
Introduction to Software Engineering

ECSE-321

Unit 1 - Introduction

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/2

Engineering

 Per Merriam-Webster Collegiate Dictionary,

● a. the application of science and mathematics by which

the properties of matter and the sources of energy in

nature are made useful to people

● b. the design and manufacture of complex products

● c. the discipline dealing with the art or science of

applying scientific knowledge to practical problems

(WorldNet ®)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/3

Software Engineering

 Per ECSE-321:

● a. the application of science and mathematics by which the
properties of matter and the sources of energy in nature are
made useful to people

● b. the design and manufacture of complex products

● c. the most important of all engineering disciplines

What is the problem?

LARGE software projects

How large are we talking about?

● Typically, more than 100,000 LOC (lines of

code)

Large projects

● Large budgets

● Large teams

● Years of development

Concern?
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/4

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/5

Large Projects

Driven by commercial

viability

Need to meet certain

“expectations”

To be successful:

• Reach market before competing products

• Need to have key features than others

• Need to have more features that others

• Etc.

Problems with Large Projects

Large projects (more than 500000 LOC) is a
risky undertaking

What is the risk?
● 65% of large projects are cancelled before

completion

● Lost investment

● Average cancelled projects in US is about a year
behind and over budget by 200%

Cancelled projects amounted to $14billion in
1993

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/6

More on Large Projects

Of completed projects

● 2/3 experience schedule delays and cost

overruns

● 2/3 experience low reliability and quality

problems in the first year of deployment

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/7

Why Projects Fail?

Referred to “death march projects” by Nancy
Leveson
● Feature creep

● Thrashing

● Integration problems

● Overwriting source code

● Constant re-estimation

● Redesign and rewriting during testing

● No documentation of design decisions

● Etc.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/8

Types of “Death March Projects”

Mission Impossible

● Likely to succeed, happy workers

Ugly

● Likely to succeed, unhappy workers

Kamikaze

● Unlikely to succeed, happy workers

Suicide

● Unlikely to succeed, unhappy workers

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/9

More on the “Software Project Problem”

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/10

Development Costs

Planning

Testing

Coding

What are the “Other” Problems?

So far we discussed the issues in getting

things “done”

Completing the project

What are the problems after completing

the project?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/11

Some “Other” Problems

Safety of software systems

Software is controlling many mission
critical systems
● Medical equipment

● Real-time systems (e.g., car stability control)

● Large-scale infrastructure (e.g., power Grids)

How do we ensure software is safe?

Failure modes of software + hardware
needs to be examined?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/12

Why Software Engineering?

Definitely, SE can improve the worst case

scenario

● Worst software developed under a well

regimented SE process is going to be better

than a worst software developed under a ad-

hoc process

● Best software.. cannot say much!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/13

Why Software Engineering?

Use well known engineering principles to

design, develop, maintain high quality

software systems

 Is SE going to always result in high quality

software?

Probability NOT! Why?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/14

Why Not Software Engineering?

Software is often linked to spontaneous

thinking

Can SE mean end of “hacking” culture?

Software hackers beware!

● Go the way of quack doctors!

● Extreme scenario - need to be certified

professional before releasing a software

● Each piece of software needs to be certified?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/15

Why is SE hard?

“Curse of flexibility”

● Software usually takes all the slack

● Software engineers usually save hardware

engineers’ ___

Complexity management

Lack of historical usage information

Large discrete state spaces

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/16

Typical Computing Model

Machines physically impossible become
feasible

Changes without retooling – runtime
reconfiguration

Abstract specification with implementation
details

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/17

GeneralGeneral

Purpose

Machine

Software
+ =

SpecialSpecial

Purpose

Machine

Curse of Flexibility

Software takes care of the “rest” and acts

as a glue

Not physically constrained to help

● Limit the scope

● Control the complexity

Flexible – start working before the problem

is fully understood (e.g., early stage

simulators)

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/18

Efforts to Characterize SE

Often SE is compared to Civil engineering

● E.g., constructing a building

Good analogy

● Size matters: dog house versus skyscraper

● Team effort with careful project planning

● Difficulties with design changes

● Other relevant elements: building structure,

scaffolding, architecture, components, etc.

