilities, Interfaces,

Properties, Transitions, and Relationships

Architectural design need not always

include all aspects

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/15

Detailed Design Specifications

Goal: fill in the details left after the

architectural design

● complete the specifications so that

programmers can implement it

Detailed design includes all the activities

of architectural design at a finer grain and

more

DeSCRIPTR + ??

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/16

Detailed Design Specifications

Packaging and implementation

● programs can be divided into packages

(containers)

● allocation of program units to packages and

their visibilities may be specified

● For example, classes in each package and their

visibility can be specified as part of this activity

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/17

Detailed Design Specifications

Algorithms, Data Structures, and Types

● detailed design is least abstract – however, not yet

code!

● key data structures and algorithms may be

specified as part of the detailed design

● aspects that can significantly impact performance

or usability can be selected for this specification

PAID – Packaging, Algorithms,

Implementation, and Data Structure & Types

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/18

Design Principles

During architectural + detailed design,

many alternatives could be generated and

evaluated

How to evaluate the alternate designs?

Use design principles as a way of

measuring “goodness” of potential

candidates

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/19

Design Principles

Software engineering shares with other

design approaches

● high quality products

● long-lived products

● products meeting stakeholder needs

● not costing too much

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/20

Basic Design Principles

Principles stating the characteristics that

make a design better able to meet the

stakeholder needs basic design

principles

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/21

Principle of Feasibility

Design must specify something that can

be built and will work!

An unrealizable design is not acceptable.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/22

A design is acceptable only if it can be realizedA design is acceptable only if it can be realized

Principle of Adequacy

 It may not be possible to meet all

requirements – meet as many (and

important) requirements

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/23

Designs that meet more stakeholder needs

and desires, subject to constraints, are better

Designs that meet more stakeholder needs

and desires, subject to constraints, are better

Principle of Economy

Software development is expensive, time

consuming, and risky

Good design can specify a program that

can be built, tested, and deployed on time

within budget.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/24

Designs that can be built with less money, inDesigns that can be built with less money, in

less time, with less risk, are better.

Principle of Changeability

Approximately 70% of lifetime software

product cost come from maintenance.

Change is important and impacts

cumulative life cycle cost!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/25

Designs that make a program easier to Designs that make a program easier to

change are better.

Constructive Design Principles

Basic design principles

● provide desirable engineering design

characteristics based on stakeholder needs

Constructive design principles

● provide desirable engineering design

characteristics based on past software

development/engineering experience

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/26

Constructive Design Principles

Modularity principles
● high quality programs are constructed from self-

contained, understandable modules with well
defined interfaces

● modularity principles state criteria for judging
whether designs specify good modules

 Implementability principles
● how easy is a design to build?

● easiness affects both adequacy and economy

Aesthetic principles
● beauty is an important design principle –

contributes to design quality

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/27

Modularity

What is a module?

● a design can be hierarchically decomposed into

increasingly smaller parts

● at each level of the hierarchy we can specify a

module along with its immediate parts

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/28

A modular program is composed of well-defined,

conceptually simple, and independent units that

A modular program is composed of well-defined,

conceptually simple, and independent units that

communicate through well-defined interfaces.

Advantages of Modularity

Modular programs are easier to
● understand and explain

● document

● change because modifications are usually
restricted to parts within the module

● test and debug because they can be dealt in
isolation. debugging is less likely to introduce
bugs outside a module.

● reuse because a module is likely to have a
solution that can be used for other problems

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/29

Advantages of Modularity

Modular programs are easier to

● tune for better performance because all relevant

data and processing are locally available

Modularity is one of most important

characteristics of a well designed program

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/30

Modularity Principles

Design principles that serve as guides and

evaluative criteria in forming modules

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/31

Principle of Small Modules

Large modules are hard to understand,

explain, document, write, test, debug,

change, and reuse

What counts as “small” module?

● How many immediate parts does a module

have?

● Depends on the complexity that can be part of

the module due to the parts

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/32

Designs with small modules are better.Designs with small modules are better.

Principle of Information Hiding

First proposed in 1972 by David Parnas

Two major advantages:
● hiding prevents modification of module internals

from outside. Protects the module from errant
external code and makes module repair, reuse
easier

● module can be used without understanding its
internals, reducing complexity, making
programming much easier.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/33

Information hiding is shielding the internal

details of a module’s structure and processing

Information hiding is shielding the internal

details of a module’s structure and processing

from other module.

Principle of Information Hiding

Specific examples of what to hide
● algorithms – e.g., choices of alternatives for sorting,

searching, etc

● internal data representation – e.g., types and data
structures

● volatile design decisions – e.g., sizes, capacities,
waiting times, etc.

