Introduction to Software Engineering

ECSE-321
Unit 16 — Design Patterns (Part 2)

Generator Patterns

® Have a client who needs a new instance of
a product, and a generator class that
supplies the instance
e Factory patterns
e Abstract factory patterns
e Singleton patterns
e Prototype patterns

For generator patterns...

® To present the structure, behavior, and
characteristics of generator patterns

® To discuss the uses of factory methods

® To present the Factory Method and
Abstract Factory design patterns

Instance Creation

® There are two ways to create objects:

e Instantiating a class using one of its
constructors

e Cloning an existing object

® Clients may use another class to create an
instance on their behalf; this is the
essence of the generator pattern category.

® Analogy: a tailor

4

Generator Pattern Structure

Client > (Generator
lcreates
> Product

The Client must access the Generator that
creates an instance of the Product and
provides it to the Client

Generator Pattern Behavior

sd GeneratorBehavior)

Client :Generator

T [
p := createProduct() |

————— > p:Product

I
T I |

Generator Pattern Advantages

® Product Creation Control—A generator
can mediate access to constructors so
that only a certain number or type of
product instances are created.

® Product Configuration Control—A
generator can take responsibility for
configuring product instances.

® Client and Product Decoupling—A
generator can determine how to create
product instances for a client.

Factory Methods

A Generator must have an operation

that creates and returns Product
Instances.

A factory method is a non-
constructor operation that
creates and returns class
Instances.

Factory Method Capabillities

® Access to product constructors can be
restricted.

® Private data can be provided to new
product objects.

® Product objects can be configured after
creation.

® Product class bindings can be deferred
until runtime.

The Factory Patterns

® Factory patterns configure participating
classes in certain ways to decouple the
client from the product.

® Interfaces are used to
e Change the generator
e Change the product instances

® Analogy: automobile factories

10

The Factory Patterns

® Factory Method—Uses interfaces and
abstract classes to decouple the client
from the generator class and the
resulting products.

® Abstract Factory—Has a generator
that is a container for several factory
methods, along with interfaces
decoupling the client from the generator
and the products.

11

The Factory Method Pattern

® The generator usually contains both
factory methods and other methods.

® Analogy: different auto factories producing

the same kind of automobile (SUVs for
example).

12

Factory Pattern Structure

13

Client

ConcreteFactory

createProduct() : Product

\/

Factory

Y

createProduct() : Product

creates v

Y

«interface»
Product

A

ConcreteProduct

Factory Method Behavior

14

sd FactoryMethodBehaviorJ

:Client

:Factory

|]p=createProduct() | create

:Product

15

The lterator and Factory Method

Patterns

Client

ConcreteCollection

\V

«interface»

> Collection
iterator() : Iterator
createsw
«interface»
lterator
| reset()
>

isDone() : boolean
getCurrent() : Object

next()
JAN

Concretelterator

When to Use the Factory Method
Pattern

® Use the Factory Method pattern when
there is a need to decouple a client
from a particular product that it uses.

® Use the Factory Method to relieve a
client of responsibility for creating and
configuring instances of a product.

® \Vith Iterator, client does not need to
know how the collection is organized

16

The Abstract Factory Pattern

® A factory class is one that contains
only factory methods for different
(though usually related) products.

® The Abstract Factory generator class is
a factory class.

e Restricts the Factory Method pattern
because the generator holds only factory
methods

e Generalizes the Factory Method pattern
because the generator creates several
different kinds of product

® Analogy: auto factory with assembly
» lines for different kinds of vehicles

Abstract
Factory
Pattern
Structure

18

ConcreteFactory1

createProductA() : ProductA
createProductB() : ProductB

ConcreteFactory2

createProdu
createProdu

ctA() : ProductA
ctB() : ProductB

\/

i

Client

AbstractFactory

> createProductA() : ProductA
createProductB() : ProductB

creates w creates w
«interface» «interface»
ProductA ProductB

P F 28

Concrete :
ProductA2 |
|

Concrete
ProductB2

Concrete
ProductA1

Concrete
ProductB1

Abstract Factory Pattern Behavior

19

sd AbstractFactoryMethodBehaviorJ

:Client

1

:Factory2

I
pA=createProductA() |

> create

pB=createProductB())T

— — — —> pA:ProductA2

-
)
=
®
Q
—_
®

pB:ProductB2

Abstract Factory Pattern Example

20

[Smsemsor |-
[esensor |-

.
RealValve -
SimDisplay 1
RealDisplay -

| SimDeviceFactory |

\V

| RealDeviceFactory |

\V

«interface»
DeviceFactory

createSensorDevice(port : Object) : SensorDevice
createValveDevice(type : String, port : Object) : ValveDevice
createDisplayDevice(port : Object) : DisplayDevice
createKeypadDevice(port : Object) : KeypadDevice
createScreenButtonDevice(port : Object) : ScreenButtonDevice
createClockDevice(port : Object) : ClockDevice

«interface»
r D SensorDevice

creates ¥

«interface»
r —l> ValveDevice

D «interface»
r DisplayDevice

«interface» j
KeypadDevice 1

«interface»
ClockDevice <]_ 1

«interface»

ScreenButtonDevice

r SimKeypad
— RealKeypad

- SimClock
— RealClock

|__1 SimScreenButtonDevice |

I
L _l RealScreenButtonDevice |

When to Use the Abstract Factory
Pattern

® Use the Abstract Factory pattern when
clients must be decoupled from product
classes.

e Especially useful for program configuration and
modification
® The Abstract Factory pattern can also
enforce constraints about which classes
must be used with others.

