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Additional UML Notation

Mid-level design uses UML notation

Some of notation – revision of previously 

discussed ones

Additional variations for old notations

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 10 – Mid –Level design/3
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Generalization

Generalization is the UML relation that 

holds between one model element (the 

parent) and another (the child) when the 

child is a special type of the parent.

● Represented by a hollow triangle and lines

● Triangle attaches to the parent and lines to 

the children

Generalization is used in UML class 

diagrams to model inheritance.
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Generalization Example
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Generalization versus Association

Generalization is a relation between classes.

Associations represent relations on sets of 

class instances designated by the associated 

classes.

Generalization is not a kind of association. 

They

● Never have multiplicities,

● Never have rolenames,

● Never have names (they already have a name: 

generalization).
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Abstract Operations and Classes

An abstract operation is an operation 

without a body; a concrete operation has a 

body.

An abstract class is a class that cannot be 

instantiated; a concrete class can be 

instantiated.

A class 

● Must be abstract if it has an abstract operation;

● May be abstract even if it has no abstract 

operations.
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Using and Representing Abstract 
Classes and Operations

Abstract classes force their subclasses to 

implement certain operations.

Abstract classes are represented in UML by

● Italicizing their names,

● Stereotyping them «abstract» or

● Giving them an {abstract} property.

Abstract operations are represented in UML 

by

● Italicizing their specification or

● Giving them an {abstract} property.
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Abstract Class and Operation 
Examples
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Interfaces

A UML interface is named collection of public 

attributes and abstract operations.

● Provided interfaces—realized by a class or 

component and represented by

A ball symbol or

A stereotyped class icon with a realization connector

● Required interfaces—needed by a class or 

component and represented by

A socket symbol or

A dependency arrow to a ball symbol or

A dependency arrow to a stereotyped class icon
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Provided Interface Notations
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Required Interface Notations
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Module Assembly Notations

«interface»
Observer

update( arg : Object )

Timer

Observer

Timer

TimerObserver
TimerObserver
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UML Feature Visibility

Public—Visible anywhere that the class in 
which it appears is visible; denoted by +.

Package—Visible anywhere in the package 
containing the class in which it appears; 
denoted by ~.

Protected—Visible in the class in which it 
appears and all its sub-classes; denoted by 
#.

Private—Visible only in the class in which it 
appears; denoted by -.
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Feature Visibility Example

Alarm

+ identifier : String   {constant}

# location : String
# description : String
- classification : Classifier

+ getLocation() : String
+ getDescription() : String
+ action()
~ setClassification( c : Classifier)

~ getClassification() : Classifier
# basicAction()

FireAlarm IntrusionAlarm FloodAlarm
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Class and Instance Variables and 
Operations

 An instance variable is an attribute whose value is 

stored by each instance of a class.

 A class variable is an attribute whose value is stored 

only once and shared by all instances.

 An instance operation must be called through an 

instance.

 A class operation may be called through the class.

 In UML class variables and operations are called 

static.

● Indicated by underlining an attribute’s or operation’s 

specification
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Aggregation and Composition

The aggregation association represents the part-

whole relation between classes.

● Denoted by a solid diamond and lines

● Diamond attaches to the aggregate (whole) while 

lines attach to the parts

● May have all association adornments

The composition association is an aggregation 

association in which each part can be related 

to only one whole at a time.

● Denoted by a hollow diamond and lines
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Aggregation and Composition 
Examples
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Class Diagram Heuristics

 Never place a name, rolenames, or 

multiplicities on a generalization connector.

 Use the «abstract» stereotype and {abstract} 

property to indicate abstract classes and 

operations when drawing diagrams by hand; 

use italics when drawing diagrams on the 

computer.

 Use the interface ball and socket symbols to 

abstract interface details and a stereotyped 

class symbol to show details.
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Class Diagram Heuristics…

Show provided interfaces with the 

interface ball symbol or the stereotyped 

class symbol and a realization 

connector.

Show required interfaces with the 

interface socket symbol or dependency 

arrows to stereotyped class symbols or 

interface ball symbols.

Avoid aggregation and composition.
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Mid-Level Design

DeSCRIPTR specification

Design patterns (more on this later)

Mid-level design is the activity of 
specifying software at the level of 

medium-sized components, such as 
compilation units or classes, and their

properties, relationships, and interactions.



