Introduction to Software Engineering

ECSE-321
Unit 15 — Design Patterns (Part 1)

Collections

® \WVarehouse for software objects
e Lists
e Sets
e Hash tables
e Queues

® Need mechanisms for iterating over the
objects in the collections

e Browse a warehouse
e Search a warehouse

Collections and lteration

A collection is an object that
holds or contains other objects.

Iteration over a collection or
collection iteration is traversal and
access of each element of a collection.

lteration Mechanisms

®An iteration mechanism is a
language feature or a set of
operations that allow clients to access
each element of a collection.

®For example:

eJava and C/C++ have for-loop constructs
that support iteration over “collections”

Iteration Mechanism Operations

® /nitialize—Prepare the collection for
traversal

®Access current element—Provide client
access to the current element

® Advance current element—Move on to
the next element in the collection

® Completion test—Determine whether
traversal is complete

Other Iteration Mechanism
Requirements

® /nformation hiding—The internal structure
of the collection must not be exposed.

® Multiple simultaneous iteration—It must be
possible to do more than one iteration at a
time.

® Collection interface simplicity—The
collection interface must not be cluttered
up with iteration controls.

® lexibility—Clients should have flexibility
6 during collection traversal.

Iteration Mechanism Design
Alternatives: Residence

lteration mechanism residence:

e Programming language—As in Java or
Visual Basic
®Depends on the language

e Collection—A built-in iteration mechanism
resides in the collection

e |[terator—An external entity housing the

iteration mechanism

® An iterator is an entity that provides serial access
to each elements of an associated collection.

Iteration Mechanism Design
Alternatives: Control

lteration mechanism control:

e External iteration control—The iteration
mechanism provides access to collection
elements as directed by the client; the client
calls the iteration control operations.

¢ Internal iteration control—The iteration
mechanism accepts operations from clients
that it applies to elements of the collection;
the iteration mechanism calls the iteration
control operations.

Iteration Mechanism Design
Alternatives: Summary

Residence

Collection

Iterator

Control

External

Collection with built-in
external control

Iterator with external

control

Internal

Collection with built-in
internal control

lterator with internal

control

10

Built-In Internal Control:
Implementation

Collection

for each object o in collection:

apply(op : Operation(Object)) - — — — op(0)

W

printObject(o : Object) {
print(o)
}

Collection c

c.apply(printObject)

11

Built-In Internal Control:
Evaluation

Hides collection internals

Does not complicate the collection
interface ©

Multiple simultaneous iteration is not
easy ¢

Client has little control over
iteration—no flexibility $

Built-In External Control:
Implementation

For each kind of iteration desired

Add the iteration control operations
(or their equivalents) to the
collection

Other operations may be needed to
provide flexibility

13

Built-In External Control:
Evaluation

Hides collection internals

Greatly complicates the collection
interface ¢

Multiple simultaneous iteration is not
easy ¢

Client has control over iteration—
adequate flexibility &

Change During Iteration

® \What should happen when a collection is changed
during iteration?

® Requirements for a coherent iteration mechanism
specification:
e fault tolerance—The program should not crash.
e [teration termination—Iteration should halt.

e Complete traversal—Elements always present should not be
missed during traversal.

e Single access—No element should be accessed more than
once.
® A robust iteration mechanism is one that conforms
to some coherent specification

14

15

lterator Pattern

The Iterator pattern is an
object-oriented design pattern for
externally controlled iterators.

An Analogy

Consider a warehouse full of items that a
client must process one by one.

e Don’t allow clients into the warehouse
(information hiding)

e Clerks are like iterators

e Clerks can fetch each item for clients (external
control)

e Clerks can be instructed by the client and then

process each element on their behalf (internal
control)

16

lterator Behavior

17

sd IteratorBehaviorJ

:Client

i=iterator()

:ConcreteCollection

i:Concretelterator

reset()
gl

done=isDone() ’Ij

I
loop | [!done] |
e=getCurrent())l

next())I

done=isDone() T
>

create

Too Many Patterns?
Need for Classification

® Since mid-1990s, hundreds of design
patterns have been published.

