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The response of a DLTI system to a complex exponential
input zn  is the same complex exponential with only a
change in (complex) amplitude: z H z zn n→ ( ) . The complex 
amplitude factor is in general a function of the complex
variable z.  
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Two-sided z-transform

Recall Lecture 10 that zn is an eigenfunction of DT LTI system.
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The system's response has the form y n H z zn[ ] ( )= , where
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The function H z( )  is the z-transform of the impulse response
of the system. The z-transform is also defined for a general
DT signal x n[ ] :
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Writing z re j= ω
, we analyze the region of z where the Z 

transform converge. 

 

The ROC is the region of the z-plane ( z re j= ω ) where the 

signal x n r n[ ] −
 has a DTFT, i.e., x n r n[ ] −

is absolutely 
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The region of convergence of the z-
transform
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Note that the DTFT is a special case of the z-transform: 
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The DTFT is simply X z( )  evaluated on the unit circle in 
the z-plane. 

 

 

 

 

 

Relationship between Z transform and Fourier 
transform
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Consider the signal x n a u nn[ ] [ ]= . Then,  
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We need to specify the region of convergence (ROC)
where the above sum is finite.  

In this case, ROC is the range of z for which az − <1 1, or

equivalently z a> . Then 
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Example of z-transform
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The unit step signal x n u n[ ] [ ]=  has the z-transform  
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The z-transform of unit step signal
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Determine the Z transform of the signal 
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Solution:
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The ROC of X z( )  can be displayed on a pole-zero plot as follows:
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Property 1: The ROC of x(z) consists of a ring in the z-plane 
centered around the origin.  

Convergence is dependent only on r, not on  ω. Hence, if X z( )  
exists at the point z r e j

0 0
0= ω , then it also converges on the 

circle z r e j= ≤ ≤0 0 2ω ω π, .  
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Properties of ROC
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Property 2: The ROC of X z( )  does not contain any poles.

This one is obvious.

Property 3: If x n[ ] is of finite duration, then the ROC is the
entire z-plane, except possibly z = 0  and/or z = ∞ .

In this case, the finite sum of the z-transform converges for
(almost) all z. Two exceptions are z = 0  and z = ∞  in
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If x[n] is right-sided, and if the circle z r= 0 is in the ROC, 
then all finite values of z for which z r> 0 will also be in the 
ROC. 
  
This is because if the signal x n r n[ ] 0

−
 is absolutely summable, 

then, for r r1 0> , we have x n r x n rn n[ ] [ ]1 0
− −<  for n ≥ 0 , and 
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 in case the right-sided signal begins at 

negative time −N1 . 

Property 4
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We use the notation x n X z[ ] ( )↔
Z

 to represent a z-transform pair.  

Linearity 

The operation of calculating the z-transform of a signal is linear.  

For x n X z ROC Rx[ ] ( ),↔ =
Z

, y n Y z ROC Ry[ ] ( ),↔ =
Z

, let 

z n Ax n By n[ ] [ ] [ ]= + , then 

z n AX z BY z ROC R Rx y[ ] ( ) ( ),↔ + ⊃ ∩
Z

. 

Properties of the Two-Sided z-Transform
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Time shifting leads to a multiplication by a complex exponential.  

0
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Time Shifting
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0
0 0,[ ]n
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ROC R
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Z
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where the ROC is the scaled version of Rx .  

if X z( )  has a pole or zero at z a= , then X z z( / )0 has a 
pole or zero at z z a= 0 . 

Scaling in the z-Domain

Recall the frequency shifting property of Fourier 
transform (Lecture 28).
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x n X z ROC Rx[ ] ( ), /− ↔ =−
Z

1 1 . 

That is, if z Rx∈ , then 
1
z

ROC∈ . 

Time Reversal
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The upsampled signal  

⎩
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has a z-transform given by: 
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Time Expansion (upsampling)
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Differentiation of the z-transform with respect to z  yields 

nx n z dX z
dz

ROC Rx[ ] ( ) ,↔− =
Z
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Example: 
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Differentiation in the z-Domain
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The convolution of x n[ ]  and y n[ ]  has a resulting z-
transform given by 

x n y n x m y n m X z Y z ROC R R
m

x y[ ] [ ] [ ] [ ] ( ) ( ),∗ = − ↔ ⊃ ∩
=−∞

∞

∑
Z

 .

Remark: 

The ROC can be larger than R Rx y∩  if pole-zero 
cancellations occur when forming the product X z Y z( ) ( ) . 

Convolution of two signals
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The first difference of a signal has the following z-transform: 

x n x n z X z ROC Rx[ ] [ ] ( ) ( ),− − ↔ − =−1 1 1
Z

,  

with the possible deletion of z = 0  from the ROC,  
and/or addition of  z = 1 . 

First Difference



H. Deng, L30_ECSE306 21

The running sum of a signal is the inverse of the first
difference.  
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Running Sum (accumulation)
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 x n X z ROC Rx
∗ ∗ ∗↔ =[ ] ( ),

Z

  
Remark: 

For x n[ ] real, we have: X z X z( ) ( )= ∗ ∗ . Thus if X z( )  has 
a pole (or zero) at z a= , then it must also have a pole (or 

zero) at z a= ∗
.  

 
That is, all complex poles and zeros come in conjugate 
pairs in the z-transform of a real signal. 

Conjugation 
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If x n[ ]  is a causal signal, i.e., x n n[ ] ,= <0 0 , we have  
   

[0] lim ( )
z

x X z
→∞

= .    

This property follows from the power series representation of X z( ) : 
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zz
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Initial-Value Theorem 
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[0] lim ( )
z

x X z
→∞

= .

Consequence:

With X z( )  expressed as a ratio of polynomials,
the order of its numerator cannot be greater than
the order of its denominator (for x n[ ]  causal
with x[ ]0  finite.)
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If x n[ ]  is a causal signal, we have  

)()1(lim][lim 1

1
zXznx

zn

−

→∞→
−=  

This formula gives us the residue at the pole z = 1  
(which corresponds to DC).  
If this residue is nonzero, then X z( )  has a nonzero final value. 

Final-Value Theorem 
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