
Introduction to Software Engineering

ECSE-321

Unit 10 – Mid-level Design

Detailed Design (Mid-Level Design)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/2

R
e
q
u
ir
e
m

e
n
t

E
lic

it
a
ti
o
n

A
n
a
ly

s
is

(S
o
ft
w

a
re

 P
ro

d
u
c
t

D
e
s
ig

n
)

A
rc

h
it
e
c
tu

ra
l
D

e
s
ig

n

M
id

-L
e
v
e
l
D

e
s
ig

n

SRSSRS

SADSAD

L
o
w

-L
e
v
e
l
D

e
s
ig

n

Additional UML Notation

Mid-level design uses UML notation

Some of notation – revision of previously

discussed ones

Additional variations for old notations

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 10 – Mid –Level design/3

4

Generalization

Generalization is the UML relation that

holds between one model element (the

parent) and another (the child) when the

child is a special type of the parent.

● Represented by a hollow triangle and lines

● Triangle attaches to the parent and lines to

the children

Generalization is used in UML class

diagrams to model inheritance.

5

Generalization Example

6

Generalization versus Association

Generalization is a relation between classes.

Associations represent relations on sets of

class instances designated by the associated

classes.

Generalization is not a kind of association.

They

● Never have multiplicities,

● Never have rolenames,

● Never have names (they already have a name:

generalization).

7

Abstract Operations and Classes

An abstract operation is an operation

without a body; a concrete operation has a

body.

An abstract class is a class that cannot be

instantiated; a concrete class can be

instantiated.

A class

● Must be abstract if it has an abstract operation;

● May be abstract even if it has no abstract

operations.

8

Using and Representing Abstract
Classes and Operations

Abstract classes force their subclasses to

implement certain operations.

Abstract classes are represented in UML by

● Italicizing their names,

● Stereotyping them «abstract» or

● Giving them an {abstract} property.

Abstract operations are represented in UML

by

● Italicizing their specification or

● Giving them an {abstract} property.

9

Abstract Class and Operation
Examples

10

Interfaces

A UML interface is named collection of public

attributes and abstract operations.

● Provided interfaces—realized by a class or

component and represented by

A ball symbol or

A stereotyped class icon with a realization connector

● Required interfaces—needed by a class or

component and represented by

A socket symbol or

A dependency arrow to a ball symbol or

A dependency arrow to a stereotyped class icon

11

Provided Interface Notations

12

Required Interface Notations

13

Module Assembly Notations

«interface»
Observer

update(arg : Object)

Timer

Observer

Timer

TimerObserver
TimerObserver

14

UML Feature Visibility

Public—Visible anywhere that the class in
which it appears is visible; denoted by +.

Package—Visible anywhere in the package
containing the class in which it appears;
denoted by ~.

Protected—Visible in the class in which it
appears and all its sub-classes; denoted by
#.

Private—Visible only in the class in which it
appears; denoted by -.

15

Feature Visibility Example

Alarm

+ identifier : String {constant}

location : String
description : String
- classification : Classifier

+ getLocation() : String
+ getDescription() : String
+ action()
~ setClassification(c : Classifier)

~ getClassification() : Classifier
basicAction()

FireAlarm IntrusionAlarm FloodAlarm

16

Class and Instance Variables and
Operations

 An instance variable is an attribute whose value is

stored by each instance of a class.

 A class variable is an attribute whose value is stored

only once and shared by all instances.

 An instance operation must be called through an

instance.

 A class operation may be called through the class.

 In UML class variables and operations are called

static.

● Indicated by underlining an attribute’s or operation’s

specification

17

Aggregation and Composition

The aggregation association represents the part-

whole relation between classes.

● Denoted by a solid diamond and lines

● Diamond attaches to the aggregate (whole) while

lines attach to the parts

● May have all association adornments

The composition association is an aggregation

association in which each part can be related

to only one whole at a time.

● Denoted by a hollow diamond and lines

18

Aggregation and Composition
Examples

19

Class Diagram Heuristics

 Never place a name, rolenames, or

multiplicities on a generalization connector.

 Use the «abstract» stereotype and {abstract}

property to indicate abstract classes and

operations when drawing diagrams by hand;

use italics when drawing diagrams on the

computer.

