Java Review
ECSE 321: Intro to Software Engineering
Electrical and Computer Engineering

McGill University

Winter 2009

Contents
1 JavaBasics 3
1.1 ClasSeS o e e e 3
1.2 Staticand Final e e e 6
1.3 Access Control e e e e 7
1.4 Packages o e e 7
1.5 Mutability and Immutability 8
2 Objects 9
2.1 TheObject Class o i e e e e e e 9
2.2 Equality . .. e e 9
2.3 Cloning ObjJects e 11
3 Object Oriented Programming 12
3.1 Encapsulation e e e e 12
3.2 Inheritance e 12
3.3 Interface e e 13
4 Exceptions 14
4.1 EXCePtiONS o e e e 14
4.2 BasicUSe e 14
4.3 ThroW . . . o e e 16
44 THhIOWS . . . o o e e e e 17
45 Finally . . . e 18
5 Collections 19
5.1 Collections Framework e e 19
5.2 Collections Interfaces e e e e 19
5.3 Implementations L e 20
5.4 Iterators o e e e e 21
6 JavalO 22
6.1 Streams e e e s e 22
6.2 ByteStreams e e 22
6.3 Character Streams e e e e 23

6.4 Serialization e s 24

ECSE 321 Winter 2009 Java Review

7 Assertions 25
7.1 ASSErtionS L e e e e 25
7.2 Example . ..o ... 26
7.3 Preconditions and Postconditions L o o 26
7.4 Final Thoughts27

8 Log4j 27
8.1 LoggingforJdava. e .27
8.2 LogdjExample 28

20of 29

ECSE 321 Winter 2009

Java Review

1 JavaBasics

1.1 Classes

A Simple Class
* The Cube class is basically the same as a struct from C/C++
» Create a Cube object using new Cube ()

» Default constructor has no parameters and has the same name as the class.

* The programmer must remember to initialize each variable after creating the object.

class Cube{ int

width ; int
height ; int
depth;

Cube c =new Cube(); c

.width = 1;
c.height=1;c
.depth = 1;

Overriding the Default Constructor
» A constructor initializes an object upon creation.
* In the example below, variables are always assigned the same values.

» Still need to assign manually to change values.

class Cube{ int

width ; int
height ; int
depth;

public Cube(){

width = 1;
height = 1;
depth =1,

}

Cube c =new Cube();c

.width = 2;
c.height=2; c
. depth = 2;

3o0f 29

ECSE 321

Winter 2009

Java Review

Parameterized Constructors

« Parameterized constructors make object creation easier:

* Object creation and initialization is done using a single new statement.

* Programmer need no longer initialize variables individually.

class Cube{
int width ;
int height ;
int depth;

public Cube(int w, int h, int d){

width =w;
height = h;
depth = d;

Cube c1 =new Cube(1,1,1);
Cube c2 =new Cube(2,2,2);

Methods

* Member data should never be accessed directly.

» Use get/set methods to enforce data encapsulation.

class Cube{

private int width ;
private int height ;
private int depth;

public Cube(int w, int h, int d) {

width =w;
height = h;
depth = d;

public void setWidth(int w) { width =
w;

}

public int getWidth () { return
width ;

}

Cube c =new Cube(1,1,1); Cc.
setWidth (2);
int w= c.getWidth ();

4 of 29

ECSE 321

Winter 2009

Java Review

Overloading

+ Parameters must be different in order to distinguish between methods.

Can define two or more methods within the same class that share the same name.

class Cube{

public Cube (int w, int h, int d) {

public Cube(float w, float h, float d) {
this ((integer) w, (integer) h, (integer) d);

public void setWidth(int w) {
width =w;

public void setWidth(double w) {
setWidth ((integer) w) ;

}

EchoArgs.java

* EchoArgs simply echoes command-line parameters.

public class EchoArgs {
public EchoArgs(String [] str) {
for (int i = 0; i < str.length; i++) {
System . out . printin (str[i]);
}
}
public static void main(String [] args) {
if(args .length == 0) {
System . out . println ("no args to echo...");
} else {
new EchoArgs(args);
}
}
}

¢ Compiling and Running EchoArgs:

$ javac EchoArgs .java

$ java EchoArgs

no args to echo...