® How can designers keep them all in mind?

e Many are not that important or have narrow
application.

e A pattern classification scheme can help
designers remember many important patterns.

18

Pattern Categories

®Broker patterns have a client that
needs a service from a supplier, and a
broker that mediates the interaction
between client and supplier.

® Generator patterns have a client who
needs a new instance of a product, and a
generator class that supplies the
Instance.

®Reactor patterns have a client that
needs to respond to an event in a target.
The client delegates this responsibility to
" a reactor.

Broker Pattern Structure

Client —> Broker ——— > Supplier

® The Client must access the Broker and the
Broker must access the Supplier

® Most Broker patterns elaborate this basic
structure

21

Broker Pattern Behavior

sd BrokerBehaviorJ

:Client

:Broker

requestService

Supplier

|
0 | , ,
)H obtainService
|

())l_%J

Broker Pattern Advantages

® Simplify the Supplie—A Broker can
augment the Supplier’s services.

® Decompose the Supplier—A complex
Supplier can offload some of its
responsibilities to a Broker.

® Facilitate Client/Supplier Interaction—A
Broker may present a different interface,
handle interaction details, etc.

22

Broker Example: Iterator Form

23

Client

«interface»
lterator

Y

«interface»
Collection

| reset()

isDone() : boolean
getCurrent() : Object

iterator() : Iterator

next()
A

«broker»
Concretelterator

A

«supplier»
ConcreteCollection

Broker Example: Iterator Behavior

sd IteratorAsBrokerJ

:Client i: Concretelterator :ConcreteCollection
1

reset()

loop | [!done]
e=getCurrent()

:
done=isDone() >D checkStatus()

|

|

|

fetchValue()

next() > 1

done=isDone())I checkStatus()

S S Iy S

24

The Facade Pattern

® The Facade pattern eases interaction
between a client and a sub-system of

suppliers by providing a simpler interface to
the sub-system.

® The broker class is a facade that provides
simplified sub-system services to clients.

® Analogy: a travel agent

® Examples:
e Compiler
e Memory management system

25

Facade Pattern Structure

26

Client

Complex Subsystem

<&

When to Use a Facade

® Use the Facade pattern when there is a
need to provide a simplified interface to a
complex sub-system.

® Facades can also help decouple systems.

e If the facade mediates all interaction with a
client, then the sub-system can be changed
without affecting the client.

® A facade may work like an adapter by
providing a new interface to a sub-system
(adapters are discussed later).

27

The Mediator Pattern

® The Mediator pattern reduces coupling and
simplifies code when several objects must
negotiate a complex interaction.

® Classes interact only with a mediator class
rather than with each other.

® Classes are coupled only to the mediator
where interaction control code resides.

® Mediator is like a multi-way Facade pattern.
® Analogy: a meeting scheduler

Using a Mediator

29

Unmediated
Collaboration

1: op1()

collaboratorB

2: 0p2()
—>

% op2()

collaboratorA

K om

Mediated
Collaboration

collaboratorC

A: op3()

collaboratorD

collaboratorB

collaboratorA

1.2: op2()
) collaboratorC

iator

i1 .3: 0p3()
1.4: op4()

collaboratorD

Mediator is like a communication
hub — single point of contact and synchronization

Mediator Pattern Structure

30

Mediator

Collaborator

/\

>

ColleagueA

>

ColleagueB

>

ColleagueC

Mediator Behavior

31

sd requestService() J

self:Mediator :ColleagueA :ColleagueB :ColleagueC
I I
consult | |
() Q |
consult I
() -«
notify()

<
” consult()

e e e B

g

When to Use a Mediator

® Use the Mediator pattern when a complex
Interaction between collaborators must be
encapsulated to

e Decouple collaborators,
e Centralize control of an interaction, and
e Simplify the collaborators.

® Using a mediator may compromise
performance.

32

The Adapter/\Wrapper Patterns

33

® Often a component has reusable
function but not a usable interface.

