
ECSE-321 Intro to Software Engineering

Software Tutorials

Prepared by Trevor Ahmedali (trevor.ahmedali@mail.mcgill.ca)
Modified by Hussein Moghnieh (hussein.moghnieh@mail.mcgill.ca) on Sep. 2005

Modified by Kangbin Wang (kangbin.wang@mail.mcgill.ca) on Sep. 2006

Modified by Jun Ouyang (jun.ouyang@mail.mcgill.ca) on Jan.2009

Winter 2009

NETBEANS 5.0 IDE... 3

CREATE A NEW PROJECT ... 3
USING NETBEANS 5.0 CVS CLIENT .. 4
EDITING SOURCE CODE: EXPANDING ABBREVIATIONS .. 5
EDITING SOURCE CODE: USE CODE COMPLETION ... 6
EDITING SOURCE CODE: VIEW ERRORS .. 6
EDITING SOURCE CODE: COMMENT OUT CODE .. 6
EDITING SOURCE CODE: REFORMAT CODE .. 6
EDITING SOURCE CODE: CREATE IMPORT STATEMENT .. 7
COMPILE THE PROGRAM .. 7
RUN THE PROGRAM .. 7
DEBUGGING: ADD A BREAKPOINT TO A FILE .. 7
DEBUGGING: ADD A WATCH TO A VARIABLE ... 7
DEBUGGING: START A DEBUGGING SESSION .. 7
DEBUGGING: STEP THROUGH PROGRAM EXECUTION .. 8
DEBUGGING: STOP A DEBUGGING SESSION .. 8
OTHER HELPFUL TIPS ... 8
NETBEANS LINKS .. 8

JBUILDER X IDE .. 9

ACTIVATING JBUILDER X .. 9
CREATE A NEW PROJECT ... 9
GENERATING YOUR SOURCE FILES ... 10
EDITING SOURCE CODE: USE CODE COMPLETION ... 10
EDITING SOURCE CODE: VIEW ERRORS .. 10
EDITING SOURCE CODE: COMMENT OUT CODE .. 11
EDITING SOURCE CODE: REFORMAT CODE .. 11
COMPILE THE PROGRAM .. 11
RUN THE PROGRAM .. 11
DEBUGGING: ADD A BREAKPOINT TO A FILE .. 12
DEBUGGING: START A DEBUGGING SESSION .. 12
DEBUGGING: ADD A WATCH TO A VARIABLE ... 12
DEBUGGING: STEP THROUGH PROGRAM EXECUTION .. 12
DEBUGGING: STOP A DEBUGGING SESSION .. 13
OTHER HELPFUL TIPS ... 13
JBUILDER LINKS ... 13

ECLISPE 3.4 IDE ... 14

CREATE A PROJECT IN ECLIPSE.. 14
RUNNING ECLIPSE PROJECT .. 14

Run configuration .. 14
ECLIPSE CODE TEMPLATE (CODE COMPLETION) .. 16
DEBUGGING IN ECLIPSE ... 16
ECLIPSE HELPFUL TIPS .. 18

JAVADOC .. 18

mailto:jun.ouyang@mail.mcgill.ca

1

INTRODUCTION ... 18
USING JAVADOC COMMENTS IN YOUR SOURCE ... 19
JAVADOC TAGS ... 19
RUNNING JAVADOC FROM THE COMMAND LINE .. 20
JAVADOC IN NETBEANS ... 20
JAVADOC IN JBUILDER .. 21
JAVADOC IN ECLIPSE .. 21
JAVADOC LINKS .. 21

WINCVS ... 22

INTRODUCTION ... 22
CONFIGURING WINCVS .. 22
LOGGING IN TO THE SERVER .. 22
CREATING A CVS REPOSITORY .. 23
CREATING A NEW (EMPTY) MODULE ... 23
CHECKOUT A MODULE .. 23
UPDATING CODE BEFORE COMMITTING ... 24
CHECKING DIFFS PRIOR TO COMMITTING .. 24
COMMIT/MERGE A FILE OR FOLDER .. 24
UPDATE YOUR LOCAL WORKING DIRECTORY .. 25
WINCVS LINKS: ... 25

2

NetBeans 5.0 IDE

Create a New Project

 Choose File > New Project. 
 In Categories, choose “General”, and in Projects choose “Java Class Library”. 