$ java EchoArgs one two three
one

two

three

5 of 29

ECSE 321 Winter 2009

Java Review

1.2 Static and Final
The Static Modifier
+ Data: Same data is used for all the instances (objects) of some Class.
* Method: Can be called without an instance and can only access static data.

« Initialization Block: A block of code that is executed when the class is first loaded.

class StaticExample {

static int INSTANCES = 0;

static{
System . out . println (" Static Initializer "};

}

public StaticExample () {
INSTANCES++;

}

public static int getinstances () { return
INSTANCES;

}

* static variables/blocks are initialized/executed in the same order that they appear in the code.

The Final Modifier

public final class FinalClass {

static final int STATIC_CONSTANT =1, final
int CONSTANT = 2;

final void finalMethod () {}
public class BrokenClass

extends FinalClass {

void finalMethod () {

CONSTANT =0;
}

*+ final member data cannot be changed (constant).
+ final method cannot be overridden by a subclass.

* final class cannot be extended.

* Final can be used to prevent errors.
* BrokenClass will not compile because:

* |t extends afinal class.
* |t overrides a final method.

* It assigns a new value to afinal variable.

6 of 29

ECSE 321 Winter 2009 Java Review

Singly Linked List

class Node{

public Object data = null ; public
Node next = null ;

public class SinglyLinkedList{ static final
int MAX_SIZE = 10; final Node HEAD =
new Node(); Nodetail=null;

int size = 0;

public void addNode(Object data) {

i f (size == MAX_SIZE}
return ;

if(size == 0) {
HEAD. data = data;
tail =HEAD;

} else {
Node n =new Node();
n.data = data;
tail.next = n;
tail =n;

}

size++;

* MAX—SIZE shared by all SinglyLinkedList objects.
* HEAD declared as final to prevent us from changing it by mistake.

1.4 Access Control
Access Control
* public

— class: access granted to everyone

— member function/data: Can be called/modified by other classes.
* protected can be called/modified from derived classes only.

* private can be called/modified only from the current class

* By default, when no access specifier is used, the member/class can be called/modified/instantiated
only from within the same package.

1.5 Packages
Packages
* A package physically and logically groups classes together

* Avoids naming conflicts

7 of 29

ECSE 321 Winter 2009 Java Review

« Control access to classes

* Unrestricted access between classes of the same package (public).

* Restricted access for classes outside the package (default).

* Place a package statement at the top of the source file in which the class or the interface is defined.

+ Refer to amember by its qualified name, ie. java.util.LinkeList

* Importing classes:
* Import statements go after package statement.
* Asingleclass: import Jjava.util.LinkedList;

* All classes from a package: import java.util.x*;

package my. utils ;

public class UtilClass{

}

class HelperClass{

}

package my. ds;

public class LinkedList{
}

import my. utils . *;
import java . util . LinkedList ;

public class Program {
UtilClass util = new UtilClass () ;
HelperClass help =new HelperClass () ;
my. ds . LinkedList list =my.ds. LinkedList () ;

* Will not work because HelperClass is not public.

* Using qualified name avoids name conflicts with LinkedList class;

1.6 Mutability and Immutability
Mutability
* An object is mutable if it has methods which can change its state.

* The stringBuffer class can be modified dynamically

StringBuffer str = new StringBuffer ("abc") ; str
.append("def");

8 of 29

ECSE 321 Winter 2009 Java Review

Immutability
* An object is immutable if it cannot be changed.
* The string class is immutable since it doesn’t have any methods that let you change it’s state.
* What about the replace methods?

* they return anew String object.

