
Introduction to Software Engineering

ECSE-321

Unit 13 – Design Patterns for 

Architecture

(―Architectural Styles‖)



2

Objectives

To explain why design patterns are 

important

To define software design patterns

To present a taxonomy of design 

patterns based on their granularity

To discuss pattern catalogs



3

Why Design Patterns?

Expert designers behave differently 

from novices—what do experts know 

that novices do not?

Among other things, experts have a 

store of successful design patterns 

from past experience that they apply 

to new problems.



4

More Pattern Advantages

 Promoting communication—Pattern names and 

knowledge of advantages and disadvantages 

speeds communication

 Streamlining documentation—Pattern form and 

behavior need not be elaborated

 Increasing efficiency—Tool support for patterns 

makes development faster

 Supporting reuse—Patterns and their 

implementations can be reused extensively

 Providing ideas—Patterns can be the starting point 

for design or a basis for improvements



5

Design Patterns Defined

A pattern is a model proposed for 
imitation. A software design pattern
is a model proposed for imitation in 
solving a software design problem. 



6

Design Pattern Granularity

Software design patterns have no 

inherent granularity.

●Architectural styles or patterns are for entire 

systems and sub-systems.

●Design patterns proper involve several 

interacting functions or classes.

●Data structures & algorithms are low-level 

patterns.

●Idioms are ways of doing things in particular 

programming languages.



7

Pattern Catalogs

Realization of the importance of design 

patterns has spurred creation of 

catalogs of patterns.

These are much like the pattern books 

used in building architecture or interior 

design and the handbooks used in 

engineering.

We will consider a small collection of 

patterns, presenting our own catalog.



8

In the rest of the lecture..

Layered style

Pipe-and-Filter style

Shared-Data style

Event-Driven style

Model-View-Controller style

Hybrid architectures



9

Layered Style Architectures

The program is partitioned into an 

array of layers or groups.

Layers use the services of the layer 

or layers below and provide services 

to the layer or layers above.

The Layered style is among the 

most widely used of all architectural 

styles.



10

Uses and Invokes

Module A uses module B if a correct 
version of B must be present for A to 
execute correctly.

Module A calls or invokes module B if A 
triggers execution of B.

Note that
● A module may use but not invoke another

● A module may invoke but not use another

● A module may both use and invoke another

● A module may neither use nor invoke another



11

Layer Constraints

Static structure—The software is 

partitioned into layers that each 

provide a cohesive set of services 

with a well-defined interface.

Dynamic structure—Each layer is 

allowed to use only the layer directly 

below it (Strict Layered style) or the 

all the layers below it (Relaxed 

Layered style).



12

Representing Layers

Wedding Cake 

Diagram
Onion Diagram

Layer 0

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Layer

Is Allowed 

to Use
Atop

Legend

Layer

Directly 

Includes

Is Allowed 

to Use



13

Forming Layers

Levels of abstraction

● Example: Network communication layers

Virtual machines

● Examples: Operating systems, 

interpreters

 Information hiding, decoupling, etc

● Examples: User interface layers, virtual 

device layers



14

Layered Style Advantages

Layers are highly cohesive and promote 
information hiding.

Layers are not strongly coupled to layers 
above them, reducing overall coupling.

Layers help decompose programs, 
reducing complexity.

Layers are easy to alter or fix by replacing 
entire layers, and easy to enhance by 
adding functionality to a layer.

Layers are usually easy to reuse.



15

Layered Style Disadvantages

Passing everything through many 
layers can complicate systems and 
damage performance.

Debugging through multiple layers can 
be difficult.

Getting the layers right can be difficult.

Layer constraints may have to be 
violated to achieve unforeseen 
functionality.



16

Pipe-and-Filter Style

A filter is a program component that 

transforms an input stream to an output 

stream.

A pipe is conduit for a stream.

The Pipe-and-Filter style is a dynamic 

model in which program components are 

filters connected by pipes.



17

Pipe-and-Filter Example

Lexical Analyzer

Parser

Semantic Analyzer

Code Generator

Filter Pipe

Legend



18

Pipe-and-Filter Characteristics

Pipes are isolated and usually only 
communicate through data streams, so 
they are easy to write, test, reuse, and 
replace.

Filters may execute concurrently.
● Requires pipes to synchronize filters

Pipe-and-filter topologies should be acyclic 
graphs.
● Avoids timing and deadlock issues

A simple linear arrangement is a pipeline.



19

Pipe-and-Filter Advantages

Filters can be modified and replaced 

easily.

