
Introduction to Software Engineering

ECSE-321

Unit 16 – Design Patterns (Part 2)

Generator Patterns

Have a client who needs a new instance of

a product, and a generator class that

supplies the instance

● Factory patterns

● Abstract factory patterns

● Singleton patterns

● Prototype patterns

3

For generator patterns…

To present the structure, behavior, and

characteristics of generator patterns

To discuss the uses of factory methods

To present the Factory Method and

Abstract Factory design patterns

4

Instance Creation

There are two ways to create objects:

● Instantiating a class using one of its

constructors

● Cloning an existing object

Clients may use another class to create an

instance on their behalf; this is the

essence of the generator pattern category.

Analogy: a tailor

5

Generator Pattern Structure

The Client must access the Generator that
creates an instance of the Product and
provides it to the Client

Client Generator

Product

creates

6

Generator Pattern Behavior

:Client :Generator

p:Product

p := createProduct()
create

sd GeneratorBehavior

7

Generator Pattern Advantages

Product Creation Control—A generator

can mediate access to constructors so

that only a certain number or type of

product instances are created.

Product Configuration Control—A

generator can take responsibility for

configuring product instances.

Client and Product Decoupling—A

generator can determine how to create

product instances for a client.

8

Factory Methods

A Generator must have an operation

that creates and returns Product

instances.

A factory method is a non-
constructor operation that
creates and returns class
instances.

9

Factory Method Capabilities

Access to product constructors can be

restricted.

Private data can be provided to new

product objects.

Product objects can be configured after

creation.

Product class bindings can be deferred

until runtime.

10

The Factory Patterns

Factory patterns configure participating

classes in certain ways to decouple the

client from the product.

 Interfaces are used to

● Change the generator

● Change the product instances

Analogy: automobile factories

11

The Factory Patterns

Factory Method—Uses interfaces and

abstract classes to decouple the client

from the generator class and the

resulting products.

Abstract Factory—Has a generator

that is a container for several factory

methods, along with interfaces

decoupling the client from the generator

and the products.

12

The Factory Method Pattern

The generator usually contains both

factory methods and other methods.

Analogy: different auto factories producing

the same kind of automobile (SUVs for

example).

13

Factory Pattern Structure

«interface»

Product

ConcreteProduct

Client

creates

 createProduct() : Product

ConcreteFactory

Factory

 createProduct() : Product

14

Factory Method Behavior

:Factory

:Product

:Client

p=createProduct() create

sd FactoryMethodBehavior

15

The Iterator and Factory Method
Patterns

ConcreteCollection

ConcreteIterator

 iterator() : Iterator

«interface»

Collection

«interface»

Iterator

reset()

isDone() : boolean

getCurrent() : Object

next()

Client

creates

16

When to Use the Factory Method
Pattern

Use the Factory Method pattern when
there is a need to decouple a client
from a particular product that it uses.

Use the Factory Method to relieve a
client of responsibility for creating and
configuring instances of a product.

With Iterator, client does not need to
know how the collection is organized

17

The Abstract Factory Pattern

A factory class is one that contains
only factory methods for different
(though usually related) products.

The Abstract Factory generator class is
a factory class.
● Restricts the Factory Method pattern

because the generator holds only factory
methods

● Generalizes the Factory Method pattern
because the generator creates several
different kinds of product

Analogy: auto factory with assembly
lines for different kinds of vehicles

18

Abstract

Factory

Pattern

Structure «interface»

ProductA

Concrete

ProductA1

Client

creates

AbstractFactory

«interface»

ProductB

Concrete

ProductB2

creates

Concrete

ProductA2

Concrete

ProductB1

 createProductA() : ProductA

 createProductB() : ProductB

ConcreteFactory1

 createProductA() : ProductA

 createProductB() : ProductB

ConcreteFactory2

 createProductA() : ProductA

createProductB() : ProductB

19

Abstract Factory Pattern Behavior

:Factory2:Client

pA:ProductA2

pA=createProductA()

pB:ProductB2

pB=createProductB()

create

create

sd AbstractFactoryMethodBehavior

20

Abstract Factory Pattern Example

«interface»

SensorDevice

SimSensor

Client

RealValve

creates

RealSensor

SimValve

«interface»

DeviceFactory

createSensorDevice(port : Object) : SensorDevice

createValveDevice(type : String, port : Object) : ValveDevice

createDisplayDevice(port : Object) : DisplayDevice

createKeypadDevice(port : Object) : KeypadDevice

createScreenButtonDevice(port : Object) : ScreenButtonDevice

createClockDevice(port : Object) : ClockDevice

SimDeviceFactory RealDeviceFactory

«interface»

ValveDevice

«interface»

DisplayDevice

«interface»

KeypadDevice

«interface»

ClockDevice

RealDisplay

SimDisplay

RealKeypad

SimKeypad

RealClock

SimClock

«interface»

ScreenButtonDevice

RealScreenButtonDevice

SimScreenButtonDevice

21

When to Use the Abstract Factory
Pattern

Use the Abstract Factory pattern when

clients must be decoupled from product

classes.