Click Next. 
 Under Project Name enter Hello_World , change the project location to

“C:\my_project”. Click Finish. 

The Hello_World project opens in both the Projects window and the

Files window.
 Expand the Hello_World project node. 
 Right-click the Source Packages node and choose New > Java Class. Name the

class myMain. Click Finish. myMain.java opens in the Source

Editor.(Figure 1) 
 In the static main function, type the following: 

System.out.println(“hello world”); 

 In the Project Explorer, right click on “Hello_World” and click run. Select

myMain to be your main class. 

Figure 1: Creating NetBeans Project

3

Using NetBeans 5.0 CVS Client

Import the project to CVS (Creating new CVS Module)

 In the Project Explorer, highlight the project Hello_World 
 Choose CVS > Import into Repository 
 In CVS Root click Edit. 

 In the Edit CVS Root box , fill as shown in Figure 2. 

Figure 2. Edit CVS Root

 Click Ok. Check “Use internal SSH” and provide your UNIX password. 
 Folder to import should be: C:\my_project\Hello_World as shown in Figure 3. 
 Repository Folder, enter Hello_World 

Figure 3: Folder to Import

4

 Click Finish. Your module will be imported to the CVS server, and it will be

checked back to your local directory. 


 Right click on any file or directory, choose CVS to see the various CVS

command.(Figure 4) 

Figure 4: NetBeans CVS

Editing Source Code: Expanding Abbreviations

 Display line numbers in the Source Editor by right-clicking in the left margin and

choosing Show Line Numbers. 
 Place the cursor at the end of the main method declaration (on or near line 22)

and press Enter. 

 Type sout and press Space. The sout abbreviation expands to 
System.out.println(""); 

TypeHello World! It’s betweenthe quotation marks (be sure

toinclude a space after It's).
To see or customize the list of

abbreviations:o Choose Tools >

Options.

o Click on Edit Icon and select code completion tab

5

Editing Source Code: Use Code Completion

Type a space and then type+ newafter"Hello World! It's ".
 Type another space and start typing the word java. The code completion box

should open and display all of the matching packages. If the code completion box

does not open, press Ctrl-Space to manually open it. 

 Use the arrow keys to select java in the code completion box and press Enter.

Then type a period (.). The code completion box should open again, listing all

of the available subpackages of the Java package. 

 Finish entering java.util.Date().toString() using code

completion. When you are done, the line should read: 
System.out.println("Hello World! It's " +

new java.util.Date().toString()); 

Editing Source Code: View Errors

 Place the cursor at the end of the main method declaration (should be line 22) and

press Enter. 
 Copy the following comment and paste it in the new line right above the "Hello 

World!" message
Print out "Hello World!" and the time

 After a second or so, the string is underlined with a red line and has a red

“x” icon in the left margin, meaning that it contains errors. 
 Hold the mouse over the icon to view the error. 

Editing Source Code: Comment Out Code

 The line that you pasted in the last step should really be a comment and should

therefore be enclosed in comment symbols. Put the insertion point at the

beginning of the line and press Ctrl-Shift-T to comment the line out. Note that

this also works if you‟ve selected several lines at once. 

Editing Source Code: Reformat Code

 The spacing for the comment line does not match the spacing for the rest of the

file. Press Ctrl-Shift-F to reformat the entire file. If any lines are selected when

you press Ctrl-Shift-F, only those lines are reformatted. 

6

Editing Source Code: Create Import Statement

 Go back to the Hello World message and delete java.util

from java.util.Date().toString(). 
 Place the insertion point anywhere in the word Date and press Alt-Shift-I. 
 In the “Fast Import” dialog box, choose java.util.Date and click OK. The import

statement is created. This allows you to automatically import the correct package

for a class without having to know the complete package hierarchy. 

Compile the Program

 Choose Build > Compile (F9). 
 The Output window opens at the bottom of the IDE and displays any compiler

output, including compilation errors. You can double-click any error to go to

its location in the source code. 

Run the Program

 Choose Build > Execute (F6). 
 The IDE runs the program and prints the output to the Output window. You should

see the following message in the Output window (with a different date, of 

course):
Hello World! It's Wed Dec 10 18:15:20 CET 2003

Debugging: Add a Breakpoint to a File

 Click in the left margin of the file on line 27 (Ctrl-Shift-F8). 
 A red breakpoint icon appears in the margin and the line is highlighted. 