String a = "abc";
String b = a + "def";
String ¢ = a.replaceAll(’a’,’z’);

2 Objects

2.1 The Object Class
The Object Class
» Every Class in Java extends java.lang.Object.
* Provides methods that are common to all objects.
» Some of the methods defined by the Object class are:

®* Object clone(): Creates anew object that is the same

®* boolean equals(Object o): Determines whether one object is equal to another
* void finalize (): Called before an object is destroyed

* int hashCode () Returnsthe hash code associated with an object

* String toString(): Returns astring that describes the object

2.3 Equality

Equality Operator
» The equality operator == returns true if and only if both its operands have the same value.
» Can be used to compare primitive types

* Only compares the values of reference variables, not the referenced objects.

boolean testl, test2;
Integer il =new Integer (1);
Integer i2 =new Integer (1);
Integer i3 =i2;

testl = (il ==i2);

test2 = (i2 ==i3);

+ testlequals false

+ test2 equals true

9 of 29

ECSE 321 Winter 2009 Java Review

Object Equality |

* To compare between two objects the boolean equals(Object o) method is used:

* Compares the contents of two objects and returns true if the objects are equivalent.
* Default implementation compares using the equality operator.

* Override this method to provide your own implementation.

* hashCode () must produce the same result for two objects that are found to be equal via
equals (Object o)

boolean testl, test2;

String s1 = new String ("abc") ;
String s2 = new String ("abc") ;
String s3 = new String ("def") ; testl
=sl.equals(s2);

test2 = s2.equals(s3);

+ testlequals true

+ test2 equals false

Object Equality Il

* You may need to overload equals for custom classes:

public class Name {
String firstName ;
String lastName;

public boolean equals(Object 0) {
if (!(o instanceof Name))
return =false ;
Name n = (Name) o;
return firstName . equals(n. firstName) && lastName . equals(n. lastName) ;

equals () vs. ==

* It is important to remember that the equals () method compares the contents of an object while ==
compares two object references for equality.

boolean testl, test2;

String s1 = new String ("abc") ;
String s2 = new String ("abc") ;
testl =sl1. equals(s2);

test2 = (sl == s2);

+ testlequals true

+ test2 equals false

10 of 29

ECSE 321 Winter 2009 Java Review

2.3 Cloning Objects

Cloning Objects |
* The clone () method generates a duplicate copy of the object on which it is called.

* Only classes that implement the Cloneable interface can be cloned, otherwise a CloneNotSupportedException
will be thrown.

» The constructor for the object being cloned is not called; a clone is simple an exact copy of the original.

* Cloning can be dangerous

* If an object being cloned contains a reference to an object, the reference is copied, resulting in
original and cloned objects referencing the same object.

* clone() is protected inside Object.

Cloning Objects Il

* In general, you should not implement Cloneable for any class without good reason.

» Safer to write a copy method yourself which creates new objects using constructors.

class Test implements Cloneablef int a;

double b;

public Object clone(){ try{

return super . clone ();

} catch (CloneNotSupportedExceptione){ e.
printStackTrace (System . out) ;

}

class Copy{
int a;
double b;

public Test(int X, double y) {
a = x;
b =y;

public Test copy() {
return new Test(a,b);

11 of 29

ECSE 321 Winter 2009 Java Review

3 Object Oriented Programming

3.1 Encapsulation

Encapsulation
» Encapsulation is the mechanism that binds together code and the data it manipulates.
» Keeps code and data safe from outside forces.
» Access to code and data is strictly controlled by a well defined interface

* Prefer member datato be protected or private

* Access member data via get and set methods

* Implementation details are kept hidden behind the interface; encapsulate complexity

3.3 Inheritance
Inheritance
* Inheritance is the process by which one object acquires the properties of another object.
» Allows the definition of hierarchies.
» Enables code reuse.
» Java does not allow multiple inheritance:

— Implementing multiple interfaces is allowed.

Equality and Inheritance
* Inheritance can cause problems with equality.
* Why can a subclass require a new implementation of equals?

— New fields in the subclass are not taken into account by the superclass.

public class FullName extends Name{
String middleName;

public boolean equals(Object 0) {
if(!(o instanceof FullName))
return false;
FullName n = (FullName) o;
return super . equals(o) && middleName. equals(n.middleName) ;

12 of 29

ECSE 321 Winter 2009 Java Review

Abstract Classes
* An abstract member function does not have an implementation.
* An abstract class cannot be instantiated.