● Especially useful for program configuration and

modification

The Abstract Factory pattern can also

enforce constraints about which classes

must be used with others.

 It may be a lot of work to make new

concrete factories.

22

Singletons

Often there is a need to guarantee that

a class has only a single (or a few)

instances.

● Servers

● Controllers

● Managers

A singleton is a class that
can have only one instance.

23

The Singleton Pattern

Guarantees that a class is a singleton

● Can be modified to provide any set number of

instances

Provides wide (often global) access to the

single instance

● Can be modified to provide more restricted

access

24

Singleton Pattern Structure

Singleton

 - theInstance : Singleton = null

 - Singleton()

 + instance() : Singleton

Client

if (theInstance == null)

 theInstance = new Singleton()

return instance

25

Singleton Pattern Behavior

:Client Singleton:Class

s:Singleton

s=instance()

[no instance]

create

sd SingletonBehavior

opt

26

Singleton Examples

Examples of the need for global

unique entities in a program abound:

● Subsystems (or their façade objects)

● Communication streams

● Major containers or aggregates

● OS or windowing system proxies

27

When to Use Singletons

Use the Singleton pattern to guarantee
that there is only one or a small number
of instances of some class.

Sometimes an abstract class with static
attributes and operations can be used
instead

28

Cloning

An alternative to class instantiation is

making a copy of an object.

A clone is a copy of an object.

A clone has the state of its source at the
moment of creation.

29

Shallow and Deep Copies

Copying objects that hold references to
other entities raises the question ―Should
the references or the referenced entities
be copied?‖
● Shallow copy: Copy references when an entity is

copied.

● Deep copy: Copy referenced entities (and any
entities they reference as well) when an entity is
copied.

Sometimes a shallow copy is the right
thing to do, and sometimes a deep copy
is.

30

Shallow vs. Deep Copy Example

maxSize

store

top

n

k

0

n-1

2

1

.

.

.

.

.

.Original

Stack

maxSize

store

top

n

k

Copied

Stack

maxSize

store

top

n

k

0

n-1

2

1

.

.

.

.

.

.

Original

Stack

maxSize

store

top

n

k

Copied

Stack
0

n-1

2

1

.

.

.

.

.

.

31

Shallow or Deep Copy in Cloning?

Should a clone be made using a

shallow or a deep copy?

● It does not matter if no attributes hold

references.

● There is not accepted practice.

● What ought to be done depends on the

particular case at hand.

32

The Prototype Pattern

Uses cloning implemented by a
clone() factory method

Uses interfaces to decouple the client
from the cloned product

Does not specify whether cloning is
deep or shallow—use the right one
for the case at hand

Analogy: using an instance of
something to get a new one

33

Prototype Pattern Structure

«interface»
Prototype

 clone()

Client

ConcretePrototype1

ConcretePrototype2

prototype

34

Prototype Pattern Behavior

:Client :Prototype

p:Prototype

p=clone() create

sd PrototypeBehavior

35

Example: Graphic Prototypes

«interface»
Prototype

 clone()

Palette

Line Rectangle

prototype

Image

Graphic
component

...

makeGraphic(i : Index) : Graphic *

*

return prototype[i].clone()

36

When to Use the Prototype Pattern

Use the Prototype pattern when clients

need to be decoupled from products, and

the products need to be set at runtime.

The main problem with the prototype

pattern is that it relies on cloning, which

presents problems about shallow and

deep copies.

37

Summary

The Singleton pattern is used to

guarantee that only one or a set

number of instances of some class

exist.

The Prototype pattern is used to

create instances of classes (really

copies of objects) determined at run

time.

Reactor Patterns

Have a client that needs to respond to an

event in a target. The client delegates this

responsibility to a reactor.

● Command patterns

● Observer patterns

39

Reactor Pattern Structure

The Client must access the Target and the
Reactor so it can register the Reactor with
the Target.

Client Target

Reactor

notifies

40

Event-Driven Design

Event-driven design is an approach to

program design that focuses on events to

which a program must react.

● An event is a significant occurrence

● Contrasts with stepwise refinement

Event handlers are components that react

to or respond to events.

Reactor patterns assist in event-driven

design.

41

Behavioral Phases

Setup Phase—The Client registers

the Reactor with the Target.

● Client interacts with the Target

Operational Phase—The Reactor

responds to events in the Target on

behalf of the Client.

● Client is not involved

42

Reactor Pattern Behavior

:Client :Target r:Reactor

register(r)

notify()

Setup

Phase

Operational

Phase

stimulus()

sd ReactorBehavior

43

Reactor Pattern Advantages

 Client and Target Decoupling—Once the client

registers the reactor with the target, the client and

target need not interact again.

