
Introduction to Software Engineering

ECSE-321

Unit 12 – Low Level Design

Objectives (Part I)

To explain how visibility rules make

program entities accessible through their

names

To show how references and aliases can

extend access beyond visibility

To emphasize the importance of limiting

visibility and not extending access for

hiding information

To introduce cases where extending

access is permissible

3

Entities, Names, and Visibility

A program entity is anything in
a program that is treated as a unit.

A name is an identifier
bound to a program entity.

A program entity is visible at a point in a
program text if it can be referred to by name
at that point; the portion of a text over which
an entity is visible is its visibility.

4

Visibility

Example

File: package1/PublicClass.java

package package1;

public class PublicClass{

private String privateAttribute;

String packageAttribute;

public void method() {

String localVariable;

...

// point A

...

}

...

// point B

...

} // end package1.PublicClass

File: package1/PackageClass.java

package package1;

class PackageClass{

...

// point C

...

} // end package1.PackageClass

File: package2/PackageClass.java

package package2;

import package1.*;

class PackageClass{

...

// point D

...

} // end package2.PackageClass

5

Types of Visibility

Local—Visible only within the module

where it is defined

Non-local—Visible outside the module

where it is defined, but not visible

everywhere in a program

Global—Visible everywhere in a program

An entity is exported from the module

where it is defined if it is visible outside

that module.

6

Object-Oriented Feature Visibility

 Private—Visible only within the class where it
is defined
● A type of local visibility

 Package—Visible in the class where it is
defined as well as classes in the same
package or namespace
● A form of non-local visibility

 Protected—Visible in the class where it is
defined and all sub-classes
● A form of non-local visibility

 Public—Visible anywhere the class is visible
● A form of non-local or global visibility

7

Accessibility

A program entity is accessible at a point in a
program text if it can be used at that point.

A program entity is accessible wherever

it is visible.

A program entity may also be

accessible where it is not visible.

8

Variables

Variables

have

attributes:

● Name

● Value

● Address

A variable is a programming
language device for storing values.

value
address

name

storage cell

9

References

A reference is an expression that evaluates
to an address where a value is stored.

"hello"s

t

 string s = "hello";

 string *t = &s;

10

Aliases

An alias is a variable with the
same address as another variable.

"hello"s

t

 string s = "hello";

 string &t = s;

11

Extending Access Beyond Visibility

References and aliases can make

variables accessible where they are not

visible

● Passing a reference as an argument

● Returning a reference from a sub-program

This practice is extending access

beyond visibility

● Generally it is a bad practice

12

Information Hiding and Access

The key technique for hiding information is

to restrict access to program entities as

much as possible.

● Limiting visibility—Use scope and visibility

markers to restrict visibility

● Not extending access—Avoid using references

and aliases to extend visibility

A defensive copy is a copy of an entity

held by reference passed to or returned

from another operation.

13

Information Hiding Heuristics

Limit visibility.

● Make program entities visible in the smallest

possible program region.

● Restrict the scope of declarations to the

smallest possible program region.

● Make attributes at least protected and

preferably private.

● Make helper operations at least protected and

preferably private.

● Avoid global visibility.

● Avoid package visibility.

14

Information Hiding Heuristics…

Don’t extend access.

● Don’t initialize attributes with references

passed to the class—make defensive copies

instead.

● Don’t pass or return references to

attributes—pass or return defensive copies

instead.

● Don’t pass parameters by reference.

● Don’t make aliases

15

Exceptions

Two cases when access may be

extended beyond visibility:

● Modules must share an entity to collaborate

Example: a shared queue

● Some other design goal is of greater

importance than information hiding

Example: performance constraints

16

Summary

Program entities are usually accessible

through their names by being visible in

various parts of a program text.

Entities may also be accessed through

references or aliases.

 Information hiding dictates that visibility

be limited and that access not be

extended beyond visibility.

Occasionally this rule can be violated to

achieve other goals.

17

Objectives (Part 2)

To present operation specifications and

their contents

To present design by contract for

declarative specification of operation

behavior

To introduce minispecs and pseudocode

for algorithm specification

To introduce data structure diagrams for

data structure specification

To survey design finalization

18

Operation Specification (Op-Spec)

Structured text stating an operation’s

interface and responsibilities

● Class or module—Identifies the operation

● Signature—Operation name, names and types of

parameters, return type, and perhaps more

(syntax)

● Description—Sentence or two

● Behaviour—Semantics and pragmatics

● Implementation—Optional

19

Behavior Specification

Procedural—Describes an algorithm for

transforming inputs to outputs

● An algorithm is a sequence of steps that can

be performed by a computer.

Declarative—Describes inputs, outputs,

calling constraints, and results without

specifying an algorithm

20

Declarative Specification
Advantages

More abstract because they ignore

implementation details—more concise

Focus on the interface, not the internals

Do not bias programmers towards a

particular implementation as procedural

specifications might (what vs how)

21

Design by Contract

A contract is a binding agreement
between two or more parties.

An operation contract is a contract
between an operation and its callers.

22

Contract Rights and Obligations

The caller

● Is obliged to pass valid parameters under
valid conditions, and

● Has the right to delivery of advertised
computational services.