» If class is abstract if one or more methods are declared abstract.

public abstract class Shape{ public
abstract void draw() ;

}

public class Circle extends Shape{ public
void draw() {
/1 draw a circle

3.3 Interface
Interface
» Defines a protocol of communication between two objects
» Contains declarations but no implementations
* All methods are public
» All fields are public, static and final (constants).

+ Java’s compensation for removing multiple inheritance. You can implement as many interfaces as you
want.

interface Producer {
Object produce () ;

}

interface Comsumer {
void consume(Object o}

public class ProducerConsumer implements
Producer , Consumer {

public Object produce() {
return (Object) new String ("abc");

}

public void consume(Object 0) { System . out ,
println (o . toString ()) ;

}

13 of 29

ECSE 321 Winter 2009 Java Review

4 Exceptions

4.1 Exceptions
Exceptions
* An exception is an abnormal condition that arises at run time; a runtime error.
* When an error occurs, an Exception object is thrown.
* A thrown exception must be caught in order to handle it.
» Exceptions can be produced by:

* the Javaruntime system
* manually generated exceptions

Keywords
» There are five keywords relating to exceptions:

* try blocks contain code being monitored for errors.

* catch contains the code that will handle the exception

* throw creates an Exception object.

* throws denotes the exception types a method can generate.

* finally contains code that will be executed before a try block ends.

Exception Types
» All exception types are subclasses of Throwable:

* Exception: error conditions that the user program should handle.
— RuntimeException: automatically defined error conditions like divide-by-zero.
* Error: error conditions that a program is not expected to handle.

4.3 Basic Use
Uncaught Exceptions
* What happens if we don’t handle errors?

* The default handler will print a stack trace and terminate the program.

public class Exceptions{

public static void main(String [] args) { Object o0 =
null ;
System . out . printin (o . toString ()) ;

}

$java Exceptions Exception in
thread "main"
java . lang . NullPointerException
at Exceptions .main(Exceptions . java:5)

14 of 29

ECSE 321 Winter 2009 Java Review

Using try and catch

+ Handle the exception yourself:

* Fix the error.

* Prevent program termination

* try and catch form aunit.

public class Exceptions{

public static void main(String [] args) {
Object o = null;
try{

System . out . println (o . toString ()) ;
} catch (NullPointerException e) {
System . out . printIn ("caught nullptr ");

}
System . out . printin (" still going...");

$ java Exceptions
caught nullptr
still going...

Multiple catch clauses

» If a piece of code can generate multiple exception types, use multiple catch clauses to deal with each.

* Each catch clauseis inspected in order until a match is found.

public class Exceptions{

public static void main(String [] args) { Object []
array = new Object [5];
try{
array [10]. toString () ;
} catch (NullPointerException e) {
} catch (ArraylndexOutOfBoundsException e) { System .
out . println ("caught exception") ;

}
System . out . printin (" still going...");

$ java Exceptions
caught exception sti
Il going . ..

15 of 29

ECSE 321 Winter 2009

Nested try Statements

« We can nest try statements.

Java Review

« If aninner try statement doesn’t have a handler, the outer try statement is inspected until a match is
found.

public class Exceptions{

public static void main(String [] args) { Object []
array = new Object [5];
try{
try{
array [10]. toString () ;
} catch (NullPointerException e) { System .
out . println (" inside") ;

}

} catch (ArraylndexOutOfBoundsException e) { System .
out . printin ("outside") ;
}

System . out . println (" still

going ...");
}

$ java Exceptions
outside

still going...

4.3 Throw

throw

* We can throw exceptions explicitly

* We can create objects of type Throwable.

* We can use throw to create a new exception object or to re-throw a caught exception.

public class Exceptions{

public static void main(String [] args) { Object []
array = new Object [5];
try{
try{

array [10]. toString () ; }
catch (Exception e) {

throw new Exception("my own message") ;
}
} catch (Exception e) {

System . out . printin (e . toString ()) ;
}
System . out . printin (" still

going...");
}

16 of 29

ECSE 321 Winter 2009 Java Review

$ java Exceptions java .
lang . Exception :

my own message
stillgoing...

