
Introduction to Software Engineering

ECSE-321

Unit 2 - Coding conventions

(from Prof. Rabbat’s slides)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/2

Course contents - Lectures

Introduction

Conventions and practices

Project management basics

Modeling with UML (basics)

Requirements

Analysis

System Design

Design Patterns

Object Design

Design to code

Quality assurance and testing

SE at large

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/3

Agenda

Why coding conventions?

Code conventions:

Layout, comments, naming, practices

● Not only reasons and principles

Technical documentation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/4

Why coding conventions?

 80% of the lifetime cost of a piece of software goes to
maintenance
● Maintenance by multiple authors

● Maintenance by a single author

● Better readability  faster and deeper understanding

 Easier to integrate

 Facilitate reuse (porting to other contexts)

 Easier to find what you want

 Communications: code readers, communication by
code, outsourcing, multiple teams

 Source code is sometimes a product

 Improves code quality

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/5

The catch

 For the conventions to work, every person
writing software must conform to the code
conventions. Everyone.

 People would rather quit than change style

 Consistency matters

 In this course we enforce strict coding
conventions described in this unit

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/6

List of conventions

Layout and indentation

Comments

Declarations and statements

Naming conventions and practices

Borrowed from Java SUN standard

• http://java.sun.com/docs/codeconv/

http://java.sun.com/docs/codeconv/

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/7

Layout concepts

Highlight logical structure of the code

● Proximity: keep related things close together

● Maintainability: ease the editing

● Consistency: follow a set of rules

● Compactness: make every word count

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/8

File names

Java source : xxx.java

Java bytecode: xxx.class

Other ―common‖ files:

● README

● GNUmakefile, makefile

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/9

Files

 Divide to sections
● Separate sections by blank lines

● Add comments identifying each section

 Max length is 2KLOC

 In a file:
● One file, one public class

● One file, one interface

● Exception: private classes and interfaces used by a public
class. Public class should always be the first class

 Java source files have the following ordering:
1. Beginning comments

2. Package and Import statements

3. Class and interface declarations

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/10

Beginning comments

 All source files should begin with a c-style comment that
lists the class name, version information, date, and
copyright notice:

 Don’t overdo it

 Don’t use endless version control information

 In this course – you can omit copyright notice

/*

* Classname

*

* Version information

*

* Date

*

* Copyright notice

*/

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/11

Package and Import statements

 The first non-comment line of most Java source files is a

package statement

 Then list all import statements

 For example:

package java.awt;

import java.awt.peer.CanvasPeer;

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/12

Class and Interface Declarations

1. Class/interface documentation

2. Class/interface statement

3. Class/interface implementation comment (/*...*/), if necessary

4. Class (static) variables:
1. public class variables

2. protected

3. package level (no access modifier)

4. private

5. Instance variables
1. public

2. Protected

3. Package level

4. private

6. Constructors

7. Methods – group by functionality, not accessibility (other conventions exist)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/13

/*

* @(#)Blah.java 1.82 99/03/18

*

* Copyright (c) 1994-1999 Sun Microsystems, Inc.

* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.

* All Rights Reserved.

*

* This software is the confidential and proprietary information of Sun.

*/

package java.blah;

import java.blah.blahdy.BlahBlah;

/**

* Class description goes here.

*

* @version 1.82 18 Mar 1999

* @author Firstname Lastname

*/

public class Blah extends SomeClass {

/* A class implementation comment can go here. */

/** classVar1 documentation comment */

public static int classVar1;

/**

* classVar2 documentation comment that happens to be

* more than one line long

*/

private static Object classVar2;

Interface documentation

Interface statement

[Implementation comment]

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/14

Class and Interface Declarations

1. Class/interface documentation

2. Class/interface statement

3. Class/interface implementation comment (/*...*/), if necessary

4. Class (static) variables:
1. public class variables

2. protected

3. package level (no access modifier)

4. private

5. Instance variables
1. public

2. protected

3. package level

4. private

6. Constructors

7. Methods – group by functionality, not accessibility (other conventions exist)

Reminder:

Public = everybody

Protected = package+subclasses

Package level = only package

Private = only class

Reminder:

Public = everybody

Protected = package+subclasses

Package level = only package

Private = only class

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/15

Indentation

 Spaces and tabs: Four spaces should be used as the unit of indentation. The exact
construction of the indentation (spaces vs. tabs) is unspecified. Tabs must be set
exactly every 8 spaces (not 4).