Debugging: Add a Watch to a Variable

 Right-click Date on line 26 and choose New Watch (Ctrl-Shift-F7). 
 Make sure that the “Watch Expression” field contains Date and click OK in

the dialog box. 

Debugging: Start a Debugging Session

 Choose Debug > Start Session > Run in Debugger (Alt-F5). 
 The IDE runs the file until the breakpoint is reached. Use the debugger views at

the bottom of the IDE to monitor your program's state, such as the value of the

Date variable (listed under both Local Variables and Watches). 

7

Debugging: Step Through Program Execution

 Use Step Into (F7) and Step Over (F8) to execute the program one line at a

time. Step Into will continue the debugging one line at a time inside an

upcoming method call, whereas Step Over will treat the whole method call as a

single statement and continue debugging afterwards. 

Debugging: Stop a Debugging Session

ChooseDebug>Finish Sessions(Shift-F5).

Other Helpful Tips

 When coding applications, you can include comments with Javadoc @todo tags

(or simply just comments with the keyword TODO) for things that are left to be

done or that aren‟t working. This makes it easy for others (or yourself later on) to

find the problems. 
 To search documents for TODO tags, choose Windows > To Do from the main

window. This displays a list of “to do” tasks and lets you jump straight to one

by double-clicking on it. 

NetBeans Links

 NetBeansTM IDE 5.0 Tutorials

http://www.netbeans.org/kb/50/ 

8

JBuilder X IDE

Activating JBuilder X

 Before you can use JBuilder, you must first register for a free activation. 
 Go to http://www.borland.com/products/downloads/download_jbuilder.html# 
 In the “Keys Only” table, click the Foundation link. 
 Click the New User button in the form that appears, and register for an account. Use

a valid e-mail address, because the activation file will be sent to that address. 
 In a few minutes, you should receive an e-mail from Borland at the address you

entered. It will contain the activation file as an attachment. Save it on the desktop

(or in some another folder). 
 When you start JBuilder, select the option for activation file and select the

file you just saved. You should now be able to use JBuilder. 

Create a New Project

 Choose File > New Project to open the Project wizard. 
 In Step 1 of the Project wizard, type HelloWorld in the “Name” field. 
 Accept jpx as the project file type. 
 In “Directory”, enter a directory for this tutorial project. The end of the directory

path will automatically be the same as the project name you just entered. 
 Uncheck the Generate Project Notes File option. If you check this option,

the Project wizard creates an HTML file for project notes and adds it to the

project (not needed now, but you might want to do that for your project). 
 Click Next to go to Step 2. 
 Accept the default paths in Step 2. Note where the compiled class files,

project files, and source files will be saved. 
 Click Next to go to Step 3. 
 Type Hello World in the Title field of the Javadoc fields. 

 Fill in the following Class Javadoc fields as well: Description (a short

description, e.g. “This is the Hello World tutorial”), Company (McGill or your

project group name), @author (your name, obviously). The information in the

class Javadoc fields appears in the project HTML file and as optional header

comments in the source code. 
 Click Finish. A file, HelloWorld.jpx, is generated by the wizard and

appears in the project pane located in the upper left of JBuilder's IDE. 

9

Generating Your Source Files

 Choose File > New to open the Object Gallery. 
 Select General on the left-hand part of the dialog box. 
 For now, we will select a simple class, but later on you can use the other options

for your course project (Application, for example, will let you build a graphical

interface for your project): select Class and click OK. 

 In the Class Wizard, enter helloworld (it must be lowercase, according to

Java coding conventions) under “Package”, if it isn‟t already there. 
 In “Class name”, enter HelloWorldClass. 

 Check Public and Generate main method. 
 Uncheck Generate default constructor. 

 Click OK. The wizard creates the class file you specified and places it in your

project. It appears as a node in the Project pane, under the package you specified. 