22

Low-Level Design

DeSCRIPTR specifications plus PAID
● Packaging—Placing code into compilation units, 

libraries, packages, etc.

● Algorithms—Sometimes specified

● Implementation—Visibility, accessibility, 
association realization, etc.

● Data structures and types—Sometimes 
specified

Low-level design is the activity of filling in the 
small details at the lowest level of abstraction.
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Detailed Design Process
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Detailed Design Document

A design document consists of a 

SAD and a detailed design document

(DDD)

A DDD template

1. Mid-Level Design Models

2. Low-Level Design Models

3. Mapping Between Models

4. Detailed Design Rationale

5. Glossary
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Mid-Level Generation Techniques

Creational—Make a mid-level design class 

model from scratch

● Functional decomposition

● Quality attribute decomposition

● Design themes

Transformational—Change another model 

into a mid-level design class model

● Similar system

● Patterns or architectures

● Analysis model
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Generation from Design Themes

A design theme is an important 

problem, concern, or issue that must 

be addressed in a design.

Design themes can be the basis for 

generating a design from scratch.
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Design 

Theme 

Process
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Analyzing Design Stories

Start by writing a design story: a short 

description of the application that 

stresses its most important aspects.

Study the design story to identify 

design themes.

List the themes

● Functional themes

● Quality attribute themes
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Generating Candidate Classes

Brainstorm candidate classes from the 
themes; list classes and their responsibilities.
● Entities in charge of program tasks

● Actors

● Things about which the program stores data

● Structures and collections

Rationalize the classes.
● Discard those with murky names or responsibilities

● Rework classes with overlapping responsibilities

● Discard those that do something out of scope
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Draft a Class Diagram

Draw the classes from the list.

Add attributes, operations, and 

associations.

Refine the class diagram.

● Check classes for completeness and 

cohesion.

● Make super-classes where appropriate.

● Apply design patterns where appropriate.
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Responsibilities

Operational responsibilities are 

usually fulfilled by operations.

Data responsibilities are usually 

fulfilled by attributes.

Class collaborations may be involved.

A responsibility is an obligation to perform a 
task (an operational responsibility) or to 

maintain some data (a data responsibility).
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Responsibility-Driven Decomposition

Responsibilities may be stated at different 

levels of abstraction.

Responsibilities can be decomposed.

High-level responsibilities can be assigned 

to top-level components.

Responsibility decomposition can be the 

basis for decomposing components.

● Responsibilities reflect both operational and data 

obligations, so responsibility-driven decomposition 

can be different from functional decomposition.
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Responsibility Heuristics

Assigning responsibilities well helps 

achieve high cohesion and low 

coupling.

● State both operational and data 

responsibilities.

● Assign modules at most one operational 

and one data responsibility.

● Assign complementary data and 

operational responsibilities.
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Responsibility Heuristics…

Make sure module responsibilities do 

not overlap.

Place operations and data in a module 

only if they help fulfill the module’s 

responsibilities.

Place all operations and data needed 

to fullfill a module responsibility in that 

module.
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Inheritance

Inheritance is a declared relation between a 

class and one or more super-classes that 

causes the sub-class to have every 

attribute and operation of the super-

class(es).

● Captures a generalization relation between 

classes

● Allows reuse of attributes and operation from 

super-classes in sub-classes
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Using Inheritance Properly

Don’t use inheritance only for reuse.
● Confusing

● Ugly

● Leads to problems in the long run

Use inheritance only when there is a 
generalization (kind-of) relation present.

Reuse can often be achieved by 
rethinking the class structure.
● Clear

● Elegant

● Robust
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Inheritance Example

Scatterplot

- title

- xUnits

- yUnits

- xLabel

- yLabel

- xMin

- yMin

- xMax

- yMax

- data[*]

# setUpGraph()

# plotData()

+ draw()

Graph

- title
- xUnits
- yUnits
- xLabel

- yLabel
- xMin
- yMin
- xMax
- yMax

# setUpGraph()
# plotData()
+ draw()

Scatterplot

- data[*]

# plotData()

BarChart

- numBins

- bins[*]
- binWidth

# plotData()

setUpGraph();
plotData();
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Delegation

Delegation is a tactic wherein one module 

(the delegator) entrusts another module 

(the delegate) with a responsibility.