 Use the interface ball and socket symbols to

abstract interface details and a stereotyped

class symbol to show details.

20

Class Diagram Heuristics…

Show provided interfaces with the

interface ball symbol or the stereotyped

class symbol and a realization

connector.

Show required interfaces with the

interface socket symbol or dependency

arrows to stereotyped class symbols or

interface ball symbols.

Avoid aggregation and composition.

21

Mid-Level Design

DeSCRIPTR specification

Design patterns (more on this later)

Mid-level design is the activity of
specifying software at the level of

medium-sized components, such as
compilation units or classes, and their

properties, relationships, and interactions.

22

Low-Level Design

DeSCRIPTR specifications plus PAID
● Packaging—Placing code into compilation units,

libraries, packages, etc.

● Algorithms—Sometimes specified

● Implementation—Visibility, accessibility,
association realization, etc.

● Data structures and types—Sometimes
specified

Low-level design is the activity of filling in the
small details at the lowest level of abstraction.

23

Detailed Design Process

24

Detailed Design Document

A design document consists of a

SAD and a detailed design document

(DDD)

A DDD template

1. Mid-Level Design Models

2. Low-Level Design Models

3. Mapping Between Models

4. Detailed Design Rationale

5. Glossary

25

Mid-Level Generation Techniques

Creational—Make a mid-level design class

model from scratch

● Functional decomposition

● Quality attribute decomposition

● Design themes

Transformational—Change another model

into a mid-level design class model

● Similar system

● Patterns or architectures

● Analysis model

26

Generation from Design Themes

A design theme is an important

problem, concern, or issue that must

be addressed in a design.

Design themes can be the basis for

generating a design from scratch.

27

Design

Theme

Process

28

Analyzing Design Stories

Start by writing a design story: a short

description of the application that

stresses its most important aspects.

Study the design story to identify

design themes.

List the themes

● Functional themes

● Quality attribute themes

29

Generating Candidate Classes

Brainstorm candidate classes from the
themes; list classes and their responsibilities.
● Entities in charge of program tasks

● Actors

● Things about which the program stores data

● Structures and collections

Rationalize the classes.
● Discard those with murky names or responsibilities

● Rework classes with overlapping responsibilities

● Discard those that do something out of scope

30

Draft a Class Diagram

Draw the classes from the list.

Add attributes, operations, and

associations.

Refine the class diagram.

● Check classes for completeness and

cohesion.

● Make super-classes where appropriate.

● Apply design patterns where appropriate.

31

Responsibilities

Operational responsibilities are

usually fulfilled by operations.

Data responsibilities are usually

fulfilled by attributes.

Class collaborations may be involved.

A responsibility is an obligation to perform a
task (an operational responsibility) or to

maintain some data (a data responsibility).

32

Responsibility-Driven Decomposition

Responsibilities may be stated at different

levels of abstraction.

Responsibilities can be decomposed.

High-level responsibilities can be assigned

to top-level components.

Responsibility decomposition can be the

basis for decomposing components.

● Responsibilities reflect both operational and data

obligations, so responsibility-driven decomposition

can be different from functional decomposition.

33

Responsibility Heuristics

Assigning responsibilities well helps

achieve high cohesion and low

coupling.

● State both operational and data

responsibilities.

● Assign modules at most one operational

and one data responsibility.

● Assign complementary data and

operational responsibilities.

34

Responsibility Heuristics…

Make sure module responsibilities do

not overlap.

Place operations and data in a module

only if they help fulfill the module’s

responsibilities.

Place all operations and data needed

to fullfill a module responsibility in that

module.

35

Inheritance

Inheritance is a declared relation between a

class and one or more super-classes that

causes the sub-class to have every

attribute and operation of the super-

class(es).

● Captures a generalization relation between

classes

● Allows reuse of attributes and operation from

super-classes in sub-classes

36

Using Inheritance Properly

Don’t use inheritance only for reuse.
● Confusing

● Ugly

● Leads to problems in the long run

Use inheritance only when there is a
generalization (kind-of) relation present.