● non-portable code and data – code specific to a
certain OS, data such as file paths

● internal organization – e.g., control flow

● use of data and operations from other modules

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/34

Principle of Information Hiding

What must not be hidden?
● name and attributes of data provided – e.g.,

variables and constants provided by the module

● names, parameters, and return types of
operations (methods) available for clients

● module error and exception conditions and
behaviour

● other modules with which a module interacts as
a client

● behaviour of operations provided by a module

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/35

Principle of Information Hiding

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/36

BulkStore

TotalAmount

RemainCount

BulkStore

TotalAmount

RemainCount

CountSold

BulkStore

TotalAmount

CountSold

BulkStore

CountSold

RemainCount

Due to the invariant TotalAmount = RemainCount + CountSold

all four implementations are equivalent. Information hiding prevents

such details from being exposed to other “client” modules

BulkStore

getRemaining(): Amount

getCountSold(): Amount

getTotalAmount(): Amount

Principle of Least Privileges

Complements the principle of information

hiding – restricts access to “internal”

processing

A module having access to unneeded

resources is

● harder to understand

● less reuseable

● ** can have serious security problems **
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/37

Modules should not have access to unneeded resource.Modules should not have access to unneeded resource.

Principle of Least Privileges

Example violations of principle of least

privileges:

● importing packages or modules not needed

● modules with unneeded access to files,

databases, or computers

● classes with references to objects never

accessed

● operations with parameters for data they don’t

need

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/38

Principle of Coupling

Coupling between two modules depend on

the amount of communication

● strongly or tightly coupled – communicate

extensively or in undesirable ways

● weakly coupled – communicate little

● decoupled – not communicate at all

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/39

Coupling is the degree of connection betweenCoupling is the degree of connection between

pair of modules.

Principle of Coupling

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/40

Holdings DataDisplay

plotGraph()

plotChart()

animateData()

directly use the methods

provided by in Holdings

directly use the methods

provided by DataDisplay in Holdings

Holdings

getData

DataDisplay

triggerDisp()

Holdings trigger DataDisplay to

redisplay.

from Holdings using

Holdings trigger DataDisplay to

redisplay. DataDisplay pulls the data

from Holdings using getData and displays

Holding is independent

of the data display

process. Just triggers

a data display routine.

Holding is independent

of the data display

process. Just triggers

a data display routine.

Principle of Coupling

Strongly coupled modules are hard to

● change independently

● hard to understand

● hard to document

● hard to test, debug, and maintain

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/41

Module coupling should be minimized.Module coupling should be minimized.

Factors leading to Tight Coupling

Failure to hide information; access to
internal processing leads to tight coupling

Modules communicating via global
variables instead of direct communication

Modules communicating via special data
types or structures – use simple/standard
data types

 If public interfaces are used, coupling is
proportional to the number of messages

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/42

How to Evaluate Coupling Strength?

Can I use each module in some other

program without the other?

● yes – the modules are decoupled

● yes, but need a substitute for some services

provided by the other module – weekly coupled

● no, at least one module cannot be used without

the other – tightly coupled

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/43

Principle of Cohesion

Cohesive modules hold data on a single

topic or related topics

A modules whose parts are strongly

related is cohesive or has high cohesion

A module without strongly related parts is

non-cohesive or has low cohesion
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/44

Cohesion is the degree to which a module’sCohesion is the degree to which a module’s

parts are related to one another.

Principle of Cohesion

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/45

Holdings DataDisplay

plotGraph()

plotChart()

animateData()

Holdings directly deals with data display – maintains state

information; not related to Holdings main responsibility

Holdings directly deals with data display – maintains state

information; not related to Holdings main responsibility – low cohesion

Holdings

getData

DataDisplay

triggerDisp()

Holdings have very

little information about

display .

Holdings have very

little information about

display – high cohesion.

Principle of Cohesion

Highly cohesive module should do most of

its work by itself

● Coupling should be minimized

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/46

Module cohesion should be maximized.Module cohesion should be maximized.

What determines Cohesion?

Cohesion is high in modules with a single

mission

One way of creating modules with high

cohesion is to build modules that

implement data types

Creating objects that relate to physical

objects (e.g., thermostat) is another way of

achieving high cohesion

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/47

Implementability Principles

Software development is costly, risky, and
time consuming

 Implementability principles help with
● design economy

● providing criteria for judging whether design could
be cheaply, quickly, or successfully built

Three implementability principles:
● simplicity

● design with reuse

● design for reuse

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/48

Principle of Simplicity

Simpler designs are created, documented,

coded, tested, and debugged faster

Efficiency and reusability can lead to

complex designs – need to carefully

evaluated

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/49

Simpler designs are better.Simpler designs are better.

Principle of Design with Reuse

 Items reused during software development

● project requirements

● product requirement

● design elements

● code units

● test plans & cases

Reuse has quality and productivity benefits

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/50

Software reuse is the use of existing

artifacts to build new software products.

Software reuse is the use of existing

artifacts to build new software products.

Principle of Design with Reuse

Design with reuse increases design

implementability

● quicker way of building by reusing existing

assets

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/51

Designs that reuse existing assets are better.Designs that reuse existing assets are better.

Principle of Design for Reuse

Reuse is only possible if existing assets

are built with reuse in mind

Could be more complex to reusable assets

that single (specific) use assets

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/52

Designs that produce reusable assets are better.Designs that produce reusable assets are better.

Aesthetic Principles

Beauty of software

● David Gelernter argues that beauty is a function

of simplicity and power

● Power is the ability to get many tasks done.

● If a software is simple and at the same time

highly flexible (capable of many tasks), it is

considered beautiful!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/53