Filters can be rearranged with little effort, 

making it easy to develop similar 

programs.

Filters are highly reusable.

Concurrency is supported and is relatively 

easy to implement.



20

Pipe-and-Filter Disadvantages

Filters communicate only through pipes, 

which makes it difficult to coordinate 

them.

Filters usually work on simple data 

streams, which may result in wasted 

data conversion effort.

Error handling is difficult.

Gains from concurrency may be illusory.



21

Shared-Data Style

One or more shared-data stores are used 

by one or more shared-data accessors

that communicate solely through the 

shared-data stores.

Two variants:

●Blackboard style—The shared-data stores 

activate the accessors when the stores change.

●Repository style—The shared-data stores are 

passive and manipulated by the accessors.



22

Shared-Data Style Example

Accessor

Legend

Accesses

Project Data 

Store

Shared-

Data Store

Schedule 

Tracking Tool

Testing Tool

Class Diagram 

Editor

Compiler

Sequence 

Diagram Editor

State Diagram 

Editor



23

Shared-Data Style Advantages

Shared-data accessors communicate 

only through the shared-data store, so 

they are easy to change, replace, 

remove, or add to.

Accessor independence increases 

robustness and fault tolerance.

Placing all data in the shared-data store 

makes it easier to secure and control.



24

Shared-Data Style Disadvantages

Forcing all data through the shared-data 

store may degrade performance.

 If the shared-data store fails, the entire 

program is crippled.



25

Event-Driven Style

Also called the Implicit Invocation style

An event is any noteworthy occurrence.

An event dispatcher mediates between 

components that announce and are 

notified of events.



26

Event-Driven Style Example

Event 

Dispatcher

Event 

Dispatcher

Announce 

Event

Legend

Smoke 

Detector

Door

Sensor

Carbon 

Dioxide 

Detector

Thermostat

Motion 

Sensor

Detect 

Fire

Monitor 

Security

Check 

Environment

Sensor

Monitor
Send 

Notification



27

Stylistic Variations

Events may be notifications or they may 

carry data.

Events may have constraints honored by 

the dispatcher, or the dispatcher may 

manipulate events.

Events may be dispatched synchronously 

or asynchronously.

Event registration may be constrained in 

various ways.



28

Event-Driven Style Advantages

 It is easy to add or remove components.

Components are decoupled, so they are 

highly reusable, changeable, and 

replaceable.

Systems built with this style are robust and 

fault tolerant.



29

Event-Driven Style Disadvantages

Component interaction may be awkward 

when mediated by the event dispatcher.

There are no guarantees about event 

sequencing or timing, which may make it 

difficult to write correct programs.

Event traffic tends to be highly variable, 

which may make it difficult to achieve 

performance goals.



30

Model-View-Controller (MVC) Style

This style models how to set up the 

relationships between user interface and 

problem-domain components.

Model—A problem-domain component 

with data and operations for achieving 

program goals independent of the user 

interface

View—A data display component

Controller—A component that receives 

and acts on user input



31

MVC Static Structure

ViewController

Model

«can use»

«layer»

User Interface

«layer»

Application Domain

«can use»



32

MVC Behavior

:User :Controller :Model:View

manipulate
change()

makeChange()

notify()

query()

notify()

query()

sd MVCinteraction



33

MVC Advantages

Views and controllers can be added, 

removed, or changed without disturbing 

the model.

Views can be added or changed during 

execution.

User interface components can be 

changed, even at runtime.



34

MVC Disadvantages

Views and controller are often hard to 

separate.

Frequent updates may slow data display 

and degrade user interface performance.



35

Hybrid Architectures

Most systems of any size include several 
architectural styles, often at different levels 
of abstraction.

●An overall a system may have a Layered 
style, but the one layer may use the Event-
Driven style, and another the Shared-Data 
style.

●An overall system may have a Pipe-and-
Filter style, but the individual filters may have 
Layered styles.



36

Summary

 In the Layered style program 

components are partitioned into layers 

and each layer is constrained to use 

only the layer or layers beneath it.

 In the Pipe-and-Filter style components 

are filters connected by pipes.

 In the Shared-Data style program 

components are modeled as one or 

more shared-data stores manipulated 

by one or more shared-data accessors.



37

Summary…

 In the Event-Driven style program 

components register with an event 

dispatcher than accepts announcement 

of events and notifies interested 

components that events have occurred.

 In the Model-View-Controller style user 

interface view and controller 

components can use problem-domain 

model components that notify them 

when they change.


