
Introduction to Software Engineering

ECSE-321

Unit 7 - Analysis



Elicitation vs. Analysis

Requirements Elicitation

● Understand the user’s needs, desires

Analysis

● Structure and formalize the requirements

● Produce a model of the system

From user’s perspective 

Still NO implementation-specific information

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/2



What Is Design?

Design is the creative process of 

transforming the problem into a solution

The description of a solution is also 

known as design

● The requirements specification defines the 

problem

● The design document specifies a particular 

solution to the problem

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/3



What Is Design?

 Design is a two-part interactive process 

● Conceptual design (referred to as analysis here) – refines 

requirements

● Technical design

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/4



Analysis Goals, Inputs, and Activities

Understand an engineering design 

problem using

● SRS (software requirements specification)

● Product design models

Achieve understanding by

● Studying the SRS and design models

● Making analysis models

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/5



Engineering Design 

Process

Winter 2009, Maheswaran

Generic Software Engineering Design
SRS : Problem

Design Document : Solution

Analysis

Architectural
Design

Design

Document

SRS

[adequate architecture]

[else]

[adequate detailed design]

[adequate architecture]

Analyze SRS

Generate/Improve

Candidate Architectures

Evaluate Candidate

Architectures

Select Architecture

Finalize Architecture

Generate/Improve Detailed

Design Alternatives

Evaluate Detailed

Design Alternatives

[else]

Select Detailed

Design

Finalize Design

[else]

Detailed
Design

Unit 7 - Analysis/6Introduction to Software Engineering – ECSE321



7

Analysis Models

Both static and dynamic models

● Static models – using information 

that does not change

● Dynamic models – using information 

that does change (behavioural)

Object-oriented and other kinds 

of models

An analysis model is any 
representation of a design problem.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



8

Class and Object Models

Class (object) diagrams are 

graphical forms of class (object) 

models

A class (object) model is a 
representation of classes (objects ) 
in a problem or a software solution.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



9

Types of Class Models

 Analysis or conceptual models—Important entities 

or concepts in the problem, their attributes, 

important relationships

 Design class models—Classes in a software 

system, attributes, operations, associations, but no 

implementation details

 Implementation class models—Classes in a 

software system with implementation details

Problem

Solution
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



Conceptual Modeling 

Conceptual models are useful for:

● understanding the problem domain – identify 

important entities, their characteristics, relations 

to one another

● setting data requirements – data requirements 

can be extracted from conceptual models

● validating requirements

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/10

Conceptual models are about real-world 
entities in the problem domain and not 

about software



 An object is an entity that holds data and exhibits 

behavior.

 A class is an abstraction of a set of objects with 

common operations and attributes.

 An attribute is a data item held by an object or class.

 An operation is an object or class behavior.

 An association is a connection between classes 

representing a relation on the sets of instances of 

the connected classes.

11

Classes and Objects

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



Example Class Diagram
PerformerPerformer

namename

AlbumAlbum

namename

date

duration

copyrightholder

ArtistsArtists

namename

CoverCover

durationduration

SongSong

namename

composer

lyracist

copyrightholder

makesmakes

containscontains

coverOfcoverOf

contributesTocontributesTo

performsperforms

Winter 2009, Maheswaran Unit 7 - Analysis/12Introduction to Software Engineering – ECSE321



13

A Brief UML Review - Names

A name in UML is character string that 

identifies a model element.

● Simple name: sequence of letters, digits, or 

punctuation characters

● Composite name: sequence of simple names 

separated by the double colon (::)

Examples

● Java::util::Vector

● veryLongNameWithoutPunctuationCharacters

● short_nameWinter 2009, Maheswaran Introduction to Software Engineering – ECSE321



14

UML Class Symbol

 Compartments
● Class name

● Attributes

● Operations

● Other compartments

Phone

number

color

java::util::Random

nextBoolean()

nextDouble()

nextFloat()

nextInt()

nextLong()

setSeed()

Table

Book

author

title

ISBN

ring()

dial()

redial()

hangUp()

Exceptions

noNumberException

lowPowerException



15

Attribute Specification Format

name : type [ multiplicity ] = initial-value

 name—simple name, cannot be suppressed

 type—any string, may be suppressed along with the :

 multiplicity—number of values stored in attribute

• list of ranges of the form n..k, such that n <=k

• k may be *

• n..n is the same as n

• 0..* is the same as * 

• 1 by default

• if suppressed, square brackets are omitted
 initial-value—any string, may be suppressed along with the =

