
Introduction to Software Engineering

ECSE-321

Unit 11 – Mid-level State-Based

Design

Mid-Level Design: Where Are We?

Static class-based design
● Appropriate for designing monolithic systems

 Interaction design
● Appropriate for designing large distributed

systems.

● External interactions handled through
interfaces.

● Not sufficient for fine grain interactions (e.g.,
user interfaces)

State-based design
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321

3

Review of State Diagrams

UML state diagram notation

 Illustrate uses of state diagrams

Present heuristics for making good state

diagrams

4

States, Transitions, Events

A state is a mode or condition of being.

A transition is a change from
one state to another.

An event is a noteworthy
occurrence at a particular time.

5

Finite Automata

A formal model that abstracts

everything about an entity except its

states and state transitions

A finite state machine or finite

automaton specification must

● Describe all states unambiguously (names)

● Describe all transitions by stating the source

and destination states and the triggering

event

● Designate an initial state

6

Determinism

Finite automata may be deterministic

● Any event in any state triggers a transition to

exactly one state

Non-deterministic finite automata—any

machine that is not deterministic

We consider only deterministic machines

7

UML State Diagrams

Represent states by rounded rectangles
containing the state name

Represent transitions by solid arrows
labeled with one or more transition strings

Transition strings
● Describe triggering circumstances

● Actions that result

 Initial pseudo-state designates the initial
state

Optional final state represents halting

8

State Diagram Example

Stopped

PlayingRecording Rewinding

play

stop

stop

stop

off
offoff

rewindrecord

off

9

State Transition String Format

 event-signature—The empty string or an event
name followed by a list of event-parameters
enclosed in parentheses
● parentheses may be omitted if there are no parameters

● parameter-name : type

 parameter-name is a simple name

 type is a type description in an arbitrary format

 type may be omitted along with the colon

 guard —a Boolean expression in square brackets
● Format not specified in UML

 action-expression—description of a computation
done when the transition occurs
● Format not specified in UML

● Optional; if omitted, so is the slash

event-signature guard / action-expression

10

Transition String Examples

buttonPress

buttonPress(modifiers : Modifer[*])

buttonPress / closeWindow

buttonPress [enabled]

buttonPress [enabled] / closeWindow

 [mode = active]

 / closeWindow

buttonPress[enabled], mouseClick

11

State Diagram Execution Model

The machine always has a current state.

The machine begins execution in its

unique initial state.

When an event occurs:

● If it matches an event-signature on a

transition from the current state and the guard

is absent or true, the transition occurs and the

current state becomes the target state.

● If it does not match an event-signature or the

guard is false, no change of state occurs.

12

State Diagram Execution Model…

 If the computation occurring in the current
state completes, and there is a transition
from the current state with no event-
signature:
● If the guard is absent or true then the target

state becomes the current state.

● If the guard is false, no change of state occurs.

 If a transition has an action-expression,
the action occurs when the transition
takes place.

 If a final state becomes the current state,
the machine halts.

13

State Symbol Compartments

As many as three compartments

● Name compartment

Optional; may be attached to a tab

Pathname

● Internal transitions

 Internal transition specifications, one

per line

Transition processed without causing a

state change

Optional

● Nested diagram

Optional

x / xAction

BB

B

entry / enterB

exit / exitB

entry / enterBB

exit / exitBB

BBB

entry / enterBBB

exit / exitBBB

AA

A

entry / enterA

exit / exitA

entry / enterAA

exit / exitAA

y / yAction

14

Internal Transition Specifications

May be a transition string or a string of

the following form:

action-label / action-expression

 action-label—one of the items from the table
on the next slide

 action-expression—description of a
computation in a format not specified by UML

15

Internal Transition Action Labels

Action Label Meaning

entry
Execute the associated action-expression (an entry

action) upon state entry.

exit
Execute the associated action-expression (an exit

action) upon state exit.

do

Execute the associated action-expression (a do

activity) upon state entry and continue until state

exit or action completion.

include

The action-expression must name a finite

automaton. The named automaton is a placeholder

for a nested state diagram (discussed below).

