
Introduction to Software Engineering

ECSE-321

Unit 6 – Requirements & Specification

Requirements Engineering

Hardest part of building a software system

is deciding what to build!

● cripples the process if done wrong

● costly to rectify later

Goal of requirement engineering is to

determine (pick one)

● what software the client wants?

● what software the client needs?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/2

Requirements Engineering...

A requirement is an expression of desired

behavior

A requirement deals with

● objects or entities

● the state they can be in

● functions that are performed to change states

Requirements focus on the customer

needs, not on the solution

● designate what behavior, without saying how

that behavior will be realized

Why Are Requirements Important?

Top factors that caused project to fail

● Incomplete requirements

● Lack of user involvement

● Unrealistic expectations

● Lack of executive support

● Changing requirements and specifications

● Lack of planning

● System no longer needed

Some part of the requirements process is

involved in almost all of these causes

Determining Stakeholders and Needs

Must determine stakeholders

● Anyone who benefits from the system designed

● E.g., who’s client and who’s user?

Try to understand what their needs are

Reconcile different needs/points of view

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/5

Determining Stakeholders

 Clients: pay for the software to be developed

 Customers: buy the software after it is developed

 Users: use the system

 Domain experts: familiar with the problem that the

software must automate

 Market researchers: conduct surveys to determine

future trends and potential customers

 Lawyers or auditors: familiar with government,

safety, or legal requirements

 Software engineers or other technology experts

Requirements Elicitation from Stakeholders

Customers do not always undertand what

their needs and problems are

 Important to discuss the requirements with

everyone who has a stake in the system

Come up with agreement on what the

requirements are

● If we can not agree on what the requirements

are, then the project is doomed to fail

Means of Eliciting Requirements

 Interviewing stake holders

 Reviewing available documentations

 Observing the current system (if one exists)

 Apprenticing with users to learn about user's task

in more details

 Interviewing users or stakeholders in groups

 Using domain specific strategies, such as Joint

Application Design

 Brainstorming with current and potential users

Means of Eliciting Requirements...

Interviewing

 One approach is obvious

● sit down with client/user and ask questions

● listen to what they say and what they don’t say

 Less obvious approach

● master-apprentice relationship

● have them teach you want they do

● go to workplace and watch them do the task

 All types of interviews get details

● ask for copies of reports, logs, emails on process

● these may support, fill in, or contradict what the user said

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/10

Disadvantages of Talking

 Interviews are useful, but..

● “communication gap” can prevent actual requirement

elicitation

● communication could be misunderstood due to

different vocabulary

● users/clients not knowing enough about computer

science to know what is possible

● or what is impossible

 Idea: better to gather requirements in multiple

ways

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/11

Strawmen

Convey the idea without writing any code

Could help in user/client interviews

Sketch the product for the user/client

● Flowcharts

● HTML mock-ups

● Illustrate major events/interfaces/actions

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/12

Rapid Prototyping

Write a prototype

● major functionality, superficially implemented

● many “corner cases” not handled

Show prototypes to the user/client

● users have a real system – more reliable

feedback (e.g., mock up model homes)

● refine requirements

● significant investment
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/13

Pitfalls of Rapid Prototyping

Needs to be done quickly

● Remember, this is requirements phase

● Danger of spending too long refining the prototype

Prototype becomes the product

● prototypes not very thoroughly analyzed

● product can inherit the sub-optimal architecture

Prototype serves as the spec

● prototype is incomplete, may be even contradictory

 If done right, can be extremely useful

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/14

Techniques for Requirements Elicitation

Find out what users/clients need
● not necessarily what they say they want

Use
● Interviews

● User stories

● Strawmen

● Rapid prototyptes

Other appropriate mechanisms to elicit
requirements

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/15

Using Viewpoints to Manage Inconsistency

 No need to resolve inconsistencies early in the

requirements proces

 Stakeholders' views documented and maintained as

separate Viewpoints through the software development

process

● The requirements analyst defines consistency rules that should

apply between Viewpoints

● The Viewpoints are analyzed to see if they conform to the

consistency

 Inconsistencies are highlighted but not addressed until

there is sufficient information to make an informed

decision

Resolving Conflicts – Viewpoints Not

Sufficient

Different stakeholder has different set of

requirements

● potential conflicting ideas

Need to prioritize requirements

Prioritization might separate requirements

into three categories

● essential: absolutely must be met

● desirable: highly desirable but not necessary

● optional: possible but could be eliminated

Characteristics of Requirements

Correct

Consistent

Unambigious

Complete

Feasible

Relevant

Testable

Traceable

Types of Requirements

Functional requirement: describes

required behavior in terms of required

activities

Quality requirement or nonfunctional

requirement: describes some quality

characteristic that the software must

possess

Types of Requirements...

