
Introduction to Software Engineering

ECSE-321

Unit 12 – Low Level Design

Objectives (Part I)

To explain how visibility rules make

program entities accessible through their

names

To show how references and aliases can

extend access beyond visibility

To emphasize the importance of limiting

visibility and not extending access for

hiding information

To introduce cases where extending

access is permissible

3

Entities, Names, and Visibility

A program entity is anything in
a program that is treated as a unit.

A name is an identifier
bound to a program entity.

A program entity is visible at a point in a
program text if it can be referred to by name
at that point; the portion of a text over which
an entity is visible is its visibility.

4

Visibility

Example

File: package1/PublicClass.java

package package1;

public class PublicClass{

private String privateAttribute;

String packageAttribute;

public void method() {

String localVariable;

...

// point A

...

}

...

// point B

...

} // end package1.PublicClass

File: package1/PackageClass.java

package package1;

class PackageClass{

...

// point C

...

} // end package1.PackageClass

File: package2/PackageClass.java

package package2;

import package1.*;

class PackageClass{

...

// point D

...

} // end package2.PackageClass

5

Types of Visibility

Local—Visible only within the module

where it is defined

Non-local—Visible outside the module

where it is defined, but not visible

everywhere in a program

Global—Visible everywhere in a program

An entity is exported from the module

where it is defined if it is visible outside

that module.

6

Object-Oriented Feature Visibility

 Private—Visible only within the class where it
is defined
● A type of local visibility

 Package—Visible in the class where it is
defined as well as classes in the same
package or namespace
● A form of non-local visibility

 Protected—Visible in the class where it is
defined and all sub-classes
● A form of non-local visibility

 Public—Visible anywhere the class is visible
● A form of non-local or global visibility

7

Accessibility

A program entity is accessible at a point in a
program text if it can be used at that point.

A program entity is accessible wherever

it is visible.

A program entity may also be

accessible where it is not visible.

8

Variables

Variables

have

attributes:

● Name

● Value

● Address

A variable is a programming
language device for storing values.

value
address

name

storage cell

9

References

A reference is an expression that evaluates
to an address where a value is stored.

"hello"s

t

 string s = "hello";

 string *t = &s;

10

Aliases

An alias is a variable with the
same address as another variable.

"hello"s

t

 string s = "hello";

 string &t = s;

11

Extending Access Beyond Visibility

References and aliases can make

variables accessible where they are not

visible

● Passing a reference as an argument

● Returning a reference from a sub-program

This practice is extending access

beyond visibility

● Generally it is a bad practice

12

Information Hiding and Access

The key technique for hiding information is

to restrict access to program entities as

much as possible.

● Limiting visibility—Use scope and visibility

markers to restrict visibility

● Not extending access—Avoid using references

and aliases to extend visibility

A defensive copy is a copy of an entity

held by reference passed to or returned

from another operation.

13

Information Hiding Heuristics

Limit visibility.

● Make program entities visible in the smallest

possible program region.

● Restrict the scope of declarations to the

smallest possible program region.

● Make attributes at least protected and

preferably private.

● Make helper operations at least protected and

preferably private.

● Avoid global visibility.

● Avoid package visibility.

14

Information Hiding Heuristics…

Don’t extend access.

● Don’t initialize attributes with references

passed to the class—make defensive copies

instead.

● Don’t pass or return references to

attributes—pass or return defensive copies

instead.

● Don’t pass parameters by reference.

● Don’t make aliases

15

Exceptions

Two cases when access may be

extended beyond visibility:

● Modules must share an entity to collaborate

Example: a shared queue

● Some other design goal is of greater

importance than information hiding

Example: performance constraints

16

Summary

Program entities are usually accessible

through their names by being visible in

various parts of a program text.

Entities may also be accessed through

references or aliases.

 Information hiding dictates that visibility

be limited and that access not be

extended beyond visibility.

Occasionally this rule can be violated to

achieve other goals.

17

Objectives (Part 2)

To present operation specifications and

their contents

To present design by contract for

declarative specification of operation

behavior

To introduce minispecs and pseudocode

for algorithm specification

To introduce data structure diagrams for

data structure specification

To survey design finalization

18

Operation Specification (Op-Spec)

Structured text stating an operation’s

interface and responsibilities

● Class or module—Identifies the operation

● Signature—Operation name, names and types of

parameters, return type, and perhaps more

(syntax)

● Description—Sentence or two

● Behaviour—Semantics and pragmatics

● Implementation—Optional

19

Behavior Specification

Procedural—Describes an algorithm for

transforming inputs to outputs

● An algorithm is a sequence of steps that can

be performed by a computer.

Declarative—Describes inputs, outputs,

calling constraints, and results without

specifying an algorithm

20

Declarative Specification
Advantages

More abstract because they ignore

implementation details—more concise

Focus on the interface, not the internals

Do not bias programmers towards a

particular implementation as procedural

specifications might (what vs how)

21

Design by Contract

A contract is a binding agreement
between two or more parties.

An operation contract is a contract
between an operation and its callers.

22

Contract Rights and Obligations

The caller

● Is obliged to pass valid parameters under
valid conditions, and

● Has the right to delivery of advertised
computational services.