16

Internal Transition Examples

buttonPress / beep

keyPress(SPACE) / count++

 timeout [mode = alert] / displayAlertMsg

entry / count := 0; sum := 0

exit / ring bell

do / display flashing light

 include / OrderProcessing

17

State Diagram with Internal
Transitions Example

Idle

insert(c:Coin)

entry / amount := 0

do / display(greeting)

Accumulate

entry / amount := amount+c.amount

do / display(amount)

insert(c:Coin)

Vend

select(i:Item)[amount is enough for i]

entry / amount := amount-i.cost

do / dispense(i); display(vending)

MakeChange

[amount > 0]

do / return(amount)

[else]

18

Nested State Diagrams

A state without a nested state

compartment is a simple state; one

with a nested state compartment is a

composite state

19

Types of Composite States

Sequential composite state—The nested

state compartment is a single region with

sub-states or inner states and

transitions.

Concurrent composite state—The nested

state compartment is comprised of two

or more regions separated by concurrent

region boundary lines (dashed lines)

containing inner states and transitions.

20

Sequential Composite States

When a sequential composite state is

entered, so is one of its inner states (and

likewise for further nested states), and

they jointly become the current state.

● Nested diagrams must have initial states or

transitions must go directly to inner states

When a sequential composite state is

exited, so is the current inner state (and

likewise for further nested states).

21

Sequential
Composite
States
Example

Cruising

brake

clutch

Off

On

Accelerate

do / accelerate

Decelerate

do / decelerate

MaintainSpeed

do / maintain(speed)

Suspended

entry / releaseControl

SetSpeed

entry / speed := currentSpeed

resumeBtnClick

setBtnClick

setBtnPressresumeBtnPress

resumeBtnRelease setBtnRelease

Idle

entry / speed := undefined

setBtnClick cancelBtnClick

offBtnClickonBtnClick

22

Action Execution Order

When an initial state is entered, the state’s entry
actions are executed, followed by the entry
actions of any initial sub-states.

When a transition causes exit from simple state A
and entry to simple state B

1. Simple state A’s exit actions are executed;

2. The exit actions of any exited composite states
enclosing A are executed, in order from innermost to
outermost exited states;

3. The transition action is executed;

4. The entry actions of any entered composite states
enclosing B are executed, in order from outermost to
innermost entered states; and

5. Simple state B’s entry actions are executed.

23

Action Execution Order Exercise

x / xAction

BB

B

entry / enterB

exit / exitB

entry / enterBB

exit / exitBB

BBB

entry / enterBBB

exit / exitBBB

AA

A

entry / enterA

exit / exitA

entry / enterAA

exit / exitAA

y / yAction When event x occurs, what are the

action execution order?

24

Stubbed States

Stub symbol used as a termination and

origin point for transitions to and from

states in a suppressed nested state

diagram

A stub or stub symbol is a short line

labeled with the suppressed state name

Stubbed State Example

Cruising

Off

On

Idle

entry / speed := undefined

setBtnClickcancelBtnClick

offBtnClickonBtnClick

include / CruisingStatechart

SetSpeed

Cruising

brake

clutch

Off

On

Accelerate

do / accelerate

Decelerate

do / decelerate

MaintainSpeed

do / maintain(speed)

Suspended

entry / releaseControl

SetSpeed

entry / speed := currentSpeed

resumeBtnClick

setBtnClick

setBtnPressresumeBtnPress

resumeBtnRelease setBtnRelease

Idle

entry / speed := undefined

setBtnClick cancelBtnClick

offBtnClickonBtnClick

Stubbed State Diagram

26

Using Sequential Composite State

Any finite automaton can be described

by a state diagram with only simple

states.

Sequential composite states simplify

state models in two ways:

● Organize states into hierarchies

● Consolidate many transitions

27

Sequential State Diagram

Heuristics

Check that no arrow leaves a final state.

Check for black holes (dead states)

and white holes (unreachable states).

Label states with adjectives, gerund

phrases, or verb phrases.

Name events with verb phrases or with

noun phrases describing actions.

Name actions with verb phrases.

28

Sequential State Diagram

Heuristics…

Combine arrows with the same source

and target states.

