Introduction to Software Engineering

ECSE-321
Unit 12 — Low Level Design

Objectives (Part |)

® To explain how visibility rules make
program entities accessible through their
names

® To show how references and aliases can
extend access beyond visibility

® To emphasize the importance of limiting
visibility and not extending access for
hiding information

® To introduce cases where extending
access Is permissible

Entities, Names, and Visibility

A program entity is anything in
a program that is treated as a unit.

A name is an identifier
bound to a program entity.

A program entity is visible at a point in a
program text if it can be referred to by name
at that point; the portion of a text over which
an entity is visible is its visibility.

File: packagel/PublicClass.java
package packagel;
public class PublicClass{
private String privateAttribute;
String packageAttribute;
public void method () {
String localVariable;

Visibility e
Example // point B

} // end packagel.PublicClass

File: packagel/PackageClass.java
package packagel;
class PackageClass/{

// point C

} // end packagel.PackageClass
File: package2/PackageClass.java
package package?2;

import packagel.*;

class PackageClass/{

// point D

} // end package2.PackageClass

Types of Visibility

® [ocal—Visible only within the module
where it is defined

® Non-local—\Visible outside the module
where it is defined, but not visible
everywhere in a program

® G/obal—\Visible everywhere in a program

® An entity is exported from the module
where it Is defined if it is visible outside
that module.

5

Object-Oriented Feature Visibility

® Private—\Visible only within the class where it
Is defined
e A type of local visibility

® Package—Visible in the class where it is
defined as well as classes in the same
package or namespace
e A form of non-local visibility

® Protected—Visible in the class where it is
defined and all sub-classes
e A form of non-local visibility

® Public—Visible anywhere the class is visible
e A form of non-local or global visibility

Accessibility

A program entity is accessible at a point in a
program text if it can be used at that point.

® A program entity is accessible wherever
it is visible.

® A program entity may also be
accessible where it is not visible.

Variables

A variable is a programming
language device for storing values.

Variables
have

attrl bUteS e address S

value

® Name storage cell
e VValue
e Address

References

A reference is an expression that evaluates
to an address where a value is stored.

string s = "hello";
string *t = &s;

s ' "hello"

T

€ > .

Aliases

An alias is a variable with the
same address as another variable.

string s = "hello";
string &t = s;

s P "hello"

—

10

Extending Access Beyond Visibility

® References and aliases can make
variables accessible where they are not
visible
e Passing a reference as an argument
e Returning a reference from a sub-program

® This practice is extending access
beyond visibility

e Generally it is a bad practice

11

Information Hiding and Access

® The key technique for hiding information is
to restrict access to program entities as
much as possible.
e Limiting visibility—Use scope and visibility
markers to restrict visibility
e Not extending access—Avoid using references
and aliases to extend visibility
® A defensive copy is a copy of an entity
held by reference passed to or returned
. from another operation.

Information Hiding Heuristics
Limit visibility.
e Make program entities visible in the smallest

possible program region.

e Restrict the scope of declarations to the
smallest possible program region.

e Make attributes at least protected and
preferably private.

e Make helper operations at least protected and
preferably private.

e Avoid global visibility.
» ® Avoid package visibility.

Information Hiding Heuristics...

14

Don’t extend access.

e Don't initialize attributes with references
passed to the class—make defensive copies
iInstead.

e Don’t pass or return references to
attributes—pass or return defensive copies
instead.

e Don'’t pass parameters by reference.
e Don’t make aliases

Exceptions

Two cases when access may be
extended beyond visibility:
e Modules must share an entity to collaborate
®Example: a shared queue

e Some other design goal is of greater
importance than information hiding

® Example: performance constraints

15

Summary

® Program entities are usually accessible
through their names by being visible in
various parts of a program text.

® Entities may also be accessed through
references or aliases.

® Information hiding dictates that visibility
be limited and that access not be
extended beyond visibility.

® Occasionally this rule can be violated to
* achieve other goals.

Objectives (Part 2)

® To present operation specifications and
their contents

® To present design by contract for
declarative specification of operation
behavior

® To intfroduce minispecs and pseudocode
for algorithm specification

® To introduce data structure diagrams for
data structure specification

® To survey design finalization

Operation Specification (Op-Spec)

Structured text stating an operation’s
interface and responsibilities
e Class or module—Ildentifies the operation

e Signature—Qperation name, names and types of
parameters, return type, and perhaps more
(syntax)

e Description—Sentence or two

e Behaviour—Semantics and pragmatics

e Implementation—Qptional

18

Behavior Specification

® Procedural—Describes an algorithm for
transforming inputs to outputs

e An algorithm is a sequence of steps that can
be performed by a computer.

® Declarative—Describes inputs, outputs,
calling constraints, and results without
specifying an algorithm

19

Declarative Specification
Advantages

® More abstract because they ignore
Implementation details—more concise

® Focus on the interface, not the internals

® Do not bias programmers towards a
particular implementation as procedural
specifications might (what vs how)

20

Design by Contract

A contract is a binding agreement
between two or more parties.

An operation contract is a contract
between an operation and its callers.

21

Contract Rights and Obligations

® The caller

e |s obliged to pass valid parameters under
valid conditions, and

e Has the right to delivery of advertised
computational services.

® The called operation

e Is obliged to provide advertised services,
and

e Has the right to be called under valid
conditions with valid parameters.