● Allows reuse without violating inheritance 

constraints

● Makes software more reusable and 

configurable
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Delegation Example

Axes

- title
- xUnits
- yUnits

- xLabel
- yLabel
- xMin
- yMin

- xMax
- yMax

+ draw()

Scatterplot

- data[*]

# plotData()
+ draw()

BarChart

- numBins
- bins[*]
- binWidth

# plotData()
+ draw()

axes.draw();
plotData();

- axes

- axes
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Inheritance and Delegation 
Heuristics

Use inheritance only when there is a 

generalization relationship between the 

sub-class and its super-class(es).

Combine common attributes and 

operations in similar classes into a 

common super-class.

Use delegation to increase reuse, 

flexibility, and configurability.
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Summary

Detailed design is complex -> mid-

level design + low-level design

Mid-level design is captured in a 

DDD that includes DeSCRIPTR

specifications.

Mid-level class designs can be 

generated from scratch (creational) 

or by changing another model 

(transformational).
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Summary…

One creational techniques uses design 
themes extracted from a design story.

One transformational techniques is to convert 
a conceptual model into a design class 
model.

Responsibility-driven design helps designers 
make good decisions about class models.

 Inheritance and delegation, when used 

properly, lead to clear and elegant designs 

that increase reusability, flexibility, and 

configurability.



So far..

We did static design

What about the behavioural aspects of the 

problem?

Again we use UML notation

Review the required UML notation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 7 - Analysis/43
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Interaction Diagrams

An interaction diagram is a notation for modeling the 

communication behavior of individuals exchanging 

information to accomplish some task.

● Sequence diagram—shows interacting individuals along the 

top and message exchange down the page

● Interaction overview diagram—a kind of activity diagram whose 

nodes are sequence diagram fragments

● Timing diagram—shows individual state changes over time
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Sequence Diagram Frames

Frame—a rectangle with a pentagon in 

the upper left-hand corner called the 

name compartment.

● sd interactionIdentifier

● interactionIdentifier is either a simple name 

or an operation specification as in a class 

diagram

sd findWebPage sd rotate( in degrees : int ) : BoundingBox
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Lifelines

Participating individuals are arrayed 

across the diagram as lifelines:

● Rectangle containing an identifier

● Dashed line extending down the page

The vertical dimension represents time; 

the dashed line shows the period when 

an individual exists.
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Lifeline Creation and Destruction

An new object appears at the point it is 

created.

● Not clear from UML specification

A destroyed object has a truncated lifeline 

ending in an X.

Persisting objects have lifelines that run 

the length of the diagram.
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Lifelines Example

client

:Component

supplier

create

X
destroy

sd UseComponent
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Lifeline Identifier Format

 name—simple name or ―self‖; optional

 selector—expression picking out an individual 

from a collection

● Format not specified in UML

● Optional; if omitted, so are the brackets

 typeName—Type of the individual

● Format not specified in UML

● Optional; if omitted, so is the colon

 Either name, typeName, or both must appear

name[ selector ] : typeName
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Lifeline Identifier Examples

player[i] : Player

player[i]

 : Player

board
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Self

Used when the interaction depicted is 

―owned‖ by one of the interacting 

individuals

self:Order c[item]:LineItemc:Collection

remove(item)

X
destroy

sd delete( item : ItemIdentifier )

get(item)
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Messages and Message Arrows

Synchronous—The 
sender suspends 
execution until the 
message is complete

Asynchronous—The 
sender continues 
execution after sending 
the message

Synchronous message 
return or instance 
creation
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Message Arrow Example

client searcher

find(description)

foundMatch(description)

fetch(description)

sd FindItem

result
clone(item)



Message Specification Format

 variable—simple name of a variable assigned a result

● Optional; if omitted, so is the equals sign

 name—simple name of the message

 argumentList—comma-separated list of arguments in 

parentheses

● varName = paramName

 = paramName may be omitted

● paramName = argumentValue

 = argumentValue may be omitted

 Message specification may be * (any message)

variable = name argumentList
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Message Specification Examples

hello

hello()

msg = getMessage( helloMessage )

x = sin( a/2 )

x = sin( angle = a/2 )

 trim( result = aString )
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Execution Occurrences

An operation is executing when some 

process is running its code.