 Line Length: Avoid lines longer than 80 characters
● Note: documentation should be even shorter—generally no more than 70 characters.

 Wrapping Lines:
● When an expression will not fit on a single line, break it according to these general principles:

 Break after a comma

 Break before an operator

 Align the new line with the beginning of the expression at the same level on the
previous line

 If the above rules lead to confusing code or to code that’s squished up against the right
margin, just indent 8 spaces instead

 Here are some examples of breaking method calls:
someMethod(longExpression1, longExpression2, longExpression3,

longExpression4, longExpression5);

var = someMethod1(longExpression1,

someMethod2(longExpression2,

longExpression3));

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/16

Indentation II

 Two examples of breaking an arithmetic expression. Which is
preferred?

longName1 = longName2 * (longName3 + longName4 - longName5)

+ 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4

- longName5) + 4 * longname6; // AVOID

Indentation can be the source of many bugs, especially in algorithmic
parts.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/17

Indentation III

 Following are two examples of indenting method declarations. The first is the
conventional case. The second would shift the second and third lines to the far right if
it used conventional indentation, so instead it indents only 8 spaces.

//CONVENTIONAL INDENTATION

someMethod(int anArg, Object anotherArg, String yetAnotherArg,

Object andStillAnother) {

...

}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS

private static synchronizedWorkingLongMethodName(int anArg,

Object anotherArg, String yetAnotherArg,

Object andStillAnother) {

...

}

 Always use common sense

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/18

Indentation IV
 Line wrapping for if statements should generally use the 8-space rule, since conventional (4

space) indentation makes seeing the body difficult. For example:

//DON’T USE THIS INDENTATION

if ((condition1 && condition2)

|| (condition3 && condition4)

||!(condition5 && condition6)) { //BAD WRAPS

doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS

}

//USE THIS INDENTATION INSTEAD

if ((condition1 && condition2)

|| (condition3 && condition4)

||!(condition5 && condition6)) {

doSomethingAboutIt();

}

//OR USE THIS

if ((condition1 && condition2) || (condition3 && condition4)

||!(condition5 && condition6)) {

doSomethingAboutIt();

}

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/19

Ternary expressions

 Here are three acceptable ways to format

ternary expressions:
alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta

: gamma;

alpha = (aLongBooleanExpression)

? beta

: gamma;

 A good method to write conditionals

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/20

White space

Blank lines:
● Two blank lines :
Between sections of a source file

Between class and interface definitions

● One blank line:
Between methods

Between the local variables in a method and its first
statement

Before a block or single-line comment

Between logical sections inside a method to improve
readability

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/21

 Blank spaces:
● A keyword followed by a parenthesis should be separated by a space

while (true) {

...

}

● No blank space between a method name and its opening parenthesis

● A blank space should appear after commas in argument lists

● All binary operators (except ―.‖) should be separated from their operands by
spaces

● Unary operators (-,++, --) should never be separated from operands

a += c + d;

a = (a + b) / (c * d);

a = d++;

prints("size is " + foo + "\n");

● The expressions in a for statement

for (expr1; expr2; expr3)

● Casts should be followed by a blank space

myMethod((byte) aNum, (Object) x);

myMethod((int) (cp + 5), ((int) (i + 3)) + 1);

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/22

List of conventions

Layout and indentation

Comments

Declarations and statements

Naming conventions and practices

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/23

Comments

 Implementation comments:
● /* … */

● // ….

● Commenting out code

● Particular implementation notes

 Documentation comments
● /** … */

● Extends to html documentation using javadoc
http://java.sun.com/j2se/javadoc/

● Describe the specification of the code

● Implementation-free (what, not how)

http://java.sun.com/j2se/javadoc/

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/24

To comment or not to comment?

 Don’t repeat code/directory information
● Give overviews /additional information

 Assist the reader

 Discuss nontrivial or non-obvious design decisions

 Document coding surprises and dirty tricks

 Comments are parts of your SW
● More comments  more maintenance

 Comments should not be enclosed in large boxes drawn
with asterisks or other characters – no embellishments!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/25

Implementation comments

 Block comments – tell a story

● Describe files, methods, data structures and algorithms

● May be used at the beginning of each file and before

each method.