Editing Source Code: Use Code Completion

 If the HelloWorldClass.java file isn‟t already open, locate it in the Project

pane on the left-hand side of JBuilder and double-click it to open it. 
 Place the cursor at the end of the main method declaration (should be line 13) and

press Enter to create a new line. 
 Type: 

String str;
System.out.println("Hello World! It's " + str);

AfterString str(should be line 14), type a space and then type=

newafterString str but before the semicolon.
 Type another space and start typing the word java. (note the period). The code

completion pop-up box (called “CodeInsight” in JBuilder) should open and

display all of the matching packages. If the CodeInsight pop-up box does not

open, press Ctrl-H to manually open it. 
 Use the arrow keys to select util in the pop-up and press Enter. Then type a

period (.). The CodeInsight pop-up should open again, listing all of the available

classes in the java.util package. 
 Finish entering java.util.Date().toString() using code

completion. When you are done, the line should read: 
String str = new java.util.Date().toString(); 

Editing Source Code: View Errors

 Place the cursor at the end of the main method declaration (should be line 13) and

press Enter. 
Type the following comment in the new line right above the "String str"

statement (it should be line 14):
Print out "Hello World!" and the time

10

 The string is underlined with a red line and has a red exclamation mark icon in the

left margin, meaning that it contains errors. Note also that the error is displayed in

the Errors folder of the Structure pane (bottom-left window pane). 

 Hold the mouse over the text that‟s underlined in red to view the error. 
 Note: if the error icon shows a yellow wrench beside the exclamation mark, it

means JBuilder thinks it might be able to fix the error itself (this is not the case

with the error we just made, though). In such a case, left-click the error icon in the

left margin to see possible solutions (the solutions are not guaranteed to be

correct, however!). 

Editing Source Code: Comment Out Code

 The line that you typed in the last step is a comment and should therefore be

enclosed in comment symbols. Put the insertion point at the beginning of the

line (should be line 14) and press Ctrl-/ to comment the line out. 

 Note that this also works if you‟ve selected several lines at once. Furthermore,

pressing Ctrl-/ on a line(s) will un- comment it if it was already a comment. 

Editing Source Code: Reformat Code

 If the spacing or indentation for the comment line does not match the spacing for

the rest of the file, you can choose Edit > Format All to reformat the entire file. 
 To change the formatting rules used by JBuilder (indentation, braces, spacing,

etc.), you can go to Project > Project Properties and select Formatting. 

Compile the Program

 Choose Project > Make Project “HelloWorld.jpx” (Ctrl-F9) to compile

the project. 
 If there are errors or warnings, the Messages window opens at the bottom of the

IDE and displays any compiler output, including compilation errors (this might be

in a tab called “Build HelloWorld.jpx”). You can double-click any error to go to

its location in the source code. 

Run the Program

 Choose Run > Run Project (F9). 
 The first time you run a project, a dialog box called “Runtime Configurations” will

come up. You must create a new configuration for your project. Click New. 
 Enter in a name for the configuration (or leave the default). 

 Make sure “Type” is set to Application. 
 Beside “Main Class”, click the button with the ellipses (…) and select 

HelloWorldClass, then press OK. 
 Press OK. 

 Press OK to exit the “Runtime Configurations” dialog box. 

11

 You only had to do that because it was the first time running the project. Now,

choose Run > Run Project (F9) again to run the program. 
 The IDE runs the program and prints the output to the Messages window at the

bottom of the IDE. You should see the following message in the Output window 
(with a different date, of course):

Hello World! It's Tue Sep 07 09:18:46 EDT 2004

Debugging: Add a Breakpoint to a File

 Click in the left margin of the file on line 16 to add a breakpoint (F5). 
 A red breakpoint icon appears in the margin and the line is highlighted. 

Debugging: Start a Debugging Session

 Choose Run > Debug Project (Shift-F9). 
 The IDE runs the file until the breakpoint is reached. Use the debugger views at

the bottom of the IDE (in the Messages window) to monitor your program's

state, such as the value of any variables you have put watches on (see next step). 

Debugging: Add a Watch to a Variable

 Right-click on str on line 15 and choose Add Watch (Ctrl-Shift-F7). Note:

unlike NetBeans, you can only add a watch to a variable once the debugger

has started! 

 Make sure that the “Expression” field contains str and click OK in the dialog

box. 
 You can now view the value of str at the current point of execution by going to

the “Data watches” tab on the left side of the Messages window. This can be very

useful when you want to know the value of a variable at a certain point in the

program. 
 If the variable is an object (as in our case), rather than a primitive data type (like

an int or double), then you can expand its entry in the “Data watches” view to

show the values of its members. 

