
Introduction to Software Engineering

ECSE-321

Unit 1 - Introduction

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/2

Engineering

 Per Merriam-Webster Collegiate Dictionary,

● a. the application of science and mathematics by which

the properties of matter and the sources of energy in

nature are made useful to people

● b. the design and manufacture of complex products

● c. the discipline dealing with the art or science of

applying scientific knowledge to practical problems

(WorldNet ®)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/3

Software Engineering

 Per ECSE-321:

● a. the application of science and mathematics by which the
properties of matter and the sources of energy in nature are
made useful to people

● b. the design and manufacture of complex products

● c. the most important of all engineering disciplines

What is the problem?

LARGE software projects

How large are we talking about?

● Typically, more than 100,000 LOC (lines of

code)

Large projects

● Large budgets

● Large teams

● Years of development

Concern?
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/4

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/5

Large Projects

Driven by commercial

viability

Need to meet certain

“expectations”

To be successful:

• Reach market before competing products

• Need to have key features than others

• Need to have more features that others

• Etc.

Problems with Large Projects

Large projects (more than 500000 LOC) is a
risky undertaking

What is the risk?
● 65% of large projects are cancelled before

completion

● Lost investment

● Average cancelled projects in US is about a year
behind and over budget by 200%

Cancelled projects amounted to $14billion in
1993

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/6

More on Large Projects

Of completed projects

● 2/3 experience schedule delays and cost

overruns

● 2/3 experience low reliability and quality

problems in the first year of deployment

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/7

Why Projects Fail?

Referred to “death march projects” by Nancy
Leveson
● Feature creep

● Thrashing

● Integration problems

● Overwriting source code

● Constant re-estimation

● Redesign and rewriting during testing

● No documentation of design decisions

● Etc.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/8

Types of “Death March Projects”

Mission Impossible

● Likely to succeed, happy workers

Ugly

● Likely to succeed, unhappy workers

Kamikaze

● Unlikely to succeed, happy workers

Suicide

● Unlikely to succeed, unhappy workers

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/9

More on the “Software Project Problem”

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/10

Development Costs

Planning

Testing

Coding

What are the “Other” Problems?

So far we discussed the issues in getting

things “done”

Completing the project

What are the problems after completing

the project?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/11

Some “Other” Problems

Safety of software systems

Software is controlling many mission
critical systems
● Medical equipment

● Real-time systems (e.g., car stability control)

● Large-scale infrastructure (e.g., power Grids)

How do we ensure software is safe?

Failure modes of software + hardware
needs to be examined?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/12

Why Software Engineering?

Definitely, SE can improve the worst case

scenario

● Worst software developed under a well

regimented SE process is going to be better

than a worst software developed under a ad-

hoc process

● Best software.. cannot say much!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/13

Why Software Engineering?

Use well known engineering principles to

design, develop, maintain high quality

software systems

 Is SE going to always result in high quality

software?

Probability NOT! Why?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/14

Why Not Software Engineering?

Software is often linked to spontaneous

thinking

Can SE mean end of “hacking” culture?

Software hackers beware!

● Go the way of quack doctors!

● Extreme scenario - need to be certified

professional before releasing a software

● Each piece of software needs to be certified?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/15

Why is SE hard?

“Curse of flexibility”

● Software usually takes all the slack

● Software engineers usually save hardware

engineers’ ___

Complexity management

Lack of historical usage information

Large discrete state spaces

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/16

Typical Computing Model

Machines physically impossible become
feasible

Changes without retooling – runtime
reconfiguration

Abstract specification with implementation
details

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/17

GeneralGeneral

Purpose

Machine

Software
+ =

SpecialSpecial

Purpose

Machine

Curse of Flexibility

Software takes care of the “rest” and acts

as a glue

Not physically constrained to help

● Limit the scope

● Control the complexity

Flexible – start working before the problem

is fully understood (e.g., early stage

simulators)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/18

Efforts to Characterize SE

Often SE is compared to Civil engineering

● E.g., constructing a building

Good analogy

● Size matters: dog house versus skyscraper

● Team effort with careful project planning

● Difficulties with design changes

● Other relevant elements: building structure,

scaffolding, architecture, components, etc.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/19

SE versus Civil Engineering

Civil engineering is guided by the laws of
physics

Software engineering lacks the underlying
laws

Civil engineering relies on components a
lot

Software engineering is making some
progress in that direction with the advent
of “service” orientation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/20

How do we characterize Software?