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



Attribute Specification Example

weight: float – specifies weight as float

 toDo: string[1..10] – specifies a collection 

of 1 to 10 strings

size: integer = 128 – specifies an integer 

holding a default value of 128

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/16



17

Operation Specification Format

name( parameter-list ) : return-type-list

 name—simple name, cannot be suppressed

 parameter-list

• direction param-name : param-type = default-value

• direction—in, out, inout, return; in when suppressed

• param-name—simple name; cannot be suppressed

• param-type—any string; cannot be suppressed

• default-value—any string; if suppressed, so is =
 return-type-list—any comma-separated list of strings; if omitted 

(with :) indicates no return value

 The parameter-list and return-type-list may be suppressed together.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



18

Attribute and Operation Examples

Player

roundScore : int = 0

totalScore : int = 0

words : String[*] = ()

resetScores()

setRoundScore( in size : int )

findWords( in board : Board )

getRoundScore() : int

getTotalScore() : int

getWords() : String[*]

WaterHeaterController

mode : HeaterMode = OFF

occupiedTemp : int = 70

emptyTemp : int = 55

setMode( newMode : Mode = OFF )

setOccupiedTemp( newTemp : int )

setEmptyTemp( newTemp : int )

clockTick( out ack : Boolean )

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



19

Association Lines

 Labeled or unlabeled lines

 Readable in two directions

Person

Property

manager

rents

subordinate

manages

renter

rental

 Rolenames

• Person (manager) manages another person (subordinate)

•

•

• Person (manager) manages another person (subordinate)

• Person (subordinate) is managed by another person (manager)

• Person (renter) rents property (rental)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



20

Association Multiplicity

The multiplicity at the target class end of an association is the 

number of instances of the target class that can be associated 

with a single instance of the source class.

The multiplicity at the target class end of an association is the 

number of instances of the target class that can be associated 

with a single instance of the source class.

Student

Course

0..1

takes

teaches

occupies
DormRoom

Professor

0..3
1..*

*

1..*

1..*

• A course is taught by one or more professors

• A professor teaches zero or more courses



21

Class Diagram Rules

Class diagrams must have a name 

compartment.

Compartments must be in order.

Attributes and operations must be 

listed one per line.

Attribute and operation 

specifications must be syntactically 

correct.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



22

Class Diagram Heuristics

Name classes, attributes, and roles 

with noun phrases.

Name operations and associations with 

verb phrases.

Capitalize class names only.

Center class and compartment names 

but left-justify other compartment 

contents.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



23

Class Diagram Heuristics…

 Stick to binary associations.

 Prefer association names to rolenames.

 Place association names, rolenames and 

multiplicities on opposite sides of the line.

ProfessorProfessor StudentStudent

CourseCourse

teaches

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



24

Class Diagram Uses

Central static modeling tool in object-

oriented design

● Conceptual models

● Design class diagrams

● Implementation class diagrams

Can be used throughout the design 

processes

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



25

Object Diagrams

Object diagrams are used much less 

often than class diagrams.

Object symbols have only two 

compartments:

● Object name

● Attributes (may be suppressed)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



26

Object Name Format

object-name—simple name

 class-name—a name (simple or 
composite)

 stateList—list of strings; if suppressed, 
the square brackets are omitted

The object-name and class-name may 
both be suppressed, but not 
simultaneously.

object-name : class-nameobject-name : class-name
[ stateList ]

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



27

Object Attribute Format

attribute-name—simple name

value—any string

Any attribute and its current value 

may be suppressed together.

attribute-name = valueattribute-name = value

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



28

Examples of Object Symbols

:Rectangle

a1
t:Telephone

b:Book

[checked out]
width = 720

height = 320

color = blue

title = ―Ivanhoe‖

author = ―Sir Walter Scott‖

x = 10

y = 14

number = 8792460

color = black

status = ONHOOK

:Rectangle

a1
t:Telephone

b:Book

[checked out]
width = 720

height = 320

color = blue

title = ―Ivanhoe‖

author = ―Sir Walter Scott‖

x = 10

y = 14

number = 8792460

color = black

status = ONHOOK

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



29

Object Links

Show that particular objects 

participate in a relation between 

sets of objects

 Instances of associations

Shown using a link line

● Solid line (no arrowheads)

● Underlined association name

Link lines never have multiplicities

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



30

Object Diagram Uses

Show the state of one or more 

objects at a moment during 

execution

Dynamic (not full agreement) 

models as opposed to class 

diagrams, which are static models

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



31

Brief Recap

Engineering design begins with 

analysis of the SRS and product 

design models.

Analysis modeling helps designers 

understand the design problem.

