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Consider the Nth-order difference equation 
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Using the time-shifting property of the z-transform, we obtain 
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Transfer Function Characterization of 
LTI Difference Systems
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The transfer function is then given by the z-transform of the
output divided by the z-transform of the input:
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Hence the transfer function of an LTI difference system is
always rational.

The ROC of ( )H z  must be consistent with the ROCs of
Y z( )  and X z( ) . Namely, it must satisfy R R RY X H⊃ ∩
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Consider a DLTI system defined by the difference equation: 
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Taking the z-transform, we get: 
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Example
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which yields the transfer function 
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This provides the algebraic expression for H z( ) , but not 
the ROC.  
 
As a matter of fact, there are two impulse responses that
are consistent with the difference equation.  
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A right-sided impulse response corresponds to the ROC 
1
3

z > . 

Using the time-shifting property, we get: 
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In this case the system is causal and stable. 
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A left-sided impulse response corresponds to the ROC 
1
3

z < . 

Using the time-shifting property again, we get: 
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This case leads to an unstable, anticausal system. 
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The transfer function of a DLTI difference system can be realized using a
combination of three basic elements:  

the unit delay,  

 

the gain,  

 

                                                   the summing junction 

z −1
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Block Diagrams (Realization) of H(z) for 
Difference Systems
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Consider the transfer function H z
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corresponds to the first-order difference equation 
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Simple First-Order Transfer Function
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Consider the transfer function H z
a z a z
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The transfer function can be realized as a sum of two first-order transfer 
functions (partial fraction expansion): the parallel form, which is a parallel 
interconnection of the two first-order transfer functions.   

Another way is to break up the transfer function as a cascade (multiplication) of 
two first-order transfer functions.  

Yet another way to realize the second-order transfer function is the so-called 
direct form or controllable canonical form. To develop this form, consider the
system equation 

Y z a z Y z a z Y z X z( ) ( ) ( ) ( )= − − +− −
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Simple SecondSimple Second--Order Transfer FunctionOrder Transfer Function
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Y z a z Y z a z Y z X z( ) ( ) ( ) ( )= − − +− −
1

1
2

2
.  

This equation can be realized as follows with two unit delays: 

 

 

 

 

 

 

 

 

 

+ 
 
 

+ 
 
 

- 
 
 

- 

a2

a1

y n[ ]

z −1

x n[ ]

z −1



H. Deng, L32_ECSE306

12

Direct Form (Controllable Canonical Form) 

A direct form can be obtained by breaking up a general transfer function into two subsystems 
as follows: 
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Assume without loss of generality that a0 1= . 
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All-pole system All-zero system
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The input-output system equation of the first subsystem is
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and for the second subsystem we have
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The direct form realization is then (for a second-order system): 
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The unilateral z-transform is defined for the causal part 
of discrete-time signals.  
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The signal/transform pair is denoted as 
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The Unilateral The Unilateral zz--TransformTransform
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The series only has negative powers of z since the summation runs
over nonnegative times.  

One implication is that  

]}[][{]}[{ nunxnx UZUZ =  

Another implication is that the ROC of a unilateral z-transform is always
the exterior of a circle. 
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Consider the signal 

x n a u nn[ ] [ ]= ++1 1 . 

The bilateral z-transform of x n[ ]  is obtained by using
the time-shifting property: 
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The unilateral z-transform of x n[ ]  is computed as: 
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The bilateral and unilateral z-transforms are different for
non-causal signals. 
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The inverse unilateral z-transform can be obtained by 
 
• performing a partial fraction expansion,  
 
• selecting all the ROCs of the individual first-order 

fractions to be exteriors of disks.  

Inverse Inverse UnilateralUnilateral zz--TransformTransform
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Long division can be used as well. The series must be in
negative powers of z.

Example

The unilateral z-transform
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Note that the resulting power series converges
because the ROC implies az − <1 1.

Here, we can see that the signal is

x n a u nn[ ] [ ]= .



H. Deng, L32_ECSE306

22

 

Consider the pair x n z[ ] ( )↔
UZ

X . 

Time Delay 

x n z z x[ ] ( ) [ ]− ↔ + −−1 11
UZ

X  

Properties of the Unilateral Properties of the Unilateral zz--Transform that Differ Transform that Differ 
from Properties of the Bilateral from Properties of the Bilateral zz--TransformTransform
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Time Advance 

x n z z zx[ ] ( ) [ ]+ ↔ −1 0
UZ

X  

Time advanceTime advance
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For causal signals x n z1 1[ ] ( )↔
UZ

X  and x n z2 2[ ] ( )↔
UZ

X , 
we have the familiar result: 
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Convolution
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Note that the resulting signal will also be causal since
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and the last summation is 0 for n < 0 .



H. Deng, L32_ECSE306

26

Recall Ch3, we solved difference equations initially at rest. 
Now, using unilateral z-transform, you can solve difference 
equations initially NOT at rest, i.e.,  y[-1], y[-2], y[-3], …, are 
not zero. 
The time delay property can be used recursively to show that  

 x n m z z z x z x m x mm m[ ] ( ) [ ] [ ] [ ]− ↔ + − + + − + + −− − + −
UZ

X 1 11 1L  
 
Thus, we can solve a difference system with initial conditions
by using the unilateral z-transform. 

Solution to Difference Equations Initially NOT 
at Rest
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Consider the causal difference equation: 

[ ] 0.8 [ 1] 2 [ ]y n y n x n− − = , 

where the input signal is [ ] (0.5) [ ]nx n u n= , and the initial 
condition is 1[ 1]y y−− = .  

Unilateral z-transform: 
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ExampleExample



H. Deng, L32_ECSE306

28

which yields 

1
1 1 1
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The first term on the right-hand side is the zero-input response. 

The second term on the right-hand side is the zero-state response. 



H. Deng, L32_ECSE306

29

Expand the zero-state response in partial fractions: 

1 1 1 1

2 1.23 0.77
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− − − − . 

Finally, the unilateral z-transform of the system is given
by: 
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and its corresponding time-domain signal is: 

1[ ] (0.8 1.23)(0.8) [ ] 0.77(0.5) [ ]n ny n y u n u n−= + +  

The zero-state response 
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