Can consider some axes of variabilities:

● Size

● How humans interact with it

● Requirements (changes in requirements)

● Need for reliability

● Need for security

● Portability

● Cost

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/21

Categorize the following Software

Systems

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/22

Open office Car Stability

Controller

Social Network

Portal

Size

Interactivity

Requirements

Reliability

Security

Portability

Cost

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/23

Failures

HW failure curve

SW (ideal) failure curve
time

R
a
te

 o
f

fa
ilu

re
s

time

R
a
te

 o
f

fa
ilu

re
s

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/24

Software failures

Real world failure curve

time

R
a
te

 o
f

fa
ilu

re
s

Ideal

Actual

With

Changes

change

Software Engineering Myths:

Management

We have books with rules. Isn’t that
sufficient?
● Which rules are important? (This is a general

problem with certification)

 If we fall behind, add more programmers
● Adding people to an already late project makes

it later!

We can outsource it
● If we don’t know how to do it in-house, it is

harder to do it with outsiders

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/25

Software Engineering Myths: Customer

We can refine the requirements later

● A recipe for disaster

The good thing about software is that is

easier to change

● It can cost more to change later

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/26

Software Engineering Myths: Practitioner

Lets write the code, so we will be done

faster

● Sooner you begin coding, the longer it will take

to finish

Until I finish, I cannot assess the quality

● Software and design reviews are more effective

than testing

There is no time for software engineering

● Is there time to redo the software?
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/27

Recap: What is SE for?

We want to build a large system

How will we know the system works?

How do we develop the system efficiently?

● Minimize time

● Minimize dollors

● Minimize ...?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/28

How do we know the software works?

How do we know a given behaviour is a

bug?

● Have some separate specification of what the

program must do

● We need to define the requirements for

“working” before start coding

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/29

Teams and Specifications

Do we really need to write specifications?

 Informally, people can

● Discuss what to do

● Divide up the work

● Implement incompatible components

● Surprised when it does not just work together

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/30

What can we do?

Write specifications:

● Write down exactly what it is supposed to do

● Make sure all team members understand it

● Keep the specifications up to date

Still.. we could have problems

● Ambiguities and contradictions can occur

● They lead to bugs

● Problems can be reduced

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/31

Summary #1: Importance of

Specifications

Specification allows us to:

● Check whether software works

● Build software in teams

Actually checking that software works is

hard

● Code reviews

● Static analysis tools

● Testing and more testing

● ...
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/32

How do we code efficiently?

We want to minimize the development

time

● Reach market first!

Coding faster...

● hire more programmers

● parallelize the programming process!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/33

Parallel Development

How many programmers can we keep

busy?

● As many as there are independent tasks

People can work on different modules

● Thus we get parallelism

● And save time

What are the pitfalls?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/34

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/35

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/36

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/37

Pitfalls of Parallel Development

Problems are the same as in parallel

computing

More people = more communication

● expensive, harder to manage

 Individual tasks cannot to be too small

We need to take care of sequential

constraints

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/38

Interfaces

Chunks of work must be independent

● Put them together to form the final system

We need well defined interfaces between

components

 Interfaces must not change much

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/39

Defining Interfaces

What are interfaces?

● Specifications between components that are

supposed to be independent

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/40

Software Architecture

To define interfaces, we must decompose

a system into separate pieces

How to do this?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/41

Decomposition can be driven by

What the system does

How we build it

Who builds it

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/42

Summary #2: Decomposition

Efficient development requires

● Decomposing the system into pieces

● Good interfaces between pieces

Pieces should be large

● Don’t try to break into too small pieces

 Interfaces are specifications of boundaries

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/43