Debugging: Step Through Program Execution

 Use Step Into (F7) and Step Over (F8) to execute the program one line at a

time. Step Into will continue the debugging one line at a time inside an

upcoming method call, whereas Step Over will treat the whole method call as a

single statement and continue debugging afterwards. 

12

Debugging: Stop a Debugging Session

 Click the Reset Program button (looks like a red square “stop” button)

(Ctrl-F2) at the bottom of the Messages pane. 

Other Helpful Tips

 When coding applications, you can include comments with Javadoc @todo tags

for things that are left to be done or that aren‟t working. This makes it easy for

others (or yourself later on) to find the problems. On the line where you want to

enter the comment, just write todo and press Ctrl-J, and then JBuilder will

format it into a proper Javadoc comment. 
 To search documents for @todo tags, choose Search > View Todos from the

main window. This displays a list of “to do” tasks and lets you jump straight

to one by double-clicking on it. 

JBuilder Links

 Introducing JBuilder:

http://info.borland.com/techpubs/jbuilder/jbuilderx/introjb/contents.html 

 JBuilder complete documentation:

http://info.borland.com/techpubs/jbuilder/jbuilderx/index1280x1024.html 

13

Eclispe 3.4 IDE

Installation

Download Eclipse Ganymede from the website http://www.eclipse.org/ and
unpack it to any directory. No installation procedure is required. Eclipse requires
an installed Java as of version 1.5 It is recommended to use Java 6 (also known
as Java 1.6).

Create A Project in Eclipse.
 Choose File > New Project. 
 In Select wizard, choose Java Project, click Next. 
 In the Project Name: type your project name : Hello_World 

 Click “Create Project from existing source” and browse to your local

drive, create a directory and call it: my_eclipse_project. Click Finish 
 Expand the Hello_World Project Node 
 Right click and choose new Class. Make the Class name “myMain”. Select the

option: public static void main(String[] args). Click Finish 
 Write the following command in the static main method: 

System.out.println(“Hello World”); 

 Right click the Hello_World project and choose, run as: Run. 

 Double click on Java Application. A new run configuration will be created. In

the main class edit box, click on the search button and choose “myMain” 
 Click Run. 

Running Eclipse Project

Run configuration
A run configuration is a set of guidelines that Eclipse uses for running a particular Java

program. A particular run configuration stores the name of a main class, the values stored

in the main method's args parameter, the JRE version to be used, the CLASSPATH, and

many other facts about a program's anticipated run.

 Select a class that contains a main method. 
 On Eclipse's menu bar, choose Run>Run. 
 In the Configurations pane (on the left side of the Run dialog), double-click the

Java Application branch. Click on Search button next to the Main Class edit box

and select myMain from the list. (Figure 5) 

 Click Run. 

14

Figure 5: run configuration

Note: Now that you've run the HelloWorld program and run configuration, that

configuration shows in the Run tool's dropdown list for easy access. As you add more

configurations, they will be added as well, each with a number. The one marked

number "1" will be the one selected if you just hit the Run tool button itself. (Figure

6)

Fig 6: running Java Project

15

Eclipse Code Template (Code completion)

 In the static main function, write : sysout and click Ctrl +

space Sysout will be replaces by: system.out.println(); 
 To view the list of ready made template and add you own template. Click 

Window->Preferences->Java->Editor->Templates 

Debugging in Eclipse

Modify the main method with the following source.

int count = 3;
for (int i = 0; i < count; i++)
{
System.out.println("Hello" + i);
}

 Right-click in the editor and select Save. 
 Right-click on the debug column to the left of the for loop. Select Toggle

Breakpoint. 

A small blue ball will appear (Figure 7) next to the line that has a breakpoint. However,

setting a breakpoint is not sufficient to debug a program. You must also run the program

in debug mode. This is done by using the Debug tool rather than the Run tool.

Figure 7: Adding a breakpoint

 Click the Debug tool button. The debuger perspective window will open

(Figure 8) 

16

Figure 8: The Debug perspective

A. The Debug window, which shows the state of all processes, living or dead, on the

machine.(Figure 9)

B. The Display window. This particular window has several stacked views that you

can use to interact with the program. By default, it shows the Variables

view.(Figure 10)

C., D., & E. The Editor, Outline, and Console views. These are actually all

from the Java perspective, just resized and repositioned a bit.(Figure 8)

Figure 9: The Debug view.