Reuse can often be achieved by
rethinking the class structure.
● Clear

● Elegant

● Robust

37

Inheritance Example

Scatterplot

- title

- xUnits

- yUnits

- xLabel

- yLabel

- xMin

- yMin

- xMax

- yMax

- data[*]

setUpGraph()

plotData()

+ draw()

Graph

- title
- xUnits
- yUnits
- xLabel

- yLabel
- xMin
- yMin
- xMax
- yMax

setUpGraph()
plotData()
+ draw()

Scatterplot

- data[*]

plotData()

BarChart

- numBins

- bins[*]
- binWidth

plotData()

setUpGraph();
plotData();

38

Delegation

Delegation is a tactic wherein one module

(the delegator) entrusts another module

(the delegate) with a responsibility.

● Allows reuse without violating inheritance

constraints

● Makes software more reusable and

configurable

39

Delegation Example

Axes

- title
- xUnits
- yUnits

- xLabel
- yLabel
- xMin
- yMin

- xMax
- yMax

+ draw()

Scatterplot

- data[*]

plotData()
+ draw()

BarChart

- numBins
- bins[*]
- binWidth

plotData()
+ draw()

axes.draw();
plotData();

- axes

- axes

40

Inheritance and Delegation
Heuristics

Use inheritance only when there is a

generalization relationship between the

sub-class and its super-class(es).

Combine common attributes and

operations in similar classes into a

common super-class.

Use delegation to increase reuse,

flexibility, and configurability.

41

Summary

Detailed design is complex -> mid-

level design + low-level design

Mid-level design is captured in a

DDD that includes DeSCRIPTR

specifications.

Mid-level class designs can be

generated from scratch (creational)

or by changing another model

(transformational).

42

Summary…

One creational techniques uses design
themes extracted from a design story.

One transformational techniques is to convert
a conceptual model into a design class
model.

Responsibility-driven design helps designers
make good decisions about class models.

 Inheritance and delegation, when used

properly, lead to clear and elegant designs

that increase reusability, flexibility, and

configurability.

So far..

We did static design

What about the behavioural aspects of the

problem?

Again we use UML notation

Review the required UML notation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/43

44

Interaction Diagrams

An interaction diagram is a notation for modeling the

communication behavior of individuals exchanging

information to accomplish some task.

● Sequence diagram—shows interacting individuals along the

top and message exchange down the page

● Interaction overview diagram—a kind of activity diagram whose

nodes are sequence diagram fragments

● Timing diagram—shows individual state changes over time

45

Sequence Diagram Frames

Frame—a rectangle with a pentagon in

the upper left-hand corner called the

name compartment.

● sd interactionIdentifier

● interactionIdentifier is either a simple name

or an operation specification as in a class

diagram

sd findWebPage sd rotate(in degrees : int) : BoundingBox

46

Lifelines

Participating individuals are arrayed

across the diagram as lifelines:

● Rectangle containing an identifier

● Dashed line extending down the page

The vertical dimension represents time;

the dashed line shows the period when

an individual exists.

47

Lifeline Creation and Destruction

An new object appears at the point it is

created.

● Not clear from UML specification

A destroyed object has a truncated lifeline

ending in an X.

Persisting objects have lifelines that run

the length of the diagram.

48

Lifelines Example

client

:Component

supplier

create

X
destroy

sd UseComponent

49

Lifeline Identifier Format

 name—simple name or ―self‖; optional

 selector—expression picking out an individual

from a collection

● Format not specified in UML

● Optional; if omitted, so are the brackets

 typeName—Type of the individual

● Format not specified in UML

● Optional; if omitted, so is the colon

 Either name, typeName, or both must appear

name[selector] : typeName

50

Lifeline Identifier Examples

player[i] : Player

player[i]

 : Player

board

51

Self

Used when the interaction depicted is

―owned‖ by one of the interacting

individuals

self:Order c[item]:LineItemc:Collection

remove(item)

X
destroy

sd delete(item : ItemIdentifier)

get(item)

52

Messages and Message Arrows

Synchronous—The
sender suspends
execution until the
message is complete

Asynchronous—The
sender continues
execution after sending
the message

Synchronous message
return or instance
creation

53

Message Arrow Example

client searcher

find(description)

foundMatch(description)

fetch(description)

sd FindItem

result
clone(item)

Message Specification Format

 variable—simple name of a variable assigned a result

● Optional; if omitted, so is the equals sign

 name—simple name of the message

 argumentList—comma-separated list of arguments in

parentheses

● varName = paramName

 = paramName may be omitted

● paramName = argumentValue

 = argumentValue may be omitted

 Message specification may be * (any message)

variable = name argumentList

55

Message Specification Examples

hello

hello()

msg = getMessage(helloMessage)

x = sin(a/2)

x = sin(angle = a/2)

 trim(result = aString)

56

Execution Occurrences

An operation is executing when some

process is running its code.