Tip: use Exception.PrintStatckTrace

* Printing the stack-trace when you catch an exception will help you find your error.

public class Exceptions{

public static void oops(int x) {
try {
if(x ==0) {
throw new Exception("oops");
} else {
oops(==x);
}
} catch (Exception e) {
e. printStackTrace () ;

}

public static void main(String [] args) { oops(5);

$ java Exceptions

java.lang . Exception : oops
at Exceptions . oops(Exceptions . java :6) at
Exceptions . oops(Exceptions . java:8) at
Exceptions . oops(Exceptions . java :8) at
Exceptions . oops(Exceptions . java :8) at
Exceptions . oops(Exceptions . java :8) at
Exceptions . oops(Exceptions . java :8) at
Exceptions .main(Exceptions . java:16)

4.4 Throws

throws

+ If a method generates an exception that it doesn’t handle, it must let the calling method know via the
throws clause.

» List all possible exceptions after the throws clause.

» Caller is responsible for handling the exception.

public class Exceptions{

public static void oops() throws
NullPointerException {

17 of 29

ECSE 321 Winter 2009 Java Review

throw new NullPointerException () ;

}
public static void main(String [] args) {
try{
oops () ;

} catch (Exception e) {
e. printStackTrace () ;

$ java Exceptions
java.lang . NullPointerException

at Exceptions . oops(Exceptions . java :4) at
Exceptions .main(Exceptions . java:9)

4.5 Finally
finally
* When exceptions are thrown, the execution flow of the program becomes non-linear.
» An exception can cause a method to return abruptly; we may want to do some cleanup first:

* Close open files

* Free shared resources in the case of multi-threading

e finally:
* desighates a block of code which is to be executed following a try/catch block.
* will execute whether or not an exception is thrown.

* will execute whether or not a catch statement matches the exception.

* will execute just before a method returns

Example

public class Exceptions{

public static void oops() throws
NullPointerException { try {

throw new NullPointerException () ; }

finally {
System . out . printin ("Cleaning up ...");
}
}
public static void main(String [] args) {
try{
oops () ;

} catch (Exception e) {

e. printStackTrace () ; }
finally {

18 of 29

ECSE 321 Winter 2009 Java Review

System . out . println ("Exiting") ;

$java Exceptions
Cleaningup . ..
java.lang . NullPointerException
at Exceptions . oops(Exceptions . java :5) at
Exceptions .main(Exceptions . java:13)
Exiting

5 Collections

5.1 Collections Framework

Collections Framework

» Collections are used to store, retrieve and manipulate data, and to transmit data from one method to
another.

» All collections frameworks contain three things:

* Interfaces allow collections to be manipulated independently of the details of their represen-tation.

e Concrete Implementations of the collection interfaces.

* Algorithms like searching and sorting on objects that implement collection interfaces.

» Algorithms represent reusable functionality; they can be applied to different implementations of the
collection interfaces.

Why Use The Collections Framework?
* Reduces programming effort by providing useful data structures and algorithms.

* Increases program speed and quality: The collections framework does this primarily by providing high-
performance, high-quality implementations of useful data structures and algorithms.

* Reduces the effort to learn and design use new APIs.

* Enables software reuse

5.3 Collections Interfaces
Interfaces
* The Collection interface is the root of the collection hierarchy.

* A set is acollection that cannot contain duplicate elements (HashSet, TreeSet).

* A List is an ordered collection and can contain duplicate elements (ArrayList, LinkedList).

* A Map is an object that maps keys to values and cannot contain duplicate key (HashMap,
Hashtable).

* For moreinfo, visit http://java.sun.com/docs/books/tutorial/collections/index.html

19 Of 29

http://java.sun.com/docs/books/tutorial/collections/index.html

ECSE 321 Winter 2009 Java Review

Collection Interface

public interface Collection { int size (
)
boolean isEmpty ();
boolean contains (Object element) ;
boolean add(Object element) ; boolean
remove(Object element) ; Iterator iterator

0

boolean containsAll (Collectionc);
boolean addAll (Collection ¢) ; boolean
removeAll(Collection ¢) ; boolean
retainAll (Collection c) ; void clear () ;

Object[] toArray ();
Object[] toArray(Object all);

5.3 Implementations
ArrayList or LinkedList

* ArrayList offers constant time positional access and is fast.
* LinkedList If you frequently add elements to the beginning of the List, or iterate over the List

deleting elements from its interior

* ArrayList is much faster, useitinstead of LinkedList unless you really need it's added features.