The called operation

● Is obliged to provide advertised services,
and

● Has the right to be called under valid
conditions with valid parameters.

23

Assertions

Assertions state caller and called

operation right and obligations.

An assertion is a statement that must be
true at a designated point in a program.

24

Preconditions and Postconditions

A precondition is an assertion that must be
true at the initiation of an operation.

A postcondition is an assertion that must
be true upon completion of an operation.

 Preconditions state caller obligations and
called operation rights.

 Postconditions state caller rights and
called operation obligations.

25

Operation Specification Example

Signature public static int findMax(int[] a) throws
IllegalArgumentException

Class Utility

Description Return one of the largest elements in an
int array.

Behavior pre: (a != null) && (0 < a.length)
post: for every element x of a, x <= result
post: throws IllegalArgumentException if

preconditions are violated

26

Class Invariants

Class invariants augment every

exported operation’s contract.

A class invariant is an assertion that
must be true of any class instance
between calls of its exported operations.

27

What to put in Assertions

 Preconditions:

● Restrictions on parameters

● Conditions that must have been established before the

call

 Postconditions

● Relationships between parameters and results

● Restrictions on results

● Changes to parameters

● Responses to violated preconditions

 Class invariants

● Restrictions on attributes

● Relationships among attributes

 State empty assertions as ―true‖ or ―none.‖

28

Developing Op-Specs

Don’t make detailed op-specs early in mid-

level design

● The design is still fluid and many details will

change

Don’t wait until the end of design

● Details will have been forgotten

● Probably will be done poorly

Develop op-specs gradually during design,

adding details as they become firm

29

Algorithm Specification

Specify well-known algorithms by

name.

Use a minispec, a step-by-step

description of how an algorithm

transforms its inputs to output.

Write minispecs in pseudocode,

English augmented with

programming language constructs.

30

Pseudocode Example

Inputs: array a, lower bound lb, upper bound ub,

search key

Outputs: location of key, or -1 if key is not

found

lo = lb

hi = ub

while lo <= hi and key not found

mid = (lo + hi) / 2

if (key = a[mid]) then key is found

else if (key < a[mid]) then hi = mid-1

else lo = mid+1

if key is found then return mid

else return -1

31

Data Structures

Contiguous implementation—Values

are stored in adjacent memory cells

Linked implementation—Values are

stored in arbitrary cells accessed using

references or pointers

A data structure is scheme for
storing data in computer memory.

32

Data Structure Diagrams

Rectangles represent memory cells,

possibly with names

Contiguous cells are represented by

adjacent rectangles; cells may have

indices

Repeated elements are indicated by

ellipses

Linked cells are shown using arrows to

represent pointers or references from one

cell to another

A dot represents the null pointer

33

Data Structure Diagram Example

0 1 n-1k2

... ...

... ...

store

34

Data Structure Diagram Example…

root

35

Data Structure Diagram Heuristics

Label record fields only once.

Use ellipses to simplify large, repetitive

structures.

Draw linked structures so that the

pointers point down the page or from

left to right.

 Identify unusual or additional symbols

with a legend.

36

Design Finalization

Low-level design specifications

complete a design document.

Design finalization is checking the

design to make sure it is of sufficient

quality and is well documented.

This is the last step in the engineering

design process.

37

Design Document Quality
Characteristics

Feasibility—Must be possible to realize

the design

Adequacy—Must specify a program that

will meet its requirements

Economy—Must specify a program that

can be built on time and within budget

Changeability—Must specify a program

that can be changed easily

38

Design Document Quality
Characteristics…

Well-Formedness—Design must use

notations correctly

Completeness—Must specify everything

that programmers need to implement the

program

Clarity—Must be as easy to understand

as possible

Consistency—Must contain specifications

that can be met by a single product

39

Critical Reviews

Critical reviews can utilize
● Desk checks,

● Walkthroughs,

● Inspections,

● Audits, and

● Active reviews.

A critical review is an evaluation of a
finished product to determine whether
it is of acceptable quality.

40

A Critical Review Process
Design Finalization Review
Design Document : Design Specification

Final Design Document : Design Specification

Design

Document

Final Design

Document

Fix Defects

Fix Defects

Audit

Desk Check

and Correct

Active

Reviews

Desk Check

and Correct

Desk Check

and Correct

41

Continuous Review

A critical review that finds serious

design defects may result in a return to

a much earlier stage of design.

● Expensive

● Time consuming

● Frustrating

A policy of continuous review during

the design process helps find faults

early, avoiding the pain of finding them

later.

42

Summary

Operation specifications state design

details about operations, including their

● Class or module

● Signature

● Description

● Behavior

● Implementation

Behavior can be specified declaratively

or procedurally.

43

Summary…

Declarative specification is done using

operation contracts stated in assertions.

● Preconditions state caller obligations and

called operation rights.

● Postconditions state caller rights and called

operation obligations.

Algorithms are specified in minispecs,

often in pseudocode.

Data structures are specified using data

structure diagrams.

44

Summary…

Design finalization is the last step of

engineering design.

The design document is checked in a

critical review to ensure that it has all the

requisite quality characteristics.

A critical review that finds many defects

can be a disaster that can be mitigated by

conducting continuous reviews throughout

the engineering design process.