Use stubs and the include internal

transition to decompose large and

complicated state diagrams.

29

Sequential State Diagram

Heuristics…

Make one initial state in every state

diagram (including nested state

diagrams).

Check that no event labels two or more

transitions from a state.

Check that all guards on the same event

are exclusive.

Use [else] guards to help ensure that

guards are exclusive and exhaustive.

30

Concurrent Composite States

 The regions in a concurrent composite state

nested state compartment contain state

diagrams that execute in parallel.

One state in each region is entered when the

concurrent composite state is entered.

One state from each region is always among

the joint concurrent states until the concurrent

composite state is exited.

 Events cause transitions in each concurrent

region to occur simultaneously.

31

Concurrent Composite State
Example

NormalOperation

EW Green
after 40 sec

EW Amber
after 5 sec

EW Red

NS Red
after 45 sec

NS Green
after 30 sec

NS Amber

after 35 sec

after 5 sec

32

Entering Concurrent
Composite States

Make a transition to the concurrent
composite state boundary
● The initial state in each region becomes the

current state

Make a transition to individual states in
different regions
● Main transition goes to a fork bar

● Transitions to individual state come from the
fork bar

● A region without a state targeted by a transition
begins in its initial state

33

Entering Selected Concurrent
States: Illustration

Concurrent Composite State

S1 ...

S2 ...

S4 ...

Source

State

transitionString

S3 ...

fork bar

Leaving Concurrent
Composite States

Make a transition from the concurrent

composite state boundary

● For a non-completion transition, all concurrent

sub-states are exited immediately

● For a completion transition, the current state

must be a final state in every concurrent region

Make a transition from one or more

concurrent sub-states

● Coordinated transitions can go to a join bar

● All other sub-states are exited immediately

35

Leaving Selected Concurrent
States: Illustration

Concurrent Composite State

S1...

S2...

S4...

Target

State

transitionString

S3...

...

...

join bar

36

Using Concurrent
Composite States

Any concurrent composite state can be

represented by a diagram with only simple

states, but it will have many more states

than the concurrent composite state.

Concurrent composite states thus simplify

diagrams.

On the other hand, diagrams with

concurrent composite states are often

hard to understand.

37

History States

A history state is a pseudo-state indicating

that the sub-state last active when a

composite state was exited should be

reentered.

● Symbol is a circled H

Many common devices have persistent

state, so this is a useful modeling feature.

38

History State Example

Preset A

Preset C

Preset B

On

HOff
turnOn

turnOff

setToA

setToB

setToB

39

History State Restrictions

 May only appear in a region of a composite state

 Transitions may only enter a history state from

outside the composite state

 May have at most one unlabeled outgoing transition

to a peer state

● Indicates the default reentered state if the composite state

has not yet been entered

 History states may not have internal transitions,

nested compartments, etc.

 History state is forgotten if the current inner state

becomes a final state.

40

Deep History States

A history state indicates reentry to a state

at the same nesting level.

● States at lower nesting levels are entered as

usual (initial states).

A deep history state is a pseudo-state

indicating that the states last active at

every nesting level when a composite

state was exited should be reentered.

● Symbol is a circled H*

41

Deep History State Example

Preset A

Preset C

Preset B

On

H*Off
turnOn

turnOff

setToA

setToB

setToB

ActiveDormant

click

click

42

More State Diagram Heuristics

Designate an initial state in every

concurrent region of a concurrent

composite state.

Check that transitions to several

concurrent sub-states go through a fork.

Check that arrows connected to transition

junction points are properly labeled.

Check that at most one unlabeled arrow

emanates from each history state.

43

Summary

State diagrams are a powerful UML

notation for showing how entities

change over time.

Entity states are represented by

rounded rectangles, and state changes

by labeled transition arrows.

Transition strings allow specification of

transition in terms of events and

environmental conditions, and allow

specification of transition actions

44

Summary…

Sequential composite states provide a

means to show state hierarchies.

They also allow (sometimes radical)

reductions in the number of transitions,

simplifying models.

45

Summary…

State diagrams can show concurrency

concurrent composite states, but these are

governed by somewhat complex rules and

hard sometimes hard to understand.