Class models include analysis 

(conceptual), design, and 

implementation class models.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



32

Brief Recap…

UML class diagrams can be used for 

all types of class models, and 

throughout the design process.

UML object diagrams represent the 

state of objects during execution.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



33

Conceptual Modeling

What is conceptual modeling?

What is the use of conceptual 

modeling?

What is the process for conceptual 

modeling?

Heuristics for conceptual modeling

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



34

Conceptual Models

Conceptual models are about real-

world entities in the problem domain 

and not about software.

A conceptual model is a static model 
of the important entities in a problem, 
their responsibilities or attributes, the 
important relationships among them, 

and perhaps their behaviors.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



35

Uses of Conceptual Models

 In product design

● Understanding the problem domain

● Setting data requirements

● Validating requirements

 In engineering design

● Understanding a product design

● Providing a basis for engineering 

design modeling

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



36

Conceptual Modeling Process

Identify
Classes

Add
Attributes

Conceptual Modeling

Add
Associations

Add
Multiplicities



Caldera Example

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/37

Caldera is a smart water heater controller that attaches to the thermostat of a

water heater. Caldera sets the water heater thermostat high when hot water is

much in demand and sets it low when there is not much demand. For example,

Caldera can be told to set the thermostat high on weekday mornings and

evenings and all day on weekends, and low during the middle of weekdays and

at night.

Furthermore, Caldera can be told to set the thermostat high all the time in case

of illness or other need, or be told to set the thermostat low all the time in case

of vacation or some other prolonged absence from home.

The homeowner can specify values for the following Caldera parameters:

Low temp – temperature when little or no water is needed.

High temp – temperature when much hot water is needed.

Weekend days – days when the thermostat will be set high; Peek times –one to

three hour periods during which thermostat will be set high.

Mode – One of the Caldera states: Stay low mode – thermostat is set to low

temp, Stay high mode – set to high, Normal mode – on a regular schedule



38

Identifying Classes—Brainstorming

Study the product design (SRS, use 

case models, other models)

Look for nouns and noun phrases for

● Physical entities

● Individuals, roles, groups, organizations

● Real things managed, tracked, recorded, 

or represented in the product

● People, devices, or systems that interact 

with the product (actors)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



39

Identifying Classes-Rationalizing

Remove noun phrases designating 

properties (they may be attributes).

Remove noun phrases designating 

behaviors (they may be operations).

Combine different names for the 

same thing.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



40

Identifying Classes-Rationalizing…

Remove entities that do not directly 

interact with the product.

Clarify vague nouns or noun 

phrases.

Remove irrelevant or 

implementation entities.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



Caldera Example – From Description

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/41

Noun Phrases Comment

Water heater, controller, thermostat, homeowner, 

clock

concepts

Mode, Low Temp, High Temp, Weekend days, 

Peak times

attributes of water 

heater controller

Time attribute of clock

Caldera, weekday, morning, evening, need, 

vacation, day, week, night, middle, illness, 

absence, house, parameter, value, one, three, 

schedule, second

Irrelevant noun 

phrases

Water heater, water temperature, hot water Indirect connection to 

program



42

Caldera Example, Draft 1

Homeowner

WaterHeaterController

Thermostat

Clockmode

lowTemp

highTemp

weekendDays

peakTimes

time

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



43

Adding Attributes 1

Study the SRS and product design 

models looking for adjectives and 

other modifiers.

Use names from the problem 

domain.

 Include only those types, 

multiplicities, and initial values 

specified in the problem.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



44

Adding Attributes 2

Don’t add object identifiers unless 

they are important in the problem.

Don’t add implementation 

attributes.

Add operations sparingly.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



45

Caldera Example, Draft 2

Homeowner

WaterHeaterController

Thermostat

Clock

mode : ModeType

lowTemp : Temperature

highTemp : Temperature

weekendDays : Day[0..7]

peakTimes : TimePeriod[1..3]

setting : Temperature

time

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



46

Adding Associations - Brainstorming

Study the SRS and product design 
models looking for verbs and 
prepositions describing relationships 
between model entities.

Look for relationships such as
● Physical or organizational proximity;

● Control, coordination, or influence;

● Creation, destruction, or modification;

● Communication; and

● Ownership or containment.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



47

Adding Associations- Rationalizing

Limit the number of associations to 

at most one between any pair of 

classes.

Combine different names for the 

same association.

Break associations among three or 

more classes into binary 

associations.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



48

Adding Associations -Rationalizing

Make association names 

descriptive and precise.