* The vector class has been kept for backwards compatibility and should be avoided.

HashSet/Map Or TreeSet/Map

* HashSet/Map is much faster (constant time vs. log time for most operations), but offers no order-ing
guarantees.

* TreeSet/Map If you need to use the operations in the Sortedset, or in-order iteration is important to
you.

* Mostly use HashSet and HashMap

Collection Example

import java. util . *;

class CollectionExample {

public static void main(String [] args) {
ArrayList al =new ArrayList () ;
al . add("zero") ;
al . add("one") ;
al . add("two") ;
System . out . printin (

20 of 29

ECSE 321 Winter 2009

Java Review

al . get (1) .toString ());

HashMap hm = new HashMap() ;
hm. put("a", new Integer (1));
hm. put("b" , new Integer (2));
System . out . printin (

hm. get("a") .toString ());

$ java CollectionExample
one
1

5.4 lterators

Interator Interface

* An iterator allows us to access the elements of a collection.

+ lterators allow the caller to remove elements from the underlying collection during the iteration with

well-defined semantics.

public interface lterator {
boolean hasNext () ;
Object next () ;
void remove();

Using ListIterator

import java. util . *;

public class LinkedListExample {
public static void main(String [] args) {
LinkedList list =new LinkedList ();
list.add("one");
list.add(new Integer (1));
list.add(new LinkedList());

System . out . printin (" list.toString ():
+ list.toString ());
Listlterator it = list. listlterator () ;
while (it.hasNext ()) {
Object o = it.next();
System . out . println ("o . toString () :
+ o.toString ());

$ java LinkedListExample
list.toString (): [one, 1, []]

21 of 29

ECSE 321 Winter 2009 Java Review

0 .toString (): oneo
.toString ():1o0.
toString () : []

6 JavalO

6.1 Streams
Streams
» Java programs perform I/O through streams.
» A stream is an abstraction that either produces or consumes data.
» All streams behave in the same manner, regardless of the actual physical device.
* the same I/O classes and methods can be applied to any type of device.

* The stream classes are in the java. io package.

6.3 Byte Streams

Byte Streams |
» The byte stream classes provide facilities for handling byte-oriented I/O.
* Read/Write 8-bit bytes
+ Based on two abstract classes:

* InputStream

* OutputStream
» Can improve performance by using BufferedInputStream and BufferedOutputStream

* May need to call flush () to cause datathat is in a buffer to be written.

Byte Streams I

* Can read/write binary data to and from files using FileInputStream and FileOutputStream

import java.io.*;

class CopyFile{
public copyFile (String in, String out) throws IOException{
File inputFile =new File (in);
File outputFile = new File (out);

FileInputStream ins = new FilelnputStream(inputFile) ;
BufferedOutputStream bos = new BufferedOutputStream(

new FileOutputStream(outputFile)) ; int
C,

while ((c=ins.read ())!=-1){bos.
write (¢) ;

22 of 29

ECSE 321 Winter 2009 Java Review

}

ins . close () ;
bos . flush () ;
bos . close () ;

6.3 Character Streams
Character Streams |
* The byte stream classes provide functionality to handle any type of I/O.
* How can we easily handle character data?
* We can use the Reader and Writer abstract classes.
» Can improve performance by using Buf feredReader and BufferedWriter

¢ BufferedReader.readLine () method reads aline of text.