® [t may be a lot of work to make new
* concrete factories.

Singletons

Often there is a need to guarantee that
a class has only a single (or a few)
iInstances.

e Servers

e Controllers

e Managers

A singleton is a class that
can have only one instance.

22

The Singleton Pattern

® Guarantees that a class is a singleton

e Can be modified to provide any set number of
instances

® Provides wide (often global) access to the
single instance

e Can be modified to provide more restricted
access

23

Singleton Pattern Structure

24

Client

Singleton

- thelnstance : Singleton = null

- Singleton()
+ instance() : Singleton

if (thelnstance == null)
thelnstance = new Singleton()
return instance

Singleton Pattern Behavior

25

sd SingletonBehaviorJ

:Client

Singleton:Class

1

s=instance() |
>

opt | [no instance]

create

s:Singleton

26

Singleton Examples

Examples of the need for global
unique entities in a program abound:
e Subsystems (or their facade objects)
e Communication streams
e Major containers or aggregates
e OS or windowing system proxies

When to Use Singletons

® Use the Singleton pattern to guarantee
that there is only one or a small number
of instances of some class.

® Sometimes an abstract class with static
attributes and operations can be used
Instead

27

Cloning

An alternative to class instantiation is
making a copy of an object.

A clone is a copy of an object.

A clone has the state of its source at the
moment of creation.

28

Shallow and Deep Copies

® Copying objects that hold references to
other entities raises the question “Should
the references or the referenced entities
be copied?”
e Shallow copy. Copy references when an entity is
copied.

e Deep copy. Copy referenced entities (and any
entities they reference as well) when an entity is
copied.

® Sometimes a shallow copy is the right

_ thing to do, and sometimes a deep copy
IS.

Shallow vs. Deep Copy Example

n-1
maxSize | n
store
top | k 9
maxSize | n n-1 Original 1
store . Stack
top | k . . _> O
Original . .
Stack
2
maxSize | n 1
s?ore [< 0 n-1
top| k
Copied
Stack maxSize | n
store
top | k 5
Copied ’
Stack
—> 0

30

Shallow or Deep Copy in Cloning?

Should a clone be made using a
shallow or a deep copy?

e It does not matter if no attributes hold
references.

e There is not accepted practice.

e \What ought to be done depends on the
particular case at hand.

31

The Prototype Pattern

o U
C

o U

ses cloning implemented by a
one() factory method

ses interfaces to decouple the client

from the cloned product

® Does not specify whether cloning is
deep or shallow—use the right one
for the case at hand

® Analogy: using an instance of
something to get a new one

32

Prototype Pattern Structure

33

Client

prototype

«interface»
Prototype

clone()

— 1 ConcretePrototype1

i

- — — ConcretePrototype2

Prototype Pattern Behavior

34

sd PrototypeBehaviorJ

:Client :Prototype

T [
p=clone() |

[

create
- —— p:Prototype

Example: Graphic Prototypes

35

«interface»
Prototype

clone()

A

I [
Palette prototype . *
> Graphic £
makeGraphic(i : Index) : Graphic * component
i /\
I
. I |
return prototypeli].clone() Image Line Rectangle

When to Use the Prototype Pattern

® Use the Prototype pattern when clients
need to be decoupled from products, and
the products need to be set at runtime.

® The main problem with the prototype
pattern is that it relies on cloning, which

presents problems about shallow and
deep copies.

36

Summary

® The Singleton pattern is used to
guarantee that only one or a set
number of instances of some class
exist.

® The Prototype pattern is used to
create instances of classes (really
copies of objects) determined at run
time.

Reactor Patterns

® Have a client that needs to respond to an
event in a target. The client delegates this
responsibility to a reactor.
e Command patterns
e Observer patterns

Reactor Pattern Structure

Client > Target
l/notifies
> Reactor

The Client must access the Target and the
Reactor so it can register the Reactor with
the Target.

39

Event-Driven Design

® Event-driven design is an approach to
program design that focuses on events to
which a program must react.
e An event is a significant occurrence
e Contrasts with stepwise refinement

® Event handlers are components that react
to or respond to events.

® Reactor patterns assist in event-driven
design.

40

Behavioral Phases

® Setup Phase—The Client registers
the Reactor with the Target.

e Client interacts with the Target

® Operational Phase—The Reactor

responds to events in the Target on
behalf of the Client.

e Client is not involved

41

42

Reactor Pattern Behavior

Setup
Phase

Operational
Phase

{
{

sd ReactorBehavior J

:Client

:Target

D register(r

))Ij

' stimulus()

r:Reactor

notify()

1

Reactor Pattern Advantages

® Client and Target Decoupling—Once the client
registers the reactor with the target, the client and
target need not interact again.

