
Introduction to Software Engineering

ECSE-321

Unit 15 – Design Patterns (Part 1)

2

Collections

Warehouse for software objects

● Lists

● Sets

● Hash tables

● Queues

Need mechanisms for iterating over the

objects in the collections

● Browse a warehouse

● Search a warehouse

3

Collections and Iteration

A collection is an object that
holds or contains other objects.

Iteration over a collection or
collection iteration is traversal and
access of each element of a collection.

4

Iteration Mechanisms

An iteration mechanism is a

language feature or a set of

operations that allow clients to access

each element of a collection.

For example:

●Java and C/C++ have for-loop constructs

that support iteration over ―collections‖

5

Iteration Mechanism Operations

Initialize—Prepare the collection for

traversal

Access current element—Provide client

access to the current element

Advance current element—Move on to

the next element in the collection

Completion test—Determine whether

traversal is complete

6

Other Iteration Mechanism
Requirements

 Information hiding—The internal structure
of the collection must not be exposed.

Multiple simultaneous iteration—It must be
possible to do more than one iteration at a
time.

Collection interface simplicity—The
collection interface must not be cluttered
up with iteration controls.

Flexibility—Clients should have flexibility
during collection traversal.

7

Iteration Mechanism Design
Alternatives: Residence

Iteration mechanism residence:

● Programming language—As in Java or

Visual Basic

Depends on the language

● Collection—A built-in iteration mechanism

resides in the collection

● Iterator—An external entity housing the

iteration mechanism

An iterator is an entity that provides serial access

to each elements of an associated collection.

8

Iteration Mechanism Design
Alternatives: Control

Iteration mechanism control:

● External iteration control—The iteration

mechanism provides access to collection

elements as directed by the client; the client

calls the iteration control operations.

● Internal iteration control—The iteration

mechanism accepts operations from clients

that it applies to elements of the collection;

the iteration mechanism calls the iteration

control operations.

9

Iteration Mechanism Design
Alternatives: Summary

Residence

Collection Iterator

Control

External
Collection with built-in

external control

Iterator with external

control

Internal
Collection with built-in

internal control

Iterator with internal

control

10

Built-In Internal Control:
Implementation

Collection

 apply(op : Operation(Object))
 for each object o in collection:

 op(o)

printObject(o : Object) {

print(o)

}

…

Collection c

…

c.apply(printObject)

11

Built-In Internal Control:
Evaluation

Hides collection internals

Does not complicate the collection
interface

Multiple simultaneous iteration is not
easy

Client has little control over
iteration—no flexibility

12

Built-In External Control:
Implementation

For each kind of iteration desired

• Add the iteration control operations
(or their equivalents) to the
collection

• Other operations may be needed to
provide flexibility

13

Built-In External Control:
Evaluation

Hides collection internals

Greatly complicates the collection
interface

Multiple simultaneous iteration is not
easy

Client has control over iteration—
adequate flexibility

14

Change During Iteration

 What should happen when a collection is changed

during iteration?

 Requirements for a coherent iteration mechanism

specification:

● Fault tolerance—The program should not crash.

● Iteration termination—Iteration should halt.

● Complete traversal—Elements always present should not be

missed during traversal.

● Single access—No element should be accessed more than

once.

 A robust iteration mechanism is one that conforms

to some coherent specification

15

Iterator Pattern

The Iterator pattern is an
object-oriented design pattern for
externally controlled iterators.

16

An Analogy

Consider a warehouse full of items that a

client must process one by one.

● Don’t allow clients into the warehouse

(information hiding)

● Clerks are like iterators

● Clerks can fetch each item for clients (external

control)

● Clerks can be instructed by the client and then

process each element on their behalf (internal

control)

17

Iterator Behavior

i:ConcreteIterator

:Client :ConcreteCollection

i=iterator()

reset()

e=getCurrent()

next()

done=isDone()

done=isDone()

X

create

[!done]

sd IteratorBehavior

loop

18

Too Many Patterns?

Need for Classification

Since mid-1990s, hundreds of design

patterns have been published.

How can designers keep them all in mind?

● Many are not that important or have narrow

application.

● A pattern classification scheme can help

designers remember many important patterns.

19

Pattern Categories

Broker patterns have a client that
needs a service from a supplier, and a
broker that mediates the interaction
between client and supplier.

Generator patterns have a client who
needs a new instance of a product, and a
generator class that supplies the
instance.

Reactor patterns have a client that
needs to respond to an event in a target.
The client delegates this responsibility to
a reactor.

Broker Pattern Structure

The Client must access the Broker and the

Broker must access the Supplier

Most Broker patterns elaborate this basic

structure

SupplierBrokerClient

21

Broker Pattern Behavior

:Broker:Client :Supplier

requestService()
obtainService()

sd BrokerBehavior

22

Broker Pattern Advantages

Simplify the Supplier—A Broker can

augment the Supplier’s services.

Decompose the Supplier—A complex

Supplier can offload some of its

responsibilities to a Broker.

Facilitate Client/Supplier Interaction—A

Broker may present a different interface,

handle interaction details, etc.

23

Broker Example: Iterator Form

«supplier»

ConcreteCollection

«broker»

ConcreteIterator

* 1

 iterator() : Iterator

«interface»

Collection

«interface»

Iterator

Client reset()

isDone() : boolean

getCurrent() : Object

next()

24

Broker Example: Iterator Behavior

i:ConcreteIterator:Client :ConcreteCollection

reset()

e=getCurrent()

next()

done=isDone()

done=isDone()

checkStatus()

fetchValue()

checkStatus()

loop [!done]

sd IteratorAsBroker

25

The Façade Pattern

The Façade pattern eases interaction
between a client and a sub-system of
suppliers by providing a simpler interface to
the sub-system.