22

Assertions

An assertion is a statement that must be
true at a designated point in a program.

Assertions state caller and called
operation right and obligations.

23

Preconditions and Postconditions

24

A precondition is an assertion that must be
true at the initiation of an operation.

A postcondition is an assertion that must
be true upon completion of an operation.

Preconditions state caller obligations and
called operation rights.

Postconditions state caller rights and
called operation obligations.

Operation Specification Example

Signature public static int findMax(int[] a) throws
lllegalArgumentException
Class Utility
Description | Return one of the largest elements in an
int array.
Behavior pre: (a != null) && (0 < a.length)
post: for every element x of a, x <= result
post: throws lllegalArgumentException if
preconditions are violated

25

Class Invariants

A class invariant is an assertion that
must be true of any class instance
between calls of its exported operations.

Class invariants augment every
exported operation’s contract.

26

What to put in Assertions

® Preconditions:
e Restrictions on parameters
e Conditions that must have been established before the
call
® Postconditions
e Relationships between parameters and results
e Restrictions on results
e Changes to parameters
e Responses to violated preconditions
® Class invariants
e Restrictions on attributes

e Relationships among attributes
2@ State empty assertions as “true” or “none.”

Developing Op-Specs

® Don’'t make detailed op-specs early in mid-
level design

e The design is still fluid and many details will
change

® Don’t wait until the end of design
e Details will have been forgotten
e Probably will be done poorly

® Develop op-specs gradually during design,
adding details as they become firm

28

Algorithm Specification

® Specify well-known algorithms by
name.

® Use a minispec, a step-by-step
description of how an algorithm
transforms its inputs to output.

® \Write minispecs in pseudocode,
English augmented with
programming language constructs.

29

Pseudocode Example

Inputs: array a, lower bound 1lb, upper bound ub,

search key
Outputs: location of key, or -1 1f key 1s not

found

lo = 1b

hi = ub

while lo <= hi and key not found
mid = (lo + hi) / 2
1f (key = a[mid]) then key 1s found
else 1if (key < a[mid]) then hi = mid-1
else lo = mid+1

1f key i1s found then return mid
else return -1

30

Data Structures

A data structure is scheme for
storing data in computer memory.

® Contiguous implementation—\Values
are stored in adjacent memory cells

® [inked implementation—\Values are
stored in arbitrary cells accessed using
references or pointers

31

Data Structure Diagrams

® Rectangles represent memory cells,
possibly with names

® Contiguous cells are represented by
adjacent rectangles; cells may have
indices

® Repeated elements are indicated by
ellipses

® Linked cells are shown using arrows to
represent pointers or references from one
cell to another

Data Structure Diagram Example

store

33

n-1

Data Structure Diagram Example...

root

o

'//\

Data Structure Diagram Heuristics

® |_abel record fields only once.

® Use ellipses to simplify large, repetitive
structures.
® Draw linked structures so that the

pointers point down the page or from
left to right.

® |[dentify unusual or additional symbols
with a legend.

35

Design Finalization

® ow-level design specifications
complete a design document.

® Design finalization is checking the
design to make sure it is of sufficient
qguality and is well documented.

® This is the last step in the engineering
design process.

36

37

Design Document Quality
Characteristics

® [easibility—Must be possible to realize
the design

® Adequacy—NMust specify a program that
will meet its requirements

® Economy—NMust specify a program that
can be built on time and within budget

® Changeability—Must specify a program
that can be changed easily

Design Document Quality
Characteristics...

® Well-Formedness—Design must use
notations correctly

® Completeness—Must specify everything
that programmers need to implement the
program

® Clarity—Must be as easy to understand
as possible

® Consistency—Must contain specifications
that can be met by a single product

38

Critical Reviews

A critical review is an evaluation of a
finished product to determine whether
it is of acceptable quality.

Critical reviews can utilize
e Desk checks,
e Walkthroughs,
e |[nspections,
e Audits, and
e Active reviews.

39

A Critical Review Process

\

Design Finalization Review
Design Document : Design Specification
Final Design Document : Design Specification

Design Desk Check
Document and Correct

Y

Fix Defects

N)

Y

4 Desk Check
\ and Correct

Y

4 Active
\ Reviews

Y

/
Fix Defects

U U L

.

Y

(" Desk Check) Final Design
\ and Correct) Document

40

- J

Continuous Review

® A critical review that finds serious
design defects may result in a return to
a much earlier stage of design.
e Expensive
e Time consuming
e Frustrating

® A policy of continuous review during
the design process helps find faults
early, avoiding the pain of finding them
« |ater.

Summary

® Operation specifications state design
details about operations, including their
e Class or module
e Signature
e Description
e Behavior
e Implementation

® Behavior can be specified declaratively
or procedurally.

42

Summary...

® Declarative specification is done using
operation contracts stated in assertions.

e Preconditions state caller obligations and
called operation rights.

e Postconditions state caller rights and called
operation obligations.
® Algorithms are specified in minispecs,
often in pseudocode.

® Data structures are specified using data
- Structure diagrams.

Summary...

® Design finalization is the last step of
engineering design.
® The design document is checked in a

critical review to ensure that it has all the
requisite quality characteristics.

® A critical review that finds many defects
can be a disaster that can be mitigated by
conducting continuous reviews throughout
the engineering design process.

44