* Remember to call f1ush ()

Character Streams Il

* Can read/write character data to and from files using FileReader and FileWriter

import java.io.*;

class ReadLines{

public readFile (String in) throws IOException{ File
inputFile = new File (in);

BufferedReader br = new BufferedReader(new
FileReader(inputFile)) ;

String line;
while ((line = br . readLine ()) !=null) { System .
out . println (line);

}

br . close ();

Reading Console Input

* Consoleinputis read from System.in

* Use BufferedReader to get a character based stream.

import java.io.*;

class ReadConsole {

public readFromConsole()

23 of 29

ECSE 321 Winter 2009 Java Review

throws IOException {

char c;

BufferedReader br =new BufferedReader(new
InputStreamReader(System .in)) ; System . out .
printin ("Enter characters:");

do {
c=(char)br.read ();
System . out . printin (c) ;
} while (true);

6.4 Serialization

Serialization
» Serialization is the process of writing the state of an object to a byte stream.
» Can save the sate of a program to persistent storage and restore objects at a later time.

» Can send objects back and forth over a network.

» If an object to be serialized contains references to other objects, these objects must also be serialized.

* Only objects that implement the Sserializable interface can be saved and restored by serializa-tion.

* Serializable interface defines no members, it is simply used to indicate that a class is serial-izable

* transient and static variables are not saved.

ObjectOutput and Objectinput

* ObjectOutputStream extends the OutputStream class and implements the ObjectOutput inter-
face.

* ObjectInputStream extendsthe InputStream class and implementsthe ObjectInput interface.

* We can use the respective stream classes to easily serialize/deserialize objects.

Serialization Example

import java.io.*;

public class MySerial implements Serializable { String data

public MySerial(String s) { data =
S

}

public String toString () { return
data;

}

24 of 29

ECSE 321 Winter 2009 Java Review

public static void main(String [] args) throws Exception {
FileOutputStream out =new FileOutputStream("myserial . bin") ;
ObjectOutputStream outs =new ObjectOutputStream(out) ;
MySerial obj =new MySerial(" 1’ve been serialized ! ") ;
outs . writeObject (obj) ;
outs . flush () ;
outs . close ();

FilelnputStream in =new FilelnputStream("myserial . bin") ;
ObjectinputStream ins =new ObjectinputStream(in);

obj = (MySerial) ins . readObject () ;

System . out . println (obj . toString ()) ;

ins . close ();

Compiling and running MySerial.java:

$ javac MysSerial . java
$ java MySerial
1’ ve been serialized !

7 Assertions

7.1 Assertions

Assertions
» Each assertion contains a boolean expression that should be true when the assertion executes.
» If an assertion evaluates to false, the system will throw an error.

* Using assertions is one of the quickest and most effective ways to detect and correct bugs.

 Remember that assertions can be enabled and disabled.

Syntax

* assert Expressionl; where Expressionl is a boolean expression. When the system runs the
assertion, it evaluates Expressionl and if it is false throws an AssertionError with no detail mes-sage.

* assert Expressionl : Expression2; where Expressionl is a boolean expression and Expres-
sion2is an expression that has a value.

* Use the second form to provide a detailed message for constructing the AssertionError object.

When not to use assertions

» Do not use assertions for argument checking in public methods.

» Do not use assertions to do any work that your application requires for correct operation.

25 of 29

ECSE 321 Winter 2009

Java Review

7.2 Example
Simple Example
+ Use assertions whenever you’ve made assumptions about:

* thelegal values of a variable.

* flow control.

* switch statement with no default case assumes that one of the cases is always executed.

* Usethe default case to test our assumptions

public class Assert{
public static void main(String [] args) {
int x = 2;
switch (x) {
case O:
break ;
case 1
break ;
default :
assert false : "value of x is: " + Xx;
break ;

$ javac =-source 1.4 Assert.java

$ java Assert

$ java —ea Assert

Exception in thread "main" java .
lang . AssertionError : value of
Xis:2
at Assert.main(Assert . java:13)

7.3 Preconditions and Postconditions

Preconditions

* Preconditions must be true when a method is invoked.

» Do not use assertions to check the parameters of a public method, use exceptions instead.