The called operation

● Is obliged to provide advertised services,
and

● Has the right to be called under valid
conditions with valid parameters.

23

Assertions

Assertions state caller and called

operation right and obligations.

An assertion is a statement that must be
true at a designated point in a program.

24

Preconditions and Postconditions

A precondition is an assertion that must be
true at the initiation of an operation.

A postcondition is an assertion that must
be true upon completion of an operation.

 Preconditions state caller obligations and
called operation rights.

 Postconditions state caller rights and
called operation obligations.

25

Operation Specification Example

Signature public static int findMax(int[] a) throws
IllegalArgumentException

Class Utility

Description Return one of the largest elements in an
int array.

Behavior pre: (a != null) && (0 < a.length)
post: for every element x of a, x <= result
post: throws IllegalArgumentException if

preconditions are violated

26

Class Invariants

Class invariants augment every

exported operation’s contract.

A class invariant is an assertion that
must be true of any class instance
between calls of its exported operations.

27

What to put in Assertions

 Preconditions:

● Restrictions on parameters

● Conditions that must have been established before the

call

 Postconditions

● Relationships between parameters and results

● Restrictions on results

● Changes to parameters

● Responses to violated preconditions

 Class invariants

● Restrictions on attributes

● Relationships among attributes

 State empty assertions as ―true‖ or ―none.‖

28

Developing Op-Specs

Don’t make detailed op-specs early in mid-

level design

● The design is still fluid and many details will

change

Don’t wait until the end of design

● Details will have been forgotten

● Probably will be done poorly

Develop op-specs gradually during design,

adding details as they become firm

29

Algorithm Specification

Specify well-known algorithms by

name.

Use a minispec, a step-by-step

description of how an algorithm

transforms its inputs to output.

Write minispecs in pseudocode,

English augmented with

programming language constructs.

30

Pseudocode Example

Inputs: array a, lower bound lb, upper bound ub,

search key

Outputs: location of key, or -1 if key is not

found

lo = lb

hi = ub

while lo <= hi and key not found

mid = (lo + hi) / 2

if (key = a[mid]) then key is found

else if (key < a[mid]) then hi = mid-1

else lo = mid+1

if key is found then return mid

else return -1

31

Data Structures

Contiguous implementation—Values

are stored in adjacent memory cells

Linked implementation—Values are

stored in arbitrary cells accessed using

references or pointers

A data structure is scheme for
storing data in computer memory.

32

Data Structure Diagrams

Rectangles represent memory cells,

possibly with names

Contiguous cells are represented by

adjacent rectangles; cells may have

indices

Repeated elements are indicated by

ellipses

Linked cells are shown using arrows to

represent pointers or references from one

cell to another

A dot represents the null pointer

33

Data Structure Diagram Example

0 1 n-1k2

... ...

... ...

store

34

Data Structure Diagram Example…

root

35

Data Structure Diagram Heuristics

Label record fields only once.

Use ellipses to simplify large, repetitive

structures.

Draw linked structures so that the

pointers point down the page or from

left to right.

 Identify unusual or additional symbols

with a legend.

36

Design Finalization

Low-level design specifications

complete a design document.

Design finalization is checking the

design to make sure it is of sufficient

quality and is well documented.

This is the last step in the engineering

design process.

37

Design Document Quality
Characteristics

Feasibility—Must be possible to realize

the design

Adequacy—Must specify a program that

will meet its requirements

Economy—Must specify a program that

can be built on time and within budget

Changeability—Must specify a program

that can be changed easily

38

Design Document Quality
Characteristics…

Well-Formedness—Design must use

notations correctly

Completeness—Must specify everything

that programmers need to implement the

program

Clarity—Must be as easy to understand

as possible

Consistency—Must contain specifications

that can be met by a single product

39

Critical Reviews

Critical reviews can utilize
● Desk checks,

● Walkthroughs,

● Inspections,

● Audits, and

● Active reviews.

A critical review is an evaluation of a
finished product to determine whether
it is of acceptable quality.

40

A Critical Review Process
Design Finalization Review
Design Document : Design Specification

Final Design Document : Design Specification

Design

Document

Final Design

Document

Fix Defects

Fix Defects

Audit

Desk Check

and Correct

Active

Reviews

Desk Check

and Correct

Desk Check

and Correct

41

Continuous Review

A critical review that finds serious

design defects may result in a return to

a much earlier stage of design.

● Expensive

● Time consuming

● Frustrating

A policy of continuous review during

the design process helps find faults

early, avoiding the pain of finding them

later.

42

Summary

Operation specifications state design

details about operations, including their

● Class or module

● Signature

● Description

● Behavior

● Implementation

Behavior can be specified declaratively

or procedurally.

43

Summary…

Declarative specification is done using

operation contracts stated in assertions.

● Preconditions state caller obligations and

called operation rights.

● Postconditions state caller rights and called

operation obligations.

Algorithms are specified in minispecs,

often in pseudocode.

Data structures are specified using data

structure diagrams.

44

Summary…

Design finalization is the last step of

engineering design.

The design document is checked in a

critical review to ensure that it has all the

requisite quality characteristics.

A critical review that finds many defects

can be a disaster that can be mitigated by

conducting continuous reviews throughout

the engineering design process.