Add rolenames where they are 

needed.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



49

Caldera Example, Draft 3

checks

sets

setsParameters

Homeowner

WaterHeaterController

Thermostat

Clock
mode : ModeType

lowTemp : Temperature

highTemp : Temperature

weekendDays : Day[0..7]

peakTimes : TimePeriod[1..3]

setting : Temperature

time

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



50

Adding Multiplicities

Take pairs of associated entities in turn.
● Make one class the target, the other the 

source.

● Determine how many instances of the target 
class can be related to a single instance of 
the source class.

● Reverse the target and source and determine 
the other multiplicity.

Consult the product design.

Add only multiplicities important in the 
problem.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



51

Caldera Example, Final Draft

checks

sets

setsParameters

Homeowner

WaterHeaterController

Thermostat

Clock

1

1

1

1 1

*

mode : ModeType

lowTemp : Temperature

highTemp : Temperature

weekendDays : Day[0..7]

peakTimes : TimePeriod[1..3]

setting : Temperature

time

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



52

Summary

A conceptual model represents the 

important entities in a design problem 

along with their properties and 

relationships.

Conceptual models represent the design 

problem, not the software solution.

Conceptual models are useful throughout 

product design and in engineering design 

analysis.
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



53

Summary…

There is a process for conceptual 

modeling.

Process steps can be done by 

analyzing the text of product design 

artifacts.

Several heuristics guide designers in 

conceptual modeling.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /54

What is the ―dynamic‖ model

 A model that captures behaviour

 Diagrams for dynamic modeling
● Interaction diagrams describe the dynamic behavior 

between objects

● State charts describe the dynamic behavior of a single 
object

 Interaction diagrams
● Sequence Diagram: 

Dynamic behavior of a set of objects arranged in time sequence

Good for real-time specifications and complex scenarios

 State Charts
● A state machine that describes the response of an object 

of a given class to outside input (events)



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /55

Why do we need a dynamic model?

 Understand the flow of events

 Understand lifespan of classes

 Refine the static model 
● Add classes:

Events 

Sequence diagrams are a source for more objects

 Identify operations for the object model

 Dynamic model will typically be 
incomprehensible to the customer!



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /56

How do we find a dynamic model?

 Start with a use case or scenario

 Model interaction between objects  sequence diagram

 Model dynamic behavior of single objects  state chart 
diagram

 Flow of events from ―Dial a Number‖ Use case:
● Caller lifts receiver

● Dial tone begins

● Caller dials

● Phone rings

● Callee answers phone

● Ringing stops

● ....



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /57

Sequence Diagrams

 From the flow of events in the use case or scenario 
proceed to the sequence diagram 

 A sequence diagram is a graphical description of objects 
participating in a use case or scenario

 Relation to object identification:
● Objects/classes have already been identified during object 

modeling

● Objects are identified as a result of dynamic modeling

 Heuristic:
● An event always has a sender and a receiver. Find them for 

each event  These are the objects participating in the use 
case



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /58

FieldOfficer

Report

EmergencyButton

Report

EmergencyControl

Report

EmergencyForm

Emergency

Report

Mange

Emergency

Controlpress() <<create>>

<<create>>

fillContents()

submit()

reportSubmit()

<<create>>

<<destroy>>

submitReportToDispatcher()



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /59

Notations

1. Columns = objects
1. Leftmost column = initiator 

2. Horizontal arrows = messages/stimuli
1. Write name of method/operation on arrow

2. Have origin and destination

3. Time progresses vertically (top to bottom)

4. Activation period = vertical rectangle
1. Dotted line – alive but inactive

5. <<create>> = objects that are created in the sequence

6. X = objects that are destroyed

7. Be precise!



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /60

FieldOfficer

Report

EmergencyButton

Report

EmergencyControl

Report

EmergencyForm

Emergency

Report

Mange

Emergency

Controlpress() <<create>>

<<create>>

fillContents()

submit()

reportSubmit()

<<create>>

<<destroy>>

submitReportToDispatcher()



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /61

Mange

Emergency

Control

submitReportToDispatcher()

Incident

Form

Incident

Acknowledgement

Dispatcher

<<create>>

createIncident()

<<create>>

submit()

<<create>>

<<destroy>>



Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 – Analysis /62

Sequence diagrams

 Can’t build all sequence diagrams
● Focus on typical  exceptional  bizarre 

● Excellent sanity check

● Avoid implementation issues

 Heuristic for drawing:
● First column – actor initiating use case

● Second column – boundary object

● Third column – control object

● Control objects are created by initiating boundary

● Boundary objects may be created by control 

● Entity objects are accessed by control & boundary

● Entity objects NEVER access control or boundary