Design constraint: a design decision

such as choice of platform or interface

components

Process constraint: a restriction on the

techniques or resources that can be used

to build the system

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/20

Making Requirements Testable

 Fit criteria from objective standards for judging

whether a proposed solution satisfies the

requirements

● It is easy to set fit criteria for quantifiable requirements

● It is hard for subjective quality requirements

 Three ways to help make requirements testable

● Specify a quantitative description for each adverb and

adjective

● Replace pronouns with specific names of entities

● Make sure that every noun is defined in exactly one place in

the requirements documents

Specifications

Describe the functionality of the product

● Precisely

● Covering all circumstances

Move from the finite to infinite

● Finite examples (requirements) to infinite set of

possible computations

● not easy

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/22

Two Kinds of Requirements Documents

Requirements definition: a complete

listing of everything the customer wants to

achieve

● Describing the entities in the environment where

the system will be installed

Requirements specification: restates the

requirements as a specification of how the

proposed system shall behave

Two Kinds of Requirements Documents...

 Requirements defined anywhere within the environment's

domain, including the system's interface

 Specification restricted only to the intersection between

environment and system domain

Different Views of Specifications

 Developers
● specifications must be detailed enough to be

implementable

● unambiguous

● self-consistent

 Client/user
● specifications must be comprehensible

● must not be too technical

 Legal
● specification can be a contract

● should include acceptance criteria; if the software
passes X, Y, and Z it will be accepted

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/25

Informal Specifications

Written in natural language

● e.g., in English

Example

● “if sales for the current month are below the target

sales, then report is to be printed, unless difference

between target sales and actual sales is less than

half of the difference between target sales and

actual sales the previous month, or if the difference

between the target sales and actual sales for the

current month is less than 5%

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/26

Problem with Informal Specification

 Informal specifications of any size can

suffer from serious problems

● Omissions – missing elements

● Ambiguities – something that can be interpreted

in multiple ways

● Contradictions – spec says “do A” and also

“don’t do A”

These problems can plague the software

unless detected and fixed in the spec.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/27

Comments on Informal Specification

 Informal specification is universally reviled

● By academics

● By “how to” authors

 Informal specifications are also widely

practiced!

● Why?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/28

Why do People Use Informal Specs

The common language is natural language

● Customers can’t read formal specs

● Neither can most programmers!

● Or most managers

● A least common denominator effect takes hold

Truly formal specs can be time consuming

● And relatively hard to understand

● And overkill for most projects

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/29

Semi-Formal Specs

Best current practise is “semi formal”

specs

● Allows more precision than natural language

where desired

Usually boxes and arrows notation

Pay attention to

● what boxes mean

● what arrows mean

● different in different systems
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/30

Stating Requirements – Pitfalls and Tips

Suppose you have a requirement stating
“Operation A will occur and operation B
will occur, or operation C will occur.”

Following questions:
● Operation A occurs before B? Does order

matter?

● Must Operation C occur only if neither A nor B
occur?

● May Operation C occur even if both A and B
occur?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/31

Stating Requirement – Pitfalls and Tips

Should following the rules for good
technical writing:
● write complete, simple sentences in active voice

● define terms clearly and use them consistently

● use the same word for a concept – avoid
synonyms

● provide a table of contents

● use tables, lists, white space, and other
formatting aids

● leave margins ragged on right

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/32

Stating Requirements – Pitfalls and Tips

Software product must have certain

features, function, and capability

● Express all requirements using the words

“must” or “shall”

Example

● The product must display all results to three

decimal places.

● The product will display all results to three

decimal places.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/33

Stating Requirements – Pitfalls and Tips

Specifications should be verifiable
● The product must produce reports in an

acceptable amount of time.

● The product must produce reports in five
minutes or less from the time the report is
requested.

● The product user interface must be user-
friendly.

● Eighty percent of first-time users must be able
to formulate and enter a simple query within two
minutes of starting to use the program.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/34

Stating Requirements – Pitfalls and Tips

Verifiable requirements are crucial

Verifiable requirements capture the needs

to satisfy the clients

Always write verifiable requirements.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/35

Stating Requirements – Pitfalls and Tips

Requirements Traceability
● Ability to track requirements from their

expression in an SRS to their realization in
engineering design documentation, source
code, and user documentation and their
verification in reviews and tests.

Requirement traceability relies on
● isolating and identifying individual requirements

● parts of a design, code, test case can be
correlated to the relevant portions

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/36

Stating Requirements – Pitfalls and Tips

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/37

AtomizationAtomization
One big

requirement

specification.

Requirement 1

Requirement 2

Requirement i

Easier to perform requirement tracing

on the atomic requirements.

Requirement Atomization

Example:

● Staff must be able to add computers to the tracking

system. When a computer is added, the tracking

system must require the staff member to specify its

type and allow the staff member to provide a

description. Both these fields must be text of length

greater than 0 and less than 512 characters.

The tracking system must respond with a unique

serial number required for all further interactions

with the tracking system about the added computer.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/38

Requirement Atomization

1. The tracking system must allow staff to add computers to the

system.

1.1 When a computer is added, the system must require the staff to provide

type data for the added machine.

1.1.1 A computer’s type data must be text of length greater than 0 and less

than 512

1.2 When a computer is added to the system, the system must allow staff

to provide a description data.

1.2.1 A computer’s description date must be text of length between 0 and

512.

1.3 The tracking system must respond to added computer input with a

unique serial number identifying the computer in the tracking system.

1.4 All further interactions between staff members and the tracking system

about a computer must use the unique serial number assigned by the

tracking system.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 6 - Requirements/39