 Low Reactor and Target Coupling—The target

only knows that the reactor is a receiver of event

notifications.

 Client Decomposition—The reactor takes over

client responsibilities for reacting to target events.

 Operation Encapsulation—The event handler in a

reactor is an encapsulated operation that can be

invoked in other ways for other reasons.

44

Event-Driven Architectures vs.
Reactor Patterns

Commonalities
● Support event-driven design

● Event announcement and handling

● Two-phase behavior

Differences
● Level of abstraction

● Event dispatcher completely decouples targets
and reactors

● Event dispatchers are complex and harder to
use

● Event dispatch may damage performance

45

Function Objects

 In some languages operations can
be treated as values (stored, passed,
etc.).

This is not usually true in object-
oriented languages—use objects to
encapsulate operations.

A function object or functor is an object
that encapsulates an operation; the
encapsulating class is a function class.

46

Function Object Example 1

InsertionSort

SortOperation

 + sort(array : int[*])

BubbleSort

SelectionSort

HeapSort

Quicksort

 - name : String { final }

47

Function Object Example 2

Collection sortCollection = new ArrayList()

sortCollection.add(new InsertionSort())

sortCollection.add(new BubbleSort())

...

print "Sort Time1 Time2 Time3 ... Timek"

for each element sorter of sortCollection

print sorter.toString()

for each array a

startTime = now()

sorter.sort(a)

endTime = now()

print(endTime – startTime)

printline

48

Function Object Advantages

Additional features can be added to the

function class besides the encapsulated

operation.

The function class can include operations

and data that the encapsulated operation

needs.

49

The Command Patterns

The reactor is a function object

Simple and very widely used way to

implement callback functions in user

interfaces

50

Command Pattern Structure

Client
Invoker

ConcreteCommand

notifies

register(c : Command)

«interface»

Command

execute()

51

Command Pattern Behavior

:Client :Invoker c:Command

register(c)

execute()

Setup

Phase

Operational

Phase

stimulus()

sd CommandBehavior

52

Command Pattern Example

Client
AbstractButton

AnActionListener

notifies

addActionListener(ActionListener l)

«interface»

ActionListener

actionPerformed(ActionEvent e)

JButton

53

When to Use the Command Pattern

Use the Command pattern to delegate a

client’s response to events from an invoker

class to another class that encapsulates

the reaction.

Use the Command pattern to decompose

clients, lower coupling between clients and

invokers, and to encapsulate event-

handling code.

54

The Observer Pattern

Reduces coupling between classes

while preserving their ability to

interact

Can be used whenever one or more

objects (observers) must react to

events in another object (subject)

Analogy: current awareness service

55

Observer in the MVC Architecture

A model in an MVC architecture can keep

track of its views and controller

● Strongly couples the model to its views and

controllers

● Changing the UI forces changes in the model

The model can be a subject and the views

and controllers can be observers

● Decouples the model from its views and

controllers

● Changing the UI has no effect on the model

56

Subject and Observer Operations

Subject

● Registration operations

● Notification control operations

● Query operations

Observer

● Notification operation

57

Observer Pattern Structure

«interface»

Subject

 register (o : Observer)

 unregister(o : Observer)

 notifyObservers()

Client

notifies

ConcreteSubject

«interface»

Observer

 update(s : Subject)

ConcreteObserver

*

58

Observer Pattern Behavior

s:ConcreteSubject o1:ConcreteObserver o2:ConcreteObserver

register(o1)

notifyObservers()

update(s)

getState()

:Client

Setup

Phase

Operational

Phase

register(o2)

stimulus()

update(s)

getState()

sd ObserverBehavior

59

Observer Pattern Example

«interface»

Subject

 register (o : Observer)

 unregister(o : Observer)

 notifyObservers()

notifies

Clock

«interface»

Observer

 update(s : Subject)

IrrigationControl

*

UserInterface

 getTime() : int

 getDay() : Day

AutoCycle

60

When to Use the Observer Pattern

Use the Observer pattern whenever one
object must react to changes in another
object, especially if the objects must be
loosely coupled.
● User interface components

● Clock-driven components

The main drawback of the Observer
pattern is that notification may be
expensive.
● This can be dealt with in several ways

depending on the situation.

61

Summary 1

Reactor patterns use a Reactor to which
a Client delegates responsibility for
responding to events in a Target.

Reactor patterns help realize event-
driven designs in a cheaper and easier
way than event-driven architectures at
the expense of slightly higher
component coupling.

The reactor patterns help decouple
targets from their both clients and
reactors.

62

Summary 2

The Command pattern uses a function

object as a reactor; the function object

encapsulates the reaction and can be

used for other purposes as well.

The Observer pattern has a subject with

which observers register; the subject

then notifies its observers of changes,

and the observers query the subject to

determine how to react.