® [ow Reactor and Target Coupling—The target
only knows that the reactor is a receiver of event
notifications.

® Client Decomposition—The reactor takes over
client responsibilities for reacting to target events.

® Operation Encapsulation—The event handler in a
reactor is an encapsulated operation that can be
invoked in other ways for other reasons.

43

Event-Driven Architectures vs.
Reactor Patterns

® Commonalities
e Support event-driven design
e Event announcement and handling
e Two-phase behavior

® Differences
e Level of abstraction

e Event dispatcher completely decouples targets
and reactors

e Event dispatchers are complex and harder to
use

« o Event dispatch may damage performance

Function Objects

® |n some languages operations can
be treated as values (stored, passed,
etc.).

® This is not usually true in object-
oriented languages—use objects to
encapsulate operations.

A function object or functor is an object
that encapsulates an operation; the
encapsulating class is a function class.

45

Function Object Example 1

46

SortOperation

- name : String { final }

+ sort(array : int[*])

/\

InsertionSort

BubbleSort

SelectionSort

HeapSort

Quicksort

Function Object Example 2

print sorter.toString()
for each array a
startTime = now()
sorter.sort (a)
endTime = now()
print (endTime - startTime)
printline

Collection sortCollection = new ArrayList()
sortCollection.add(new InsertionSort())
sortCollection.add(new BubbleSort())

print "Sort Timel Time2 Time3 ... Timek"
for each element sorter of sortCollection

47

Function Object Advantages

® Additional features can be added to the
function class besides the encapsulated
operation.

® The function class can include operations
and data that the encapsulated operation
needs.

48

The Command Patterns

® The reactor is a function object

® Simple and very widely used way to
implement callback functions in user
interfaces

49

Command Pattern Structure

Client

Invoker

Y

register(¢ : Command)

notifies
%

«interface»
Command

execute()

A

> ConcreteCommand

50

Command Pattern Behavior

Setup
Phase

Operational
Phase

51

1
{

sd CommandBehaviorJ

:Client :Invoker c:Command

[

register(c) |
gl

D I
I stimulus() _ |

>

execute()

1

Command Pattern Example

52

Client

AbstractButton

Y

addActionListener(ActionListener |)

/\

JButton

notifies

Y

«interface»
ActionListener

actionPerformed(ActionEvent e)

A

> AnActionListener

When to Use the Command Pattern

® Use the Command pattern to delegate a
client’s response to events from an invoker

class to another class that encapsulates
the reaction.

® Use the Command pattern to decompose
clients, lower coupling between clients and
iInvokers, and to encapsulate event-
handling code.

53

The Observer Pattern

® Reduces coupling between classes
while preserving their ability to
interact

® Can be used whenever one or more

objects (observers) must react to
events in another object (subject)

® Analogy: current awareness service

54

Observer in the MVC Architecture

® A model in an MVC architecture can keep
track of its views and controller

e Strongly couples the model to its views and
controllers

e Changing the Ul forces changes in the model

® The model can be a subject and the views
and controllers can be observers

e Decouples the model from its views and
controllers

= ® Changing the Ul has no effect on the model

Subject and Observer Operations

® Subject
e Registration operations
e Notification control operations
e Query operations
® Observer
e Notification operation

56

Observer Pattern Structure

57

Client

«interface»
Subject

> register (o : Observer)

unregister(o : Observer)
notifyObservers()

A

ConcreteSubject

notifies

*Y
«interface»
Observer

update(s : Subject)

A

> ConcreteObserver

Observer Pattern Behavior

Setup J
Phase

Operational

Phase 3

sd ObserverBehaviorJ

:Client s:ConcreteSubiject

o1:ConcreteObserver

02:ConcreteObserver

register(o1)

register(o2)

¢
g

58

getState()

id

i
I

| stimulus()

])J] notifyObservers()

! e '
| update(s)

I

: getState()

I

: update(s)

I

I

I

I

I

Observer Pattern Example

59

«interface»
Subject

register (o : Observer)
unregister(o : Observer)
notifyObservers()

A

Clock

getTime() : int
getDay() : Day

notifies

Y

«interface»
Observer

update(s : Subject)

r—————=—— === T

IrrigationControl

AutoCycle

Userlnterface

When to Use the Observer Pattern

® Use the Observer pattern whenever one
object must react to changes in another
object, especially if the objects must be
loosely coupled.
e User interface components
e Clock-driven components

® The main drawback of the Observer
pattern is that notification may be
expensive.

e This can be dealt with in several ways
« depending on the situation.

Summary 1

® Reactor patterns use a Reactor to which
a Client delegates responsibility for
responding to events in a Target.

® Reactor patterns help realize event-
driven designs in a cheaper and easier
way than event-driven architectures at
the expense of slightly higher
component coupling.

® The reactor patterns help decouple
targets from their both clients and
* reactors.

Summary 2

® The Command pattern uses a function
object as a reactor; the function object
encapsulates the reaction and can be
used for other purposes as well.

® The Observer pattern has a subject with
which observers register; the subject
then notifies its observers of changes,
and the observers query the subject to
determine how to react.

62