Compound transitions allow combination

of several transitions with common

transition strings into one.

History and deep history states allow state

diagrams to model persistent states.

46

Designing with State Diagrams

Recognizers (acceptors) and

transducers

Uses of recognizers and transducers

● Devices

● Lexical analyzers

Dialog maps and user interface

diagrams

47

Kinds of Finite Automata

An acceptor or recognizer is a

finite automaton that responds to

events but generates no actions.

A transducer is a finite automaton

that both responds to events and

generates actions.

48

Automaton Uses

Acceptors or recognizers are used to

determine whether input is valid (accepted or

recognized).
Accepted if and only if the machine is in an

accepting state when the input is consumed

Examples: translators, interpreters

 Transducers are used to model things that

transform inputs to outputs.
Examples: devices, programs with complex state-

based behavior

49

Transducer Example

Collection Active

Iterator

Active

Iterator

Defunct

next() / throwException

modifyCollection

Collection Inactive

Iterator

Active

Iterator

Defunct

next()

[iteration complete]

[else]

modifyCollection

50

Acceptor Example

A lexical analyzer is a program unit that

transforms a stream of characters into a

stream of tokens.

● Token: a symbol recognized by a program

Example: The Irrigator configuration file

requires certain tokens.

51

Irrigator Configuration File Tokens

Token Name Token Description

endOfFile End of the input file marker

leftBrace {

rightBrace }

zoneId ―Z‖ or ―z‖ followed by one or more digits

sensorId ―S‖ or ―s‖ followed by one or more digits

valveId ―V‖ or ―v‖ followed by one or more digits

Semicolon ―;‖

zoneKwd The keyword ―zone‖

sensorKwd The keyword ―sensor‖

valveKwd The keyword ―valve‖

number One or more digits

description Characters between ―<‖ and ―>‖

52

Lexical

Analyzer for

the Irrigator

front end

accepting

leftBrace

digit

start

rightBrace

semicolon

number

descriptionstringBody
―>‖

other

bigS

digit

sensorId
digit

smallS

se sen sensorKwd

―e‖

―n‖ ―r‖

white space

―{―

―}‖

―<‖

digit

―S‖

―s‖
badToken

―;‖

bigV

digit

valveId
digit

smallV

va val valveKwd

―a‖

―l‖ ―e‖

―V‖

―v‖
badToken

other

bigZ

digit

zoneId
digit

smallZ

zo zon zoneKwd

―o‖

―n‖ ―e‖

―Z‖

―z‖
badToken

other

sens senso
―s‖ ―o‖

other

valv
―v‖

badToken
other

white
space

other

other
/pushback

other
/pushback

other
/pushback

white
space

other

other

other
/pushback

white
space

other

other

other

delim
/pushback

delim
/pushback

delim
/pushback

endOfFile

eof

53

Dialog Maps

Acceptors are also used to model user

interfaces.

A dialog map is a state diagram whose

nodes represent user interface states.

Events are occurrences (usually user input

actions) that drive the program between

user interface states.

54

Dialog Map Example

Stopped

and Reset

Keeping

Time

Paused

startClick

stopClick startClick

resetClick

closeClick

closeClick

closeClick

55

User Interface Diagrams

A user interface diagram is a drawing of

(part of) a product’s visual display when it

is a particular state.

Dialog maps and user interface diagrams

can be used together:

Every user interface diagram should specify the

visual form of a state in a dialog map, and every

state in a dialog map should have its visual form

specified by a user interface diagram.

56

User Interface Diagram Example

Stopped and Reset

Keeping Time

Paused

Time is fixed at 0.

Time is changing as

the seconds tick by;

the stopwatch is

running.

Time is fixed at the

moment the Stop

button was pressed.

57

Summary

 Acceptors or recognizers are finite automata

used to test input validity; transducers are finite

automata that transform inputs to outputs.

 State diagrams model both sorts of automata.

 Dialog maps are acceptors whose states

represent user interface states; user interface

diagrams are drawings of visual displays.

 User interface diagrams and dialog maps are

used in conjunction to model user interfaces.