The Debug view shows the various processes running (or no longer running). view) by a

small blue arrow.

17

Figure 10: The Variables view.

This view shows the variables. You can not only inspect the contents of any variable; you

can also interact with them, changing the contents.

Eclipse Helpful Tips

 To comment one or multiple lines, select the lines and type : Ctrl + / 
 To comment a paragraph type: Ctrl + Shift + / 
 To Reformat the source code: Select the code you want to format and press 

Ctrl+Shift+F 
 Import code completion: Write the following statement: 

System.out.println("Time:"+new Date().toString()); 

On the left margin, a red X appears signaling an error. Left Click on it and it

will list the different options to solve the error. Choose “Import

„Date‟(java.util)”.

For more information, please refer to the following link.

http://www.vogella.de/articles/Eclipse/article.html

Javadoc

Introduction
Javadoc is the Java programming language's tool for generating API documentation.

Java API documentation describes important elements of your code, such as

methods, parameters, classes, fields, and so forth. You can insert special Javadoc

comment tags into your code so that they will be automatically included in the

generated documentation. Describing your code within the code itself rather than in a

separate document helps to keep your documentation current, since you can

regenerate your documentation as you modify it.

A doclet is a program that uses the Javadoc tags in the source code to produce

documentation. The standard doclet that comes with Java produces HTML

documentation (exactly like the Java API webpages).

18

Using Javadoc Comments in Your Source

Javadoc comments are comments that start with /** and end with */ (note the extra

leading asterix). You can include Javadoc comments in the source code, ahead of

declarations for any class, interface, method, constructor, or field. You can also create

doc comments for each package and another one for the overview, though their syntax is

slightly different.

Documentation comments are recognized only when placed immediately before class,

interface, constructor, method, or field declarations. Documentation comments placed in

the body of a method are ignored.

A doc comment is composed of a main description followed by a tag section: the

main description begins after the starting delimiter /** and continues until the tag

section. The tag section starts with the first block tag, which is defined by the first @

character that begins a line (ignoring leading asterisks, white space, and leading separator

/**).

Comments are written in HTML: this means that text will be interpreted as HTML

code, so you can use HTML tags.

Summary sentences: the first sentence of each doc comment should be a summary

sentence, containing a concise but complete description of the declared entity.

Javadoc Tags
Here are some useful Javadoc tags to use in your Javadoc comments:

 @author name: Use this to enter your name. Can be used in overview,

package, or class Javadoc comments. 
 @param parameter-name description: Use one of these tags for each

parameter in a method‟s Javadoc comment, where parameter-name is the name

of the parameter as it appears in the method declaration, and description is a

concise description of it (description may use multiple lines). 
 @return description: Adds a "Returns" section with the description text.

This text should describe the return type and permissible range of values. This

tag is valid only in a doc comment for a method. 
 @throws class-name description: Used to describe an exception of class-

name (e.g. IOException) thrown by a method. Can only be used in method

Javadoc comments. 

 @version version-text: Adds a "Version" subheading with the specified

version-text (e.g. 1.0) to the generated docs when the -version option is used.

This tag is intended to hold the current version number of the software that this

code is part of. It can be used in overview, package, or class Javadoc comments. 

19

Running Javadoc from the Command Line
The javadoc program will be located in the same place as the rest of Java on your

machine.

You can run it on a whole package or subpackage (e.g. helloworld.utils):

javadoc [-sourcepath path] [-classpath path] [packages]

Or you can run it on specific source files (e.g. C:\user*.java):

javadoc [-sourcepath path] [-classpath path] [source_files]

The –sourcepath option is used to provide the path to the start of the package. For

example, suppose you want to document a package called com.mypackage whose

source files are located at: C:\user\src\com\mypackage*.java. In this case

you would specify the sourcepath to C:\user\src, the directory that contains

com\mypackage, and then supply the package name com.mypackage:

javadoc -sourcepath C:\user\src com.mypackage

The –classpath option is used when your files reference other classes outside of their

package. For example, if you want to document com.mypackage, whose source files

reside in the directory C:\user\src\com\mypackage, and if this package relies

on a library in C:\user\lib, you would run:

javadoc -classpath \user\lib -sourcepath \user\src com.mypackage

Note that javadoc has more available options, but you probably won‟t need those. You

can find their descriptions at

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html#options.