® An adapter or wrapper is a
component that provides a new
interface to an existing component.

® Analogy: electrical or plumbing
adapters

Class and Object Adapters

An adaptee may be given a new interface by
an adapter in two ways:

e /nheritance—The adapter may sub-class the
adaptee; this is the Class Adapter pattern

e Delegation—The adapter may hold a reference
to the adaptee and delegate work to it; this is
the Object Adapter pattern

34

Class Adapter Structure

35

«interface»
DesiredInterface

Client

request()
/N
I
|
Adapter Adaptee
request() req()
|
I
|
computation

using req()

Object Adapter Structure

36

«interface»

DesiredInterface

request()

Client

/N

Adapter

Adaptee

request()
|

computation
using req()

ﬁ

req()

Object Adapter Behavior

37

sd ObjectAdapterBehaviorJ

Client

1

:Adapter

request()

:Adaptee

|
I

’H req()
I

!

Example: A Thread-Safe Priority
Queue—Problem

class PriorityQueue {

PriorityQueue

+ enter(j:Job) | pule:.c void enter(Job j) { .. }
+ leave() : Job public Job leave() { .. }

+ isEmpty() - boolean public boolean isEmpty() { .. }

}

PriorityQueue works properly but is not
thread-safe—how can we reuse this
class in a thread-safe way?

39

Example: A Thread-Safe Priority

Queue—Class Adapter

PriorityQueue class PriorityQueue ({

public Job leave() { .. }

}

public boolean isEmpty () { ..

+ enter(j:Job) | ;ublic void enter(Job j) { ..

+ leave() : Job
+ isEmpty() : boolean

}

}

T

ThreadSafePriorityQueue

+ enter(j:Job) { synchronized }
+ leave() : Job { synchronized }

}

}
}

class ThreadSafePriorityQueue extends PriorityQueue{
public synchronized void enter(Job j) {

super.enter(j);

public synchronized Job leave() ({

return super.leave() ;

Example: A Thread-Safe Priority
Queue—Object Adapter

PriorityQueue class PriorityQueue {
+ enter(j:Job) | public void enter(Job j) { ..}
+ leave() : Job public Job leave() { .. }
+iSEnugy0 - boolean public boolean isEmpty () { .. }
' }

adaptee

ThreadSafePriorityQueue

+ enter(j:Job) { synchronized }
+ leave() : Job { synchronized }
+ isEmpty() : boolean

class ThreadSafePriorityQueue { Il
private PriorityQueue adaptee;
public ThreadSafePriorityQueue {
adaptee = new PriorityQueue() ;
}
public synchronized void enter(Job j) {
adaptee.enter(j)
}
public synchronized Job leave() {
return adaptee.leave();
}
public boolean isEmpty () {
return adaptee.isEmpty ()
}
}

When to Use Adapters

® The current context of use expects a
certain interface.

® A simplified interface is needed.

® Operations with slightly different
functionality are needed.

The Proxy Pattern

® Stand-ins for object may be needed
because the real object
e |s not locally available;
e |s expensive to create; or
e Needs protected access for security or safety.

® The stand-in must
e Have the same interface as the real object;
e Handle as many messages as it can;

e Delegate messages to the real object when
necessary.

-® Analogy: a stand-in or proxy

Proxy Pattern Structure

43

Client

«interface»
Supplier

request()

ProxySupplier —>{ RealSupplier

Proxy Pattern Behavior

44

sd ProxyBehaviorJ

:Client :ProxySupplier :RealSupplier
T | |
t I |
request() . |
" o I
request() prt request() ’Ij
| |

When to Use Proxies

® Use the Proxy pattern whenever the
services provided by a supplier need to be
mediated or managed in some way
without disturbing the supplier interface.

® Kinds of proxies:

e Virtual proxy—Delay the creation or loading of
large or computationally expensive objects

e Remote proxy—Hide the fact that an object is
not local

e Protection proxy—Ensure that only authorized
clients access a supplier in legitimate ways

45