The broker class is a façade that provides
simplified sub-system services to clients.

Analogy: a travel agent

Examples:
● Compiler

● Memory management system

26

Façade Pattern Structure

Façade

Complex Subsystem

Client

27

When to Use a Façade

Use the Façade pattern when there is a
need to provide a simplified interface to a
complex sub-system.

Façades can also help decouple systems.
● If the façade mediates all interaction with a

client, then the sub-system can be changed
without affecting the client.

A façade may work like an adapter by
providing a new interface to a sub-system
(adapters are discussed later).

28

The Mediator Pattern

The Mediator pattern reduces coupling and

simplifies code when several objects must

negotiate a complex interaction.

Classes interact only with a mediator class

rather than with each other.

Classes are coupled only to the mediator

where interaction control code resides.

Mediator is like a multi-way Façade pattern.

Analogy: a meeting scheduler

29

Using a Mediator

collaboratorA

mediator

collaboratorD

collaboratorC

collaboratorB
1: op1() 2.1: op2()

1.3: op3()

3: op4()

2: op2()

collaboratorA

collaboratorD

collaboratorC

collaboratorB

1.2: op2()
1.5: op2()
1.1: op1()

1.4: op4()

1: op()

Unmediated

Collaboration

Mediated

Collaboration

2.2: op3()

Mediator is like a communication

hub – single point of contact and synchronization

30

Mediator Pattern Structure

Mediator Collaborator

ColleagueB

ColleagueA

ColleagueC

31

Mediator Behavior

self:Mediator :ColleagueA

consult()

:ColleagueB :ColleagueC

consult()

consult()

notify()

sd requestService()

32

When to Use a Mediator

Use the Mediator pattern when a complex

interaction between collaborators must be

encapsulated to

● Decouple collaborators,

● Centralize control of an interaction, and

● Simplify the collaborators.

Using a mediator may compromise

performance.

33

The Adapter/Wrapper Patterns

Often a component has reusable

function but not a usable interface.

An adapter or wrapper is a

component that provides a new

interface to an existing component.

Analogy: electrical or plumbing

adapters

34

Class and Object Adapters

An adaptee may be given a new interface by

an adapter in two ways:

● Inheritance—The adapter may sub-class the

adaptee; this is the Class Adapter pattern

● Delegation—The adapter may hold a reference

to the adaptee and delegate work to it; this is

the Object Adapter pattern

35

Class Adapter Structure

computation

using req()

«interface»

DesiredInterface

 request()

Adaptee
Client

Adapter

 request() req()

36

Object Adapter Structure

computation

using req()

«interface»

DesiredInterface

 request()

Client
Adapter

 request()

Adaptee

req()

37

Object Adapter Behavior

:Adapter:Client :Adaptee

request()
req()

sd ObjectAdapterBehavior

38

Example: A Thread-Safe Priority
Queue—Problem

PriorityQueue

+ enter(j:Job)

+ leave() : Job

+ isEmpty() : boolean

class PriorityQueue {

 …

 public void enter(Job j) { … }

 public Job leave() { … }

 public boolean isEmpty() { … }

}

PriorityQueue works properly but is not
thread-safe—how can we reuse this
class in a thread-safe way?

39

Example: A Thread-Safe Priority
Queue—Class Adapter

PriorityQueue

+ enter(j:Job)

+ leave() : Job

+ isEmpty() : boolean

ThreadSafePriorityQueue

+ enter(j:Job) { synchronized }

+ leave() : Job { synchronized }

class PriorityQueue {

 …

 public void enter(Job j) { … }

 public Job leave() { … }

 public boolean isEmpty() { … }

}

class ThreadSafePriorityQueue extends PriorityQueue{

 public synchronized void enter(Job j) {

 super.enter(j);

 }

 public synchronized Job leave() {

 return super.leave();

 }

}

40

Example: A Thread-Safe Priority
Queue—Object Adapter

PriorityQueue

+ enter(j:Job)

+ leave() : Job

+ isEmpty() : boolean

ThreadSafePriorityQueue

+ enter(j:Job) { synchronized }

+ leave() : Job { synchronized }

+ isEmpty() : boolean

adaptee

class PriorityQueue {

 …

 public void enter(Job j) { … }

 public Job leave() { … }

 public boolean isEmpty() { … }

}

class ThreadSafePriorityQueue {

 private PriorityQueue adaptee;

 public ThreadSafePriorityQueue {

 adaptee = new PriorityQueue();

 }

 public synchronized void enter(Job j) {

 adaptee.enter(j);

 }

 public synchronized Job leave() {

 return adaptee.leave();

 }

 public boolean isEmpty() {

 return adaptee.isEmpty()

 }

}

41

When to Use Adapters

The current context of use expects a

certain interface.

A simplified interface is needed.

Operations with slightly different

functionality are needed.

42

The Proxy Pattern

Stand-ins for object may be needed
because the real object
● Is not locally available;

● Is expensive to create; or

● Needs protected access for security or safety.

The stand-in must
● Have the same interface as the real object;

● Handle as many messages as it can;

● Delegate messages to the real object when
necessary.

Analogy: a stand-in or proxy

43

Proxy Pattern Structure

RealSupplierProxySupplier

«interface»

Supplier

request()

Client

44

Proxy Pattern Behavior

:Client

request()

request()
request()

:ProxySupplier :RealSupplier

sd ProxyBehavior

45

When to Use Proxies

Use the Proxy pattern whenever the
services provided by a supplier need to be
mediated or managed in some way
without disturbing the supplier interface.

Kinds of proxies:
● Virtual proxy—Delay the creation or loading of

large or computationally expensive objects

● Remote proxy—Hide the fact that an object is
not local

● Protection proxy—Ensure that only authorized
clients access a supplier in legitimate ways