An operation is suspended when it sends a 

synchronous message and is waiting for it 

to return.

An operation is active when it is executing 

or suspended.

The period when an object is active can be 

shown using an execution occurrence.

● Thin rectangle over lifeline dashed line
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Execution Occurrence Example

:User :Button

press

actionPerformed(event)
toggle

:ButtonListener :Light

getState()

sd ButtonPress
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Combined Fragments

A combined fragment is a marked part of 
an interaction specification that shows
● Branching,

● Loops,

● Concurrent execution,

● And so forth.

 It is surrounded by a rectangular frame.
● Pentagonal operation compartment

● Dashed horizontal line forming regions holding 
operands
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Combined Fragment Layout

a b

m1

m2

m3

sd Example

c

operator

m2

m4

operator 

compartment

combined 

fragment

operand 

region
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Optional Fragment

A portion of an interaction that may be 

done

● Equivalent to a conditional statement

● Operator is the keyword opt

● Only a single operand with a guard

A guard is a Boolean expression in 

square brackets in a format not 

specified by UML.

● [else] is a special guard true if every guard 

in a fragment is false.
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Optional Fragment Example

self:PrintServer

[isCmprsd]

sd print( f : File )

f:File

opt

isCmprsd=isCompressed()

decompress()

:Printer

print(f)
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Alternative Fragment

A combined fragment with one or 

more guarded operands whose 

guards are mutually exclusive

● Equivalent to a case or switch statement

● Operator is the keyword alt
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Alternative Fragment Example

self:Light

turnOff()

:Bulb

sd toggle()

[state==on]alt

turnOn()

[state==off]
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Break Fragment

A combined fragment with an operand 

performed in place of the remainder of 

an enclosing operand or diagram if the 

guard is true

● Similar to a break statement

● Operator is the keyword break
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Break Fragment Example

self:PrintServer

[isCmprsd]

sd print( f : File )

f:File

opt

isCmprsd=isCompressed()

decompress()

:Printer

print(f)

[!readable]break

print(errMsg)

readable=canRead()

stderr
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Loop Fragment

Single loop body operand that may 

have a guard

Operator has the form loop( min, max ) 

where

● Parameters are optional; of omitted, so are 

the parentheses

● min is a non-negative integer

● max is a non-negative integer at least as 

large as min or *; max is optional; if omitted, 

so is the comma
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Loop Fragment Execution Rules

 The loop body is performed at least min times and at 

most max times.

 If the loop body has been performed at least min

times but less than max times, it is performed only if 

the guard is true.

 If max is *, the upper iteration bound is unlimited.

 If min is specified but max is not, then min=max.

 If the loop has no parameters, then min=0 and max is 

unlimited.

 The default value of the guard is true.
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Loop Fragment Example

controller

i:Iterator

i = iterator()

isMore = hasNext()

o:Object :Collection

create

loop [isMore]
o = next()

process()

isMore = hasNext()

X
destroy

sd Iteration
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Sequence Diagram Heuristics

Put the sender of the first message 

leftmost.

Put pairs of individuals that interact 

heavily next to one another.

Position individuals to make message 

arrows as short as possible.

Position individuals to make message 

arrows go from left to right.
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Sequence Diagram Heuristics…

Put the self lifeline leftmost.

 In a sequence diagram modeling an 

operation interaction, draw the self 

execution occurrence from the top to 

the bottom of the diagram.

Name individuals only if they are 

message arguments or are used in 

expressions.
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Sequence Diagram Heuristics…

Choose a level of abstraction for the 

sequence diagram.

Suppress messages individuals send to 

themselves unless they generate 

messages to other individuals.

Suppress return arrows when using 

execution occurrences.

Don’t assign values to message 

parameters by name.
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Using Sequence Diagrams

Sequence diagrams are useful for 

modeling

● Interactions in mid-level design;

● The interaction between a product and its 

environment (called system sequence 

diagrams);

● Interactions between system components in 

architectural design.