● Can be used within methods

● Inside a method - indented to the same level as the

code they describe
/*

* This is a block comment

* This is the second line of the block comment

*/

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/26

Single-Line Comments (one liners)

● Indented to the level of the code that follows

● Can’t be written in a single line block

comment

● Should be preceded by a blank line

If (condition){

/* Handle the condition. */

...

}

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/27

 Trailing Comments – very short comments

● Use to tie to data declarations, maintenance notes

● Appear on the same line as the code they describe

● Should be shifted far enough to separate them from the

statements

● More than one short comment in the same chunk of

code  all indented to the same tab setting.

if (a == 2) {

return TRUE; /* special case */

} else {

return isPrime(a); /* works only for odd a */

}

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/28

 The // comment delimiter
● Use for commenting out a complete line or only a partial line.

● Don’t use on consecutive multiple lines for text comments

if (foo > 1) {

// Do something

...

}

else{

return false; // Explain why here.

}

● Can be used in consecutive multiple lines for commenting out sections of code

//if (bar > 1) {

//

// // Do something

// ...

//}

//else{

// return false;

//}

 Caveat: often lots of commented code in legacy code

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/29

Some useful types of comments

Subtitle – say what the code does

● More abstraction

● PDL (Program Definition Language)

// set parameters

myAccount.balance = DEFAULT_BALANCE;

myAccount.overdraftProtection = false;

// link to a checking account

myAccount.linkAccount(curSavingAccount);

…..

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/30

 Assertion comments

● Requires (preconditions)

● Modifies (data changed)

● Effect (postcondition)
public static void addMax (Vector v, Integer x)

throws NullPointerException, NotSmallException

/* REQUIRES: All elements of v are integers

* MODIFIES: v

* EFFECTS: If v is null throws NullPointerException; if v

* contains an element larger than x throws

* NotSmallException; else adds x to v.

*/

 From [L], P61

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/31

 Data comments

● Meaning of data fields and invariants

● At declaration (for consistency)

● End-line layout recommended here

protected point lowerLeft; // lower left corner; .x, .y >=0

protected int width; // .width >0

protected int length; // .length >=0

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/32

To comment or not to comment ?

How to achieve good commenting?

● Relevance
/* set a to b */ /* make sure a’s level is min(b,3)*/

a=b; a=b.truncate(LEVEL_3);

● Maintainability – proximity
int securityClearance; // 0-5, 5 highest

● Document surprises
int securityClearance; // 0-6, 5 highest 6 undefined

When in doubt?

Practice makes perfect …

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/33

Documentation Comments

 Generate documentation from in-line comments
● Avoid redundancy

● Easy and efficient way to document

 Describe Java classes, interfaces, constructors, methods, and fields

 Javadoc

● Each doc comment is set inside the comment delimiters /**...*/ (as
opposed to /* ...*/, // ...)

● Converts to html

 One comment per class, interface, or member.

 Should appear just before the declaration:
/**

* The Example class provides ...

*/

public class Example { ...

 Never use doc inside a method (will carry to the next)

 If you need to document something but don’t want it to appear in the doc –
add block/single line after declaration

 Will be used in project – see sun site & tutorial for details!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/34

List of conventions

Layout and indentation

Comments

Declarations and statements

Naming conventions and practices

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/35

Declarations

One declaration per line:
int level; // indentation level

int size; // size of table

is preferred over
int level, size;

 Do not put different types on the same line.
int foo, fooarray[]; //WRONG!

 Can use either one space between type and
identifier or tabs, e.g.:

int level; // indentation level

int size; // size of table

Object currentEntry; // currently selected table entry

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/36

 Initialize local variables where they’re declared

 Exception: initial value depends on some computation occurring first

 Put declarations only at the beginning of blocks ({block})
● Don’t wait to declare variables until their first use

void myMethod() {

int int1 = 0; // beginning of method block

if (condition) {

int int2 = 0; // beginning of "if" block

...

}

}

● Exception: indexes of for loops

for (int i = 0; i < maxLoops; i++) { ... }

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/37

 Avoid local declarations that hide declarations at
higher levels

 Also avoid similar names
int count;

...

myMethod() {

if (condition) {

int count; // BAD!

...

}

...