Javadoc in NetBeans

To generate the javadoc files:
o Build > Generate Javadoc for “your project name”

 To check for missing javadoc comments: 
o Right-click any source in the package exolpoer select Tools > Auto

Comment.
o The list on the left shows all entities that should have comments. The

icons indicate if the comments are incomplete (yellow icon) or missing
(red icon). The box at the bottom-left describes the problem.

o You can fill in the Javadoc comments on the right of the window.

o Use the Refresh button to re-check your changes.
 The generated javadoc are stored in “<project home>\doc\javadoc” directory

within your project. Click on index.html to view the javadoc. 

20

Javadoc in JBuilder
JBuilder handles all the compiling of the Javadoc information when you build your

project. It also includes a few handy shortcuts to using Javadoc with your project:
 To start a Javadoc block comment, position the cursor the line above the method

or class you want to document, and type /** then press Enter. JBuilder

automatically creates a Javadoc comment block and fills it in with the relevant

Javadoc fields for you to fill out. 
 You can also accomplish the same thing by right-clicking on the method or class

you want in the editor window and selecting Edit Javadoc for … from the menu. 
 When you‟re in a Javadoc comment block, type @ then a pop-up box will

appear listing the possible Javadoc fields for you to use. 
 To insert a Javadoc “@todo” comment, you simply need to write todo and then

press Ctrl-J. JBuilder turns that line into a proper Javadoc @todo comment so

you just have to type in the item‟s description. 
 When Javadoc HTML files are made (i.e. when you compile your project), you

can view them by selecting the Doc tab at the bottom of the editing window of the

file you want to see. 

Javadoc in Eclipse

To generate Javadoc in Eclipse:

 Highlight your project name in Package Explorer. 
 Click Navigate ->Generate Java Doc. 
 In the Wizard, click finish to accept the default settings 

To view the generated java docs. Expand the doc folder in the package explorer, and

right lick on index.html, choose open in the system browser.

Javadoc Links

 Javadoc Tool Homepage: http://java.sun.com/j2se/javadoc/ 
 How to Write Doc Comments for Javadoc (official Sun conventions):

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html 

21

WinCVS

Introduction
CVS is a version control system. It tracks the history of changes to your source files, so

you can easily go back to an earlier version. It is also useful for working in groups, since

you don‟t have to worry about overwriting each other‟s code. Each developer works on

their own local copy of the code, in a working directory (also called sandbox), and CVS

will merge the changes into a central location, called a repository.

A user can checkout a file from the repository to edit in his working directory. When

finished, the user can send his version back in to the repository (called committing or

merging). To indicate that he is no longer working with the file, he can release or

checkin the file. Finally, if the version on the repository is newer, the user can update his

local files to include the new changes.

WinCVS is a specific client program for working with a CVS repository. Since CVS

itself is actually a command-line program, WinCVS just provides a GUI front-end for it.

Configuring WinCVS

 When you start WinCVS for the first time, the WinCVS Preferences dialog

box should appear. If it doesn‟t, go to Admin > Preferences. 
 In the Global tab, uncheck “Prune empty directories”. 

 In the WinCvs tab, check “External diff program” and enter in the following path: 
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools\Bin\windiff.exe 

 Click OK. 

Logging in to the Server

 Before any CVS commands can be issued to the CVS server, you must first

login. Go to Admin > Login. 
 In Login Settings menu, check “CVSROOT” and click on the right button

after the edit box. 

 In protocol box, choose “SSH”. Repository Path, write: /CVSREP/<group

directory>. i.e. /CVSREP/softeng0 . The group directory will be given to you

during the tutorial session. 
 In username, enter your UNIX username and password. In hostname enter:

Xenon.ece.mcgill.ca . Click Ok to save the settings. 
 Look at the messages in the output window to see if you logged in correctly. If it 

was successful, it will say something like:
cvs -q login
(Logging in to user@server)
*****CVS exited normally with code 0*****

22

If it was unsuccessful, it will look something

like:cvs -q login
(Logging in to user@server)
cvs [login aborted]: authorization failed: server

snow rejected access
*****CVS exited normally with code 1*****

Creating a CVS Repository

 Each group will have to initialize their repository only once. Meaning , CVS

will add special directory called CVSROOT in /CVSREP/<group directory> 
 You must first be logged in. Go to Create > Create new repository. 