An operation is suspended when it sends a

synchronous message and is waiting for it

to return.

An operation is active when it is executing

or suspended.

The period when an object is active can be

shown using an execution occurrence.

● Thin rectangle over lifeline dashed line

57

Execution Occurrence Example

:User :Button

press

actionPerformed(event)
toggle

:ButtonListener :Light

getState()

sd ButtonPress

58

Combined Fragments

A combined fragment is a marked part of
an interaction specification that shows
● Branching,

● Loops,

● Concurrent execution,

● And so forth.

 It is surrounded by a rectangular frame.
● Pentagonal operation compartment

● Dashed horizontal line forming regions holding
operands

59

Combined Fragment Layout

a b

m1

m2

m3

sd Example

c

operator

m2

m4

operator

compartment

combined

fragment

operand

region

60

Optional Fragment

A portion of an interaction that may be

done

● Equivalent to a conditional statement

● Operator is the keyword opt

● Only a single operand with a guard

A guard is a Boolean expression in

square brackets in a format not

specified by UML.

● [else] is a special guard true if every guard

in a fragment is false.

61

Optional Fragment Example

self:PrintServer

[isCmprsd]

sd print(f : File)

f:File

opt

isCmprsd=isCompressed()

decompress()

:Printer

print(f)

62

Alternative Fragment

A combined fragment with one or

more guarded operands whose

guards are mutually exclusive

● Equivalent to a case or switch statement

● Operator is the keyword alt

63

Alternative Fragment Example

self:Light

turnOff()

:Bulb

sd toggle()

[state==on]alt

turnOn()

[state==off]

64

Break Fragment

A combined fragment with an operand

performed in place of the remainder of

an enclosing operand or diagram if the

guard is true

● Similar to a break statement

● Operator is the keyword break

65

Break Fragment Example

self:PrintServer

[isCmprsd]

sd print(f : File)

f:File

opt

isCmprsd=isCompressed()

decompress()

:Printer

print(f)

[!readable]break

print(errMsg)

readable=canRead()

stderr

66

Loop Fragment

Single loop body operand that may

have a guard

Operator has the form loop(min, max)

where

● Parameters are optional; of omitted, so are

the parentheses

● min is a non-negative integer

● max is a non-negative integer at least as

large as min or *; max is optional; if omitted,

so is the comma

67

Loop Fragment Execution Rules

 The loop body is performed at least min times and at

most max times.

 If the loop body has been performed at least min

times but less than max times, it is performed only if

the guard is true.

 If max is *, the upper iteration bound is unlimited.

 If min is specified but max is not, then min=max.

 If the loop has no parameters, then min=0 and max is

unlimited.

 The default value of the guard is true.

68

Loop Fragment Example

controller

i:Iterator

i = iterator()

isMore = hasNext()

o:Object :Collection

create

loop [isMore]
o = next()

process()

isMore = hasNext()

X
destroy

sd Iteration

69

Sequence Diagram Heuristics

Put the sender of the first message

leftmost.

Put pairs of individuals that interact

heavily next to one another.

Position individuals to make message

arrows as short as possible.

Position individuals to make message

arrows go from left to right.

70

Sequence Diagram Heuristics…

Put the self lifeline leftmost.

 In a sequence diagram modeling an

operation interaction, draw the self

execution occurrence from the top to

the bottom of the diagram.

Name individuals only if they are

message arguments or are used in

expressions.

71

Sequence Diagram Heuristics…

Choose a level of abstraction for the

sequence diagram.

Suppress messages individuals send to

themselves unless they generate

messages to other individuals.

Suppress return arrows when using

execution occurrences.

Don’t assign values to message

parameters by name.

72

Using Sequence Diagrams

Sequence diagrams are useful for

modeling

● Interactions in mid-level design;

● The interaction between a product and its

environment (called system sequence

diagrams);

● Interactions between system components in

architectural design.