Sequence diagrams can be used as 

(partial) use case descriptions.
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Summary of Sequence Diagrams

Sequence diagrams are a powerful UML 

notation for showing how objects 

interact.

 Interacting objects are represented by 

lifelines arrayed across the diagram.

Time is represented down the diagram.

The exchange of messages is shown by 

message arrows arranged down the 

diagram.
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Interaction Design: Process & 

Heuristics

 In the next set of slides we study…

● An overview of the interaction design process

● Alternative control styles and consider their 

strengths and weaknesses

● Interaction design heuristics
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Component and Interaction 
Co-Design

Components cannot be designed alone 

because they may not support needed 

interactions.

 Interactions cannot be designed alone 

because they may rely on missing 

features of components or missing 

components.

Components and interactions must be 

designed together iteratively.
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Outside-In Design

 Interaction design should be mainly top-

down (from most to least abstract 

interactions).

The most abstract interactions are 

specified in the SRS and use case 

models.

Starting with the interactions between the 

program and its environment (outside) and 

designing how interacting components can 

implement them (inside) is called outside-in 

design.
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Controllers

Controller are important because they 

are the central figures in 

collaborations.

A controller is a program component that 
makes decisions and directs other components.
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Control Styles

A control style is a way that decision making 

is distributed among program 

components.

● Centralized—A few controller make all 

significant decisions

● Delegated—Decision making is distributed 

through the program with a few controllers 

making the main decisions

● Dispersed—Decision making is spread widely 

through the program with few or no 

components making decisions on their own
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Centralized Control

Easy to find where decisions are made 

Easy to see how decisions are made and 
to alter the decision-making process

Controllers may become bloated—large, 
complex, and hard to understand, 
maintain, test, etc.

Controller may treat other components as 
data repositories
● Increases coupling

● Destroys information hiding
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Centralized Control Form

sd CentralizedControl

Controller initiating all the interactions
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Less-Centralized Control Form

sd LessCentralizedControl

More than one element initiating interactions.

Less centralized control structure.



82

Control Heuristics

Avoid interaction designs where most 

messages originate from a single 

component.

Keep components small.

Make sure operational responsibilities are 

not all assigned to just a few components.

Make sure operational responsibilities are 

consistent with data responsibilities.
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Delegated Control

Controller are coupled to fewer 

components, reducing coupling.

 Information is hidden better.

Programs are easier to divide into 

layers.

Delegated control is the preferred 

control style.

Have components delegate as many low-

level tasks as possible

Have components delegate as many low-

level tasks as possible.
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Dispersed Control Style

 Characterized by having many components 

holding little data and having few responsibilities.

 It is hard to understand the flow of control.

 Components are unable to do much on their own, 

increasing coupling.

 It is hard to hide information.

 Cohesion is usually poor.

 Few modularity principles can be satisfied.

Avoid interactions that require each component to Avoid interactions that require each component to 

send many messages.
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Law of Demeter

An operation of an object obj should send 

messages only to the following entities:

● The object obj;

● The attributes of obj;

● The arguments of the operation;

● The elements of a collection that is an argument 

of the operation or an attribute of obj;

● Objects created by the operation; and

● Global classes or objects.
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Consequences of the Law of 
Demeter

Objects send messages only to objects 

―directly known‖ to them.

The Law of Demeter helps to

● Hide information,

● Keep coupling low,

● Keep cohesion high,

● Discourage an over-centralized control style, 

and

● Encourage a delegated control style.
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Remarks on Control Styles 
and Heuristics

There is a continuum of control styles 

with centralized and dispersed on the 

ends and delegated in the middle.

Different levels of centralization may be 

more or less appropriate depending on 

the problem.

The control heuristics are in tension.
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Summary of Interaction Design

 Interactions and components cannot be 
designed independently, so they must be 
designed together iteratively (component 
and interaction co-design).

 Interaction design should proceed top-
down (outside-in).

Controllers are important components in 
designing interactions.

We can distinguish various control styles 
on a continuum of centralization versus 
distribution.
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Summary…

A delegated control style in which a few 

controllers make important decisions but 

delegate other decisions to subordinates 

is usually best.

Various heuristics, including the Law of 

Demeter, encourage control styles that 

maximize information hiding and 

cohesion and minimize coupling.


