Introduction to Software Engineering

ECSE-321

Unit 13 — Design Patterns for
Architecture

("Architectural Styles”)

Objectives

® To explain why design patterns are
important

® To define software design patterns

® o present a taxonomy of design
patterns based on their granularity

® To discuss pattern catalogs

Why Design Patterns?

® Expert designers behave differently
from novices—what do experts know
that novices do not?

® Among other things, experts have a
store of successful design patterns
from past experience that they apply
to new problems.

More Pattern Advantages

® Promoting communication—Pattern names and
knowledge of advantages and disadvantages
speeds communication

® Streamlining documentation—Pattern form and
behavior need not be elaborated

® /ncreasing efficiency—Tool support for patterns
makes development faster

® Supporting reuse—Patterns and their
Implementations can be reused extensively

® Providing ideas—Patterns can be the starting point
for design or a basis for improvements

Design Patterns Defined

A pattern is a model proposed for
imitation. A software design pattern
is @ model proposed for imitation in
solving a software design problem.

Design Pattern Granularity

Software design patterns have no
inherent granularity.

e Architectural styles or patterns are for entire
systems and sub-systems.

e Design patterns proper involve several
Interacting functions or classes.

e Data structures & algorithms are low-level
patterns.

e /dioms are ways of doing things in particular
programming languages.

Pattern Catalogs

® Realization of the importance of design
patterns has spurred creation of
catalogs of patterns.

® These are much like the pattern books
used in building architecture or interior
design and the handbooks used in
engineering.

® \We will consider a small collection of
patterns, presenting our own catalog.

In the rest of the lecture..

® | ayered style

® Pipe-and-Filter style

® Shared-Data style

® Event-Driven style

® Model-View-Controller style
® Hybrid architectures

Layered Style Architectures

® [he program is partitioned into an
array of layers or groups.

® L ayers use the services of the layer
or layers below and provide services
to the layer or layers above.

® [he Layered style is among the
most widely used of all architectural
styles.

Uses and Invokes

® Module A uses module B if a correct
version of B must be present for A to
execute correctly.

® Module A calls or invokes module B if A
triggers execution of B.

® Note that

e A module may use but not invoke another

e A module may invoke but not use another

e A module may both use and invoke another

e A module may neither use nor invoke another

10

Layer Constraints

® Static structure—The software is
partitioned into layers that each
provide a cohesive set of services
with a well-defined interface.

® Dynamic structure—Each layer is
allowed to use only the layer directly
below it (Strict Layered style) or the
all the layers below it (Relaxed
Layered style).

11

Representing Layers

Layer 4

Layer 3

Layer 2

Layer 1

Layer O

Wedding Cake

Onion Diagram

Diagram
— Legend
Layer <:::::::> Layer
Atop Is Allowed Directly Is Allowed
to Use Includes to Use

12

13

Forming Layers

® |_evels of abstraction
e Example: Network communication layers

® \Virtual machines

e Examples: Operating systems,
iInterpreters

® Information hiding, decoupling, etc

e Examples: User interface layers, virtual
device layers

Layered Style Advantages

® Layers are highly cohesive and promote
information hiding.

® ayers are not strongly coupled to layers
above them, reducing overall coupling.

® | ayers help decompose programs,
reducing complexity.

® |_ayers are easy to alter or fix by replacing
entire layers, and easy to enhance by
adding functionality to a layer.

® | ayers are usually easy to reuse.

14

Layered Style Disadvantages

® Passing everything through many
layers can complicate systems and
damage performance.

® Debugging through multiple layers can
be difficult.

® Getting the layers right can be difficult.

® _ayer constraints may have to be
violated to achieve unforeseen
functionality.

15

Pipe-and-Filter Style

® A filter is a program component that
transforms an input stream to an output
stream.

® A pipe is conduit for a stream.

® The Pipe-and-Filter style is a dynamic
model in which program components are
filters connected by pipes.

16

Pipe-and-Filter Example

17

Lexical Analyzer

y

Parser

y

Semantic Analyzer

y

Code Generator

|, Legend

Filter —» Pipe

Pipe-and-Filter Characteristics

® Pipes are isolated and usually only
communicate through data streams, so
they are easy to write, test, reuse, and
replace.

® Filters may execute concurrently.
e Requires pipes to synchronize filters

® Pipe-and-filter topologies should be acyclic
graphs.

e Avoids timing and deadlock issues
® A simple linear arrangement is a pipeline.

