
Introduction to Software Engineering

ECSE-321

Unit 3 – Software Processes

1/15/2009 Unit 2 - Conventions and practices/1Introduction to Software Engineering – ECSE321



Software Engineering Layers

 Processes: frameworks for specifying the required tasks 

(e.g., waterfall, extreme programming)

 Methods: how the tasks are done (e.g., design review, 

code review, testing)

 Tools: automating processes and methods

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/2

ToolsTools

MethodsMethods

ProcessesProcesses



Software Process

Large-scale projects follow recognized 

stages (start to finish)

● allows to progress tracking

● resource management

 In software development, these “stages”

● arrived at by trial and error

● leveraging accumulated wisdom

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/3



Aside: What is a Process?

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/4

Cashier
Customers

Physical view of a checkout process

Abstract view of the same checkout process

CashierCustomer queue
Customer arrivals



Software Process

A definition

● Set of software engineering activities needed to 

transform requirements to software

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/5

Software

Process

Requirements Software



Waterfall Process Phases

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/6

Gather RequirementsGather Requirements

SpecificationSpecification

DesignDesign

ImplementationImplementation

IntegrationIntegration

ProductProduct

T
e

s
ti
n
g



Gather Requirements

 Figure out what the “system” is 

supposed to do

● Write down the list of features

● List of constraints.. etc

 Good idea to talk to users, 

clients

● They may not know the exact 

requirements either

 Purpose

● Ensure we are building the right thing

● Gather information for planning

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/7



Specification

A written document

Contains

● what the system does 

under all conceivable 

conditions 

● should cover all inputs and 

possible states

More complete than 

requirements

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/8



Design

Develop a system 

architecture

Decompose system into 

modules

Specify interfaces 

between modules

Based more on how 

“system works”

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/9



Implementation

Code the design

Coding is an extensive 

process

● need a plan

● prioritize activities

● testability is a consideration 

in prioritization

Test as modules are built 

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/10



Integration

Put the pieces together

Test the entire system

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/11



Product

Ship product –

development phase of 

the project done!

Maintenance begins

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/12



Above Software Process

Called the waterfall model

● one of the standard models for developing 

software

Each stage leads to the next

● No iteration or feedback between stages

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/13



Waterfall Model

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/14

Gather RequirementsGather Requirements

SpecificationSpecification

DesignDesign

ImplementationImplementation

IntegrationIntegration

ProductProduct

T
e

s
ti
n
g

Top down

Bottom up



Waterfall Model – Discussion

What are major drawbacks of waterfall?

● Relies heavily on accurate requirement 

assessment

● Little feedback from users until product 

developed

● User feedback arrives very late for large 

projects

● Sequential project planning

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/15



Waterfall Model – Discussion

Waterfall model closer to the process of 

building a skyscraper/bridge

Your ideas on applicability of waterfall for 

software development

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/16



Good Aspects of Waterfall

Emphasis on specification, design, and 

testing

Emphasis on communication through 

written documents

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/17



Bad Aspects of Waterfall

Time
● Delay in getting feedback from users

● Delay in incorporating changes

Software development process need to factor 
in change
● changes in underlying changes

● changes in competing products

● availability of 3rd party software/hardware elements

Reducing development time is one way to 
reduce the number of changes!

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/18



“Fast” Software Development

Short time scales

● world changes less.. requirements remain valid

Fast simplifies planning

● have short-term predictions that are more 

reliable

● cost overruns can be controlled

Waterfall model is not suitable for fast 

development

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/19



Faster Processes: Rapid Prototyping

Write a quick prototype

Use the prototype to get user feedback

● requirements can be refined using the prototype

Then proceed as in waterfall model

● throw away the prototype

● do spec, design, coding, integration, etc

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/20



Problems with Rapid Prototyping

Hard to throw away the prototype
● “Prototype is the product”

● Happens more often than you think!

Advantages: 
● useful in refining the requirements

● provides a non-abstract framework to get 
feedback

● exposes design mistakes

● experience of building the prototype can 
improve the logistics of building the final product

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/21



Reality Can be Different

Reality – feedback is pervasive

● Specification stage might provide feedback for 

refining requirements

● Design stage can provide feedback to refine 

specification

● Coding issues can affect design

● Final product characteristics can lead to 

requirement changes

Waterfall model with “feedback loops”

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/22



What is the Answer?

Accept that feedback from later stages can 

change earlier decisions

Build a flexible process – that accepts late 

feedback

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/23



Iterative Models: Plan for Change

Adapt waterfall model for changes

Plan to iterate the whole cycle several 

times

● each cycle leads to a “build”

● each cycle is smaller and lightweight compared 

to a normal “waterfall”

Break the normal system into a series of 

progressively complete system

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/24



Gather Requirements

 Same idea as the waterfall

 Talk to customers and find out 

what is needed

 Recognize diminishing returns

 Important to show something 

to elicit full requirements

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/25



Specification

Written document containing:
● what the system does under all 

conceivable conditions 

● should cover all inputs and 
possible states

Still important

Can evolve with time 
● important to recognize aspects of 

the specifications that can 
change

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/26



Design

Decompose system into 

modules

Design for change

Which parts are most 

likely to change?

● put suitable abstractions 

there

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/27



Incremental System Design

Plan incremental 

development of each 

module

Skeletal component to full 

functionality

From most critical to least 

critical features 

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/28



Implementation: Build 1

Get skeletal system 

working

Components are there.. 

but none of them are 

complete

 Interfaces between 

components are 

implemented

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/29



Implementation: Build 1

Well defined interfaces 

allow

● complete system to be built 

in an iterative manner

● individual components rely 

on all interfaces of other 

components

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/30



Implementation: After Build 1

Have a demo to show

● to customers

● to team for communication

Each subsequent build 

adds more functionality

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/31



Integration

 Integration and major test for 

each build

 Stabilization point might be 

releasing point of each build

 Iterate until the last build

 Earlier builds can ship to 

customers

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/32



Advantages of Iterative Builds

Problems found sooner
● Get earlier feedback from users

● Ger earlier feedback on whether spec/design 
are feasible

More quantifiable project management
● Build 3 or 4 means X% progress in product 

development

● Difficult to quantify the completion in different 
stages of the waterfall (resource requirements 
can be highly non-uniform)

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/33



Disadvantages of Iterative Builds

Risk of making a mistake in requirements, 

spec, or design exists

● Time before build 1 is reduced – less time is spent 

in those processes

● Implementation starts earlier

● (To a limited extent requirements, spec, or design 

can be refined – large changes can be costly)

Trade-off against the risks of being too slow

● better to get something working

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/34



Iterative Builds used in Practice

Many actual projects use the iterative 

model

● Daily builds

● System is always working

● Mozilla, Microsoft are examples

Systems that are hard to test use 

something like a waterfall model

● E.g., space probes

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/35



Conclusions

 Important to follow a good process

Waterfall

● top-down design, bottom-up implementation

● lots of up front thinking, slow, hard to iterate

 Iterative building

● build a prototype quickly, then evolve it

● postpone some of the thinking

1/15/2009 Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/36