 Verify the parameters in the General tab and click OK. 

Creating a New (Empty) Module

Files and directories (folders) can only be added to an existing module in the repository.

Before any files or folders can be added to the repository, it is therefore necessary to

create at least one module. The easiest way is to import an empty folder into the

repository.
 Create an empty folder somewhere. Create a dummy text file in the directory (

WinCvs doesn‟t allow an empty directory to be checked out) 
 Go to Admin > Command Line. 

 Check CVSROOT and make sure your login settings are written in the Edit box

next to it. 
 Check the box that reads “Click to specify in which local directory the

command applies”. 

 Click the Change folder button and select the empty folder you created. 

 In the “Enter a cvs line command” field, type: 
cvs import –m “Create Module” module1 vtag rtag

(where module1 is the name of the new module)
 Click OK. 
 The module will be created on the UNIX server and the file is added. A good

practice is login to your UNIX account using any SSH tool and go to the directory

/CVSREP/<group directory> to see the changes made so far. 
 You need to check out the module you just created to your local drive to make the

modification. Follow the next step to checkout the module 

Checkout a Module

 You must first know the name of the module you want to check out. 
 Choose Create > Checkout module. 
 In the “Checkout settings” dialog box, enter the name of the module to

be checked out. (module1) 
 Fill in “Local folder to checkout to” with the local directory you want to store

the module in. It can be any directory or simply the “C:\” directory 

23

 In the “Checkout settings” tab, you can use the “Checkout (sticky) options” to

retrieve versions other than the most recent (for example, if you need to go back

to an older version because of a new bug). 
 Click OK. 
 You can now edit the checked out files in the local directory you selected,

using NetBeans, JBuilder or Eclipse. 

Updating code before Committing
Before you commit a file, you should update to make sure you have the latest version as

the one in the CVS repository.
 Right-click the file you want to commit, and choose update. 
 If the file on the server is newer than your local copy , winCVS will try to merge

both versions. If winCVS failed to do the merging automatically, due to conflict

in the same line of code, proceed to the next step to resolve the conflict. 

Checking Diffs Prior to Committing
Before you commit a file back into the repository, you may want to verify

what‟s different between your local copy and the repository copy.
 Right-click the file or folders you want to check, and choose Diff selection. 
 In the “Diff settings” dialog box that appears, check Use the external diff to use

the graphical diff packaged with Microsoft Visual Studio (you already set it up

when you configured WinCVS). Otherwise, WinCVS uses a text diff, whose

output is similar to the Unix command diff. 
 Click OK. 

Commit/Merge a File or Folder

 Select the file or folder you want to commit back to the repository. 
 Choose Modify > Commit. 
 Enter a log message that describes the changes you made since you last checked

out the file/folder. 

 If you selected a folder to commit, but you don‟t want to commit its subfolders,

check Do not recurse. 
 If you want to force the commited file/folder to be a certain version, you can go to

the “Commit options” tab and check Force revision/branch and then enter a

version number. 
 Click OK. 
 Note that you can only commit files if their original version was the most recent

version from the repository. For example, if I check out version 1.2 of a file, and

someone else checks it out and commits it (making that version 1.3), then I

can‟t commit my 1.2-based file until I update the module first. 

24

Update Your Local Working Directory

 Prior to running the update command, it may be useful to know which files are

out of date. The Query Update command lists the actions that will occur if update

were to be run on the currently selected file or folder. To run it, go to Query >

Query update (F4). Filenames listed with a “U” in front of them indicate which

files will be overwritten by newer files checked out from the repository. 
 If this is okay, go to Modify > Update Selection (Ctrl-U) to update the currently

selected file or folder to the newest version (if there‟s a newer version in the

repository). 

 The “Update settings” dialog box will appear. Most of the options aren‟t useful

and should be unchecked, but check Create missing directories (in case new

directories were added to the repository). 
 If you definitely want to overwrite your code with whatever‟s the most recent

version in the repository (even if the local code was newer), then check Get the

clean copy. 
 Click OK. 

WinCVS Links:

 WinCVS homepage: http://www.wincvs.org 
 WinCVS Daily Use Guide: http://ikon.as/wincvs-howto/ 
 WinCVS 1.3 Quick Start Guide: http://www.devguy.com/fp/cfgmgmt/cvs/startup/ 

25