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/19

SE versus Civil Engineering

Civil engineering is guided by the laws of
physics

Software engineering lacks the underlying
laws

Civil engineering relies on components a
lot

Software engineering is making some
progress in that direction with the advent
of “service” orientation

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/20

How do we characterize Software?

Can consider some axes of variabilities:

● Size

● How humans interact with it

● Requirements (changes in requirements)

● Need for reliability

● Need for security

● Portability

● Cost

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/21

Categorize the following Software

Systems

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/22

Open office Car Stability

Controller

Social Network

Portal

Size

Interactivity

Requirements

Reliability

Security

Portability

Cost

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/23

Failures

HW failure curve

SW (ideal) failure curve
time

R
a
te

 o
f

fa
ilu

re
s

time

R
a
te

 o
f

fa
ilu

re
s

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/24

Software failures

Real world failure curve

time

R
a
te

 o
f

fa
ilu

re
s

Ideal

Actual

With

Changes

change

Software Engineering Myths:

Management

We have books with rules. Isn’t that
sufficient?
● Which rules are important? (This is a general

problem with certification)

 If we fall behind, add more programmers
● Adding people to an already late project makes

it later!

We can outsource it
● If we don’t know how to do it in-house, it is

harder to do it with outsiders

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/25

Software Engineering Myths: Customer

We can refine the requirements later

● A recipe for disaster

The good thing about software is that is

easier to change

● It can cost more to change later

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/26

Software Engineering Myths: Practitioner

Lets write the code, so we will be done

faster

● Sooner you begin coding, the longer it will take

to finish

Until I finish, I cannot assess the quality

● Software and design reviews are more effective

than testing

There is no time for software engineering

● Is there time to redo the software?
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/27

Recap: What is SE for?

We want to build a large system

How will we know the system works?

How do we develop the system efficiently?

● Minimize time

● Minimize dollors

● Minimize ...?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/28

How do we know the software works?

How do we know a given behaviour is a

bug?

● Have some separate specification of what the

program must do

● We need to define the requirements for

“working” before start coding

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/29

Teams and Specifications

Do we really need to write specifications?

 Informally, people can

● Discuss what to do

● Divide up the work

● Implement incompatible components

● Surprised when it does not just work together

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/30

What can we do?

Write specifications:

● Write down exactly what it is supposed to do

● Make sure all team members understand it

● Keep the specifications up to date

Still.. we could have problems

● Ambiguities and contradictions can occur

● They lead to bugs

● Problems can be reduced

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/31

Summary #1: Importance of

Specifications

Specification allows us to:

● Check whether software works

● Build software in teams

Actually checking that software works is

hard

● Code reviews

● Static analysis tools

● Testing and more testing

● ...
Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/32

How do we code efficiently?

We want to minimize the development

time

● Reach market first!

Coding faster...

● hire more programmers

● parallelize the programming process!

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/33

Parallel Development

How many programmers can we keep

busy?

● As many as there are independent tasks

People can work on different modules

● Thus we get parallelism

● And save time

What are the pitfalls?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/34

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/35

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/36

Few words about Parallel Processing

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/37

Pitfalls of Parallel Development

Problems are the same as in parallel

computing

More people = more communication

● expensive, harder to manage

 Individual tasks cannot to be too small

We need to take care of sequential

constraints

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/38

Interfaces

Chunks of work must be independent

● Put them together to form the final system

We need well defined interfaces between

components

 Interfaces must not change much

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/39

Defining Interfaces

What are interfaces?

● Specifications between components that are

supposed to be independent

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/40

Software Architecture

To define interfaces, we must decompose

a system into separate pieces

How to do this?

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/41

Decomposition can be driven by

What the system does

How we build it

Who builds it

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/42

Summary #2: Decomposition

Efficient development requires

● Decomposing the system into pieces

● Good interfaces between pieces

Pieces should be large

● Don’t try to break into too small pieces

 Interfaces are specifications of boundaries

Winter 2009, Maheswaran Introduction to Software Engineering – ECSE321 Unit 1 - Introduction/43