}

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/38

 Classes and interfaces:
● No space between a method name and the parenthesis ―(― starting its parameter

list

● Open brace ―{‖ appears at the end of the same line as the declaration statement

● Closing brace ―}‖ starts a line by itself indented to match its corresponding
opening statement

● Except: when there is a null statement we should have ―{}‖

class Sample extends Object {

int ivar1;

int ivar2;

Sample(int i, int j) {

ivar1 = i;

ivar2 = j;

}

int emptyMethod() {}

...

}

 Methods are separated by a blank line

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/39

Statements

One line one statement
v++; // Correct

x--; // Correct

v++; x--; // Ugly - AVOID!

return statement
● avoid parenthesis unless needed:

return;

return myDisk.size();

return (size ? size : defaultSize); // What does this do?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/40

Compound statements

 Compound statements are lists of statements enclosed
in braces

“{ statements }”

● Enclosed statements should be indented one more level than the
compound statement

● The opening brace should be at the end of the line that begins
the compound statement

● The closing brace should begin a line and be indented to the
beginning of the compound statement

 Braces are used around all statements, even single
statements, when they are part of a control structure,
such as an if-else or for statement

 Toughest bugs - statements without {…} accidentally
introducing bugs due to forgetting to add braces

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/41

 The if-else class of statements should have the following form:

if (condition) {

statements;

}

if (condition) {

statements;

} else {

statements;

}

if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

}

 Avoid:

if (condition) //Ugly - AVOID! THIS OMITS THE BRACES {}!

statement;

No more than 3 levels

of nesting in if statements

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/42

Loops

 A for statement:
for (initialization; condition; update) {

statements;

}

 An empty for statement (all the work is done in
the initialization, condition, and update clauses) :

for (initialization; condition; update);

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/43

 A while statement:
while (condition) {

statements;

}

 An empty while:
while (condition);

 A do-while statement:
do {

statements;

}

while (condition);

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/44

Switch

 A switch statement should have the following form:
switch (condition) {

case ABC:

statements;

/* falls through */

case DEF:

statements;

break;

case XYZ:

statements;

break;

default:

statements;

break;

}

 Every time a case falls through (doesn’t include a break statement), add a comment
where the break statement would normally be

 Every switch statement should include a default case

 Add break in the default case - prevents a fall-through error if later another case is
added

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/45

Try-catch

try {

statements;

} catch (ExceptionClass e) {

statements;

}

 A try-catch statement may also be followed by
finally:

try {

statements;

} catch (ExceptionClass e) {

statements;

} finally {

statements;

}

finally allows to

―clean up‖ and is

always executed

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/46

List of conventions

Layout and indentation

Comments

Declarations and statements

Naming conventions and practices

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/47

Naming conventions

 Packages: com.sun.eng, ca.mcgill.ecse321
● The prefix of a unique package name is always written in all-

lowercase ASCII letters and is separated by ―.‖ (prefix: com,
edu, gov, mil, net, org, country code).

● Note java.util, java.util.map

● Subsequent components of the package name - project
dependent (hierarchical)

 Classes: Nouns
● First letter of each word capitalized

● Use whole words – no nonstandard acronyms/ab/abb/abbr.
class Account;

class CheckingAccount;

 Interfaces – like classes

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/48

Methods:

● Verbs

● in mixed case with the first letter lowercase, with the first

letter of each internal word capitalized

● Not more than 4 words
terminate();

terminateDownload();

terminateDownloadAfterBlueButtonPressed(); // Ugly

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/49

Variables

 Mixed case with a lowercase first letter, Internal words start with
capital letters.

 Variable names should not start with underscore (―_‖) or dollar sign
(―$‖) characters

 Names:
● short yet meaningful

● mnemonic– indicate its use to other users (no abbreviations)

 Avoid one-character variable names except ―throwaways‖
● i, j, k, m, and n for integers

● c, d, and e for characters.

int k; // throwaway

int trmn8; // cryptic

float myWidth; // good

float myWindowWidthInInchesBiggerThan2; // too long

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/50

Constants

all uppercase with words separated by

underscore (―_‖)
static final int MIN_WIDTH = 4;

static final int MAX_WIDTH = 999;

static final int GET_THE_CPU = 1;

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/51

Practices

 Don’t make class variables public unless there is a
reason

● Exception: when class is really a struct

 Avoid using an object to access a class (static) variable

or method. Use a class name instead.
classMethod(); //OK

AClass.classMethod(); //OK

anObject.classMethod(); //AVOID!