Sequence diagrams can be used as

(partial) use case descriptions.

73

Summary of Sequence Diagrams

Sequence diagrams are a powerful UML

notation for showing how objects

interact.

 Interacting objects are represented by

lifelines arrayed across the diagram.

Time is represented down the diagram.

The exchange of messages is shown by

message arrows arranged down the

diagram.

74

Interaction Design: Process &

Heuristics

 In the next set of slides we study…

● An overview of the interaction design process

● Alternative control styles and consider their

strengths and weaknesses

● Interaction design heuristics

75

Component and Interaction
Co-Design

Components cannot be designed alone

because they may not support needed

interactions.

 Interactions cannot be designed alone

because they may rely on missing

features of components or missing

components.

Components and interactions must be

designed together iteratively.

76

Outside-In Design

 Interaction design should be mainly top-

down (from most to least abstract

interactions).

The most abstract interactions are

specified in the SRS and use case

models.

Starting with the interactions between the

program and its environment (outside) and

designing how interacting components can

implement them (inside) is called outside-in

design.

77

Controllers

Controller are important because they

are the central figures in

collaborations.

A controller is a program component that
makes decisions and directs other components.

78

Control Styles

A control style is a way that decision making

is distributed among program

components.

● Centralized—A few controller make all

significant decisions

● Delegated—Decision making is distributed

through the program with a few controllers

making the main decisions

● Dispersed—Decision making is spread widely

through the program with few or no

components making decisions on their own

79

Centralized Control

Easy to find where decisions are made

Easy to see how decisions are made and
to alter the decision-making process

Controllers may become bloated—large,
complex, and hard to understand,
maintain, test, etc.

Controller may treat other components as
data repositories
● Increases coupling

● Destroys information hiding

80

Centralized Control Form

sd CentralizedControl

Controller initiating all the interactions

81

Less-Centralized Control Form

sd LessCentralizedControl

More than one element initiating interactions.

Less centralized control structure.

82

Control Heuristics

Avoid interaction designs where most

messages originate from a single

component.

Keep components small.

Make sure operational responsibilities are

not all assigned to just a few components.

Make sure operational responsibilities are

consistent with data responsibilities.

83

Delegated Control

Controller are coupled to fewer

components, reducing coupling.

 Information is hidden better.

Programs are easier to divide into

layers.

Delegated control is the preferred

control style.

Have components delegate as many low-

level tasks as possible

Have components delegate as many low-

level tasks as possible.

84

Dispersed Control Style

 Characterized by having many components

holding little data and having few responsibilities.

 It is hard to understand the flow of control.

 Components are unable to do much on their own,

increasing coupling.

 It is hard to hide information.

 Cohesion is usually poor.

 Few modularity principles can be satisfied.

Avoid interactions that require each component to Avoid interactions that require each component to

send many messages.

85

Law of Demeter

An operation of an object obj should send

messages only to the following entities:

● The object obj;

● The attributes of obj;

● The arguments of the operation;

● The elements of a collection that is an argument

of the operation or an attribute of obj;

● Objects created by the operation; and

● Global classes or objects.

86

Consequences of the Law of
Demeter

Objects send messages only to objects

―directly known‖ to them.

The Law of Demeter helps to

● Hide information,

● Keep coupling low,

● Keep cohesion high,

● Discourage an over-centralized control style,

and

● Encourage a delegated control style.

87

Remarks on Control Styles
and Heuristics

There is a continuum of control styles

with centralized and dispersed on the

ends and delegated in the middle.

Different levels of centralization may be

more or less appropriate depending on

the problem.

The control heuristics are in tension.

88

Summary of Interaction Design

 Interactions and components cannot be
designed independently, so they must be
designed together iteratively (component
and interaction co-design).

 Interaction design should proceed top-
down (outside-in).

Controllers are important components in
designing interactions.

We can distinguish various control styles
on a continuum of centralization versus
distribution.

89

Summary…

A delegated control style in which a few

controllers make important decisions but

delegate other decisions to subordinates

is usually best.

Various heuristics, including the Law of

Demeter, encourage control styles that

maximize information hiding and

cohesion and minimize coupling.