Pipe-and-Filter Advantages

® Filters can be modified and replaced
easily.
® Filters can be rearranged with little effort,

making it easy to develop similar
programs.

® Filters are highly reusable.

® Concurrency is supported and is relatively
easy to implement.

19

Pipe-and-Filter Disadvantages

® Filters communicate only through pipes,
which makes it difficult to coordinate
them.

® Filters usually work on simple data
streams, which may result in wasted
data conversion effort.

® Error handling is difficult.
® Gains from concurrency may be illusory.

20

Shared-Data Style

® One or more shared-data stores are used
by one or more shared-data accessors
that communicate solely through the
shared-data stores.

® [Two variants:

e Blackboard style—The shared-data stores
activate the accessors when the stores change.

e Repository style—The shared-data stores are
passive and manipulated by the accessors.

21

Shared-Data Style Example

22

Schedule
Tracking Tool

Class Diagram
Editor

Sequence .
Diagram Editor Project Data Testing Tool
Store
Stat?zg)i;z?ram Compiler
— Legend
Accessor Shared-
Data Store

Accesses

Shared-Data Style Advantages

® Shared-data accessors communicate
only through the shared-data store, so
they are easy to change, replace,
remove, or add to.

® Accessor independence increases
robustness and fault tolerance.

® Placing all data in the shared-data store
makes It easier to secure and control.

23

Shared-Data Style Disadvantages

® Forcing all data through the shared-data
store may degrade performance.

® |f the shared-data store fails, the entire
program is crippled.

24

Event-Driven Style

® Also called the Implicit Invocation style
® An event is any noteworthy occurrence.

® An event dispatcher mediates between
components that announce and are
notified of events.

25

Event-Driven Style Example

26

Motion
Sensor

Door
Sensor

Smoke
Detector

Detect
Fire

Event

‘ Check
Dispatcher Environment

Carbon
Dioxide
Detector

— Legend

Monitor
Security

Monitor

Q Sensor

Event
Dispatcher
Announce
Event
; Send
Notification

Stylistic Variations

® Events may be notifications or they may
carry data.

® Events may have constraints honored by
the dispatcher, or the dispatcher may
manipulate events.

® Events may be dispatched synchronously
or asynchronously.

® Event registration may be constrained in
various ways.

27

Event-Driven Style Advantages

® [t is easy to add or remove components.

® Components are decoupled, so they are
highly reusable, changeable, and
replaceable.

® Systems built with this style are robust and
fault tolerant.

28

Event-Driven Style Disadvantages

® Component interaction may be awkward
when mediated by the event dispatcher.

® There are no guarantees about event
sequencing or timing, which may make it
difficult to write correct programs.

® Event traffic tends to be highly variable,
which may make it difficult to achieve
performance goals.

29

Model-View-Controller (MVC) Style

® This style models how to set up the
relationships between user interface and
problem-domain components.

® Model—A problem-domain component
with data and operations for achieving
program goals independent of the user
interface

® View—A data display component
® Controller—A component that receives

30

and acts on user input

MVC Static Structure

31

«layer»
User Interface

Controller |

«can use»)
_____ > View

«layer»
Application Domain

|
|
| «can use»
|

Model

MVC Behavior

32

sd MVCinteractionJ

:User

:Controller

View

:Model

manipulate _ |
8

|
change()

»J] makeChange()
notify() |

query()

notify()

query()

MVC Advantages

® VViews and controllers can be added,
removed, or changed without disturbing
the model.

® VViews can be added or changed during
execution.

® User interface components can be
changed, even at runtime.

33

MVC Disadvantages

® Views and controller are often hard to
separate.

® Frequent updates may slow data display
and degrade user interface performance.

34

Hybrid Architectures

Most systems of any size include several
architectural styles, often at different levels
of abstraction.

e An overall a system may have a Layered
style, but the one layer may use the Event-
Driven style, and another the Shared-Data
style.

e An overall system may have a Pipe-and-
Filter style, but the individual filters may have
Layered styles.

35

Summary

® |[n the Layered style program
components are partitioned into layers
and each layer is constrained to use
only the layer or layers beneath it.

® [n the Pipe-and-Filter style components
are filters connected by pipes.

® |[n the Shared-Data style program
components are modeled as one or
more shared-data stores manipulated
« Py one or more shared-data accessors.

Summary...

® |[n the Event-Driven style program
components register with an event
dispatcher than accepts announcement
of events and notifies interested
components that events have occurred.

® In the Model-View-Controller style user
interface view and controller
components can use problem-domain
model components that notify them

= when they change.