 Use special comments when reviewing code:

// XXX (looks bogus)

// FIXME (a bug)

Each project should have a small set of special comments

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/52

 Numerical constants (literals) should not be coded directly, except for -1, 0,
and 1, in a for loop as counter values

 Avoid assigning several variables to the same value in a single statement.

fooBar.fChar = barFoo.lchar = 'c'; // Ugly - AVOID!

 Do not use the assignment operator if it can be confused with the equality
operator.

if (c++ = d++) { // AVOID! (Java disallows)

...

}

should be written as
if ((c++ = d++) != 0) {

...

}

 Do not use embedded assignments in an attempt to improve run-time
performance

d = (a = b + c) + r; // AVOID!

should be written as
a = b + c;

d = a + r;

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/53

 Parentheses: Use liberally in expressions involving mixed operators

 Avoid operator precedence problems (even if the operator precedence
seems clear to you)

if (a == b && c == d) // Ugly

if ((a == b) && (c == d)) // Good

 Returning values: make the structure of your program match the intent.
if (booleanExpression) {

return true;

} else {

return false;

}

should instead be written as
return booleanExpression; // Good

Similarly,
if (condition) {

return x;

}

return y;

should be written as
return (condition ? x : y); // Good

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/54

Defensive Programming

 Trust no one – no assumptions should be made

 Users are malicious

 Users are stupid

 Other programmers do not read the instructions

● ―You mean I always have to initialize this parameter?‖

 Sanitize input data

 Never make code more complex than necessary.
Complexity breeds bugs, including security problems

 Shell your code from other people meddling –
encapsulate

http://en.wikipedia.org/wiki/Image:Foxmulder.jpg

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/55

Defensive Programming (Cont’)

 If possible, reuse code

 Leave the code available to everyone on the Net or make sure the
software was audited for security problems

 Encrypt/authenticate all data transmitted over networks
● Use a proven encryption scheme

 All data is important until proven otherwise

 All code is insecure/unchecked/incorrect until proven otherwise

 If data is checked for correctness, verify if it's correct, not if it is
incorrect

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/56

Hungarian notations

 Widely used in C/C++

 Out of fashion now, but still common

 Main idea: every variable has an identifier in its beginning explaining
its type followed by the ―given name‖

 Examples:

nSize : integer

dwLightYears : double word

f_interestRate : floating point member of a class

pFoo : pointer

szLastName : zero-terminated string

psz_Owner : pointer to zero-terminated string, member of a class

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/57

Agenda

Why coding conventions?

Code conventions

Technical documentation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/58

Documentation
 Part of the products, often outlives code

 Includes: specifications, manuals, design, test plans, the code itself,
notes, messages, rationale management, etc.

 What is important for the technical documentation for software?
● Correctness, completeness, ...

● Maintainability, consistency, ...

● Conciseness, navigability, clarity, …

 Keep in mind the purpose - what needs to be done with the
document
● Consult for detailed information – precise, clear, comprehensive

● Browse for specific information – easy to navigate

● Modify often, keep consistent – maintainable

● Manage rationale – concise and clear

 NOT entertainment

 Special role in many projects (more than a ―technical writer‖)

 More is less; Size doesn’t matter!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/59

 Maintainability
● Documentation needs to be updated and corrected, just like

code

● Documentation should be modular, just like code

 Avoid: redundant, repetitious text
● Change  consistency problems

● Good: say something in one place, insert cross-reference in the
other place

● Bad: repeat important concepts many times

● Redundancy is useful for quick high-level view

 Avoid: discussing multiple concepts
● Good: isolate ideas, keep each sentence focused, summarize

each paragraph in the opening sentence

 Avoid: update help files and user manuals independently
● Good: obtain manuals automatically from help files, or obtain

both from code (e.g. by javadoc)

● Good: obtain both manually from the specification documents

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 2 - Conventions and practices/60

 Conciseness
● ―… does not mean omission of detail‖

● Bad: quoting OO book in a design document

● Good: rationale for your design decisions

 Navigability
● How easy is it to find the relevant information?

● Bad: unstructured text

● Good: table of contents, cross-references, hyperlinks, index of
terms

 Consistency
● Consistent style helps retrieving information

● Unlike literary writing, technical writing is not made better by
style variation

 Clarity
● E.g. avoid ambiguous expressions: ―it‖, ―this‖, ...