* Use an assertion to test a nonpublic method’s precondition that should always be true.

private void setUpperBound(int x) { assert
(x>=0): "upper bound
must be positive " ;

26 of 29

ECSE 321 Winter 2009

Java Review

Postconditions

* Postconditions must be true after a method completes successfully.

private Object [] merge(Object [] a, Object[] b) {
Object[] result =new Object[a.length + b.length];
for(int i =0; i < a.length; i++) {
result[i] = ali];

}

for(int i = a.length; i < (a.length + b.length); i++) {
result[i] = b[i —a.length];

}

assert result.length == (a.length + b.length);

return result;

7.4 Final Thoughts
Final Thoughts on Assertions
* You can use them in place of print statements.
* They are similar to exceptions.
* Only available as of JDK 1.4.
* Use java -source 1.4 tocompile.
* Use java -eatoenablethem.

» Prefer Exceptions to Assertions

8 Logdj

8.1 Logging for Java

What’s wrong with System.out.println()?

* You need to recompile your program in order to add/remove print statements. —

not practical for large applications.

* No good way to control verbosity unless you write your own logging framework.

+ Output format of print statements is often inconsistent, making it difficult to follow an execution trace.

* What should we use instead?

27 of 29

ECSE 321 Winter 2009 Java Review

Logging for Java: Log43j
+ Enable logging at runtime without modifying the application binary:
— Logging behavior can be controlled by editing a configuration file.
» A logger hierarchy makes it possible to control which log statements get printed.
* Verbosity can be set to multiple levels:
— DEBUG < INFO < WARN < ERROR < FATAL.
* Thelog statements can be sent to a terminal, file, stream, socket etc.

* Moreinfo available here: http://logging.apache.org

8.3 Log4j Example

Log4j Example Code

import org . apache . log4j . Logger;
public class SomeClass {
static Logger logger = Logger . getLogger("SomeClass") ;

public SomeClass(){
logger .debug("Constructor called .");

b

public void doSomething()
{

logger . info ("Doing something .") ;

try{
throw new Exception("Something bad happened here .") ; }
catch (Exception e) {
logger . error (e . toString ()) ;
h
h
h

import org . apache . log4j . Logger;
public class Logbemo {
static Logger rootLogger = Logger . getRootLogger () ;

public static void main(String args|[]) {
rootLogger . info ("Starting demo app");

rootLogger .debug("new SomeClass() ") ;
SomeClass o0 = new SomeClass () ;

rootLogger .debug(" calling SomeClass . doSomething()"); o .
doSomething () ;

28 of 29

http://logging.apache.org/

ECSE 321 Winter 2009

Java Review

rootLogger . info ("Exiting demo app") ;

Log4j: Low Verbosity

* LogDemo.properties: verbosity set to INFO and ERROR.

log4j . appender . stdout=org . apache . log4j . ConsoleAppender
log4j . appender . stdout . layout=org . apache . log4j . PatternLayout
log4j . appender . stdout . layout . ConversionPattern=%5p [%t] (%F:%L) = %m %n

log4j . rootLogger=INFO, stdout
log4j . logger . SomeClass=ERROR

$ java —Dlog4j . configuration=LogDemo. properties LogDemo
INFO [main] (LogDemo. java:13) = Starting demo app
ERROR [main] (SomeClass . java:22) —java.lang . Exception :
Something bad happened here.
INFO [main] (LogDemo. java:21) = Exiting demo app

Log4j: High Verbosity

* LogDemo.properties: Set logging level to DEBUG.

log4j . appender . stdout=org . apache . log4j . ConsoleAppender log4j .
appender . stdout . layout=org . apache . log4j . PatternLayout

log4j . appender . stdout . layout . ConversionPattern=%5p [%t] (%F:%L) = %m %n

log4j . rootLogger=DEBUG, stdout
log4j . logger . SomeClass=DEBUG

$ java —Dlog4j . configuration=LogDemo. properties LogDemo
INFO [main] (LogDemo. java:13) = Starting demo app

DEBUG [main] (LogDemo. java:15) = new SomeClass()

DEBUG [main] (SomeClass . java:11) = Constructor called .

DEBUG [main] (LogDemo. java:18) = calling SomeClass . doSomething()
INFO [main] (SomeClass . java:17) = Doing something .

ERROR [main] (SomeClass . java:22) —java.lang . Exception :

Something bad happened here.

INFO [main] (LogDemo. java:21) = Exiting demo app

29 of 29

