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The operation of calculating the DTFT of a signal is linear: 

If        x n X e j[ ] ( )↔
F

ω , y n X e j[ ] ( )↔
F

ω ,  

and if     z n Ax n By n[ ] [ ] [ ]= + ,  

then  z n AX e BY ej j[ ] ( ) ( )↔ +
F

ω ω .  

Linearity
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Time Shifting 

Time shifting leads to a multiplication by a complex exponential.  

x n n e X ej n j[ ] ( )− ↔ −
0

0
F

ω ω . 

Remark: Only the phase of the DTFT is changed. 

Frequency Shifting 

Frequency shifting leads to a multiplication of x n[ ]  by a complex exponential. 

e x n X ej n jω ω ω0 0[ ] ( )( )↔ −
F

. 

Time shifting and frequency shifting
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Time reversal corresponds to the frequency reversal of the DTFT: 

x n X e j[ ] ( )− ↔ −
F

ω . 

Proof: [ ] [ ] ( )j n j m j

n m
x n e x m e X eω ω ω

+∞ ∞
− −

=−∞ =−∞

− = =∑ ∑ . 

Note:  

• For x n[ ]  even, X e j( )ω  is also even,  

for x n[ ]  odd, X e j( )ω  is also odd 

Time reversal
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Upsampling (time expansion)

The signal      
⎩
⎨
⎧ =

=
otherwise

mmmnmnx
nx m ,0

,.....3,2,,0],/[
:][)(   

is an upsampled version of the original signal x n[ ] . The upsampling
operation inserts m-1 zeros between consecutive samples of the
original signal. Spectrum is compressed around DC: 

x n X em
jm

( ) [ ] ( )↔
F

ω . 

Time scaling
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Downsampling (decimation) 
The signal x mn[ ]  is called a decimated or downsampled 
version of x n[ ] , that is, only every mth sample of x n[ ]  is 
retained.  
Since aliasing may occur, we will postpone this analysis 

Down Sampling
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Differentiation in Frequency 

Differentiation of the DTFT with respect to frequency yields 

nx n j dX e
d

j

[ ] ( )
↔
F ω

ω
  

Differentiation in frequency 
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Convolution of Two Signals 

For x n X e j[ ] ( )↔
F

ω , y n Y e j[ ] ( )↔
F

ω , we have 

x m y n m X e Y e
m

j j[ ] [ ] ( ) ( )− ↔
=−∞

∞

∑
F

ω ω  , 

Convolution in time domain
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Proof: (under the appropriate assumption of convergence to
interchange the order of summations)

x m y n m e x m y n m e

x m y p e

x m e y p e

X e Y e
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j n

n n

j n

m

p

j p m

m

j m

p

j p

m

j j

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

( ) ( )

( )

− = −

=

=

=

=−∞

∞
−

=−∞
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=−∞

∞
−

=−∞

+∞

=−∞

∞
− +

=−∞

+∞

−

=−∞

∞
−

=−∞
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ω

ω ω
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Remarks

• The basic use of this property is to compute the output signal of
a system for a particular input signal, given its impulse response
or DTFT.

• The convolution property is also useful in DT filter design and
feedback control system design.
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Example: 

Given a system with h n u nn[ ] [ ],= <α α 1, and an input 
x n u nn[ ] [ ],= <β β 1, determine the output signal. 
 
The DTFT of the output is given by  

Y e H e X e
e e

j j j
j j( ) ( ) ( )ω ω ω
ω ωα β

= =
− −− −

1
1

1
1  

Calculating DT convolution using FT
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We perform a partial fraction expansion of Y e j( )ω  to be able to use

the table of DTFT pairs to obtain y n[ ] . Let z e j= ω  for convenience.

1
1 1 1 11 1 1 1( )( )− −

=
−

+
−− − − −α β α βz z

A
z

B
z

1

1 1

1 (1 ) ,
(1 ) 1 ( )z z

B zA A
z zα α

α α α β
β β α β

−

− −
= =

−
= + ⇒ = ≠

− − −

1

1 1

1 (1 ) ,
(1 ) 1 ( )z z

B zB B
z zβ β

β β α β
α α β α

−

− −
= =

−
= + ⇒ = ≠

− − −
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For α β≠ , we use the table to get

[ ] [ ] [ ],n ny n u n u nα βα β α β
α β β α

= + ≠
− −
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)
1

1(
)1(

1)( 2 ωω
ω

αωαα jj
j

ed
dj

e
eY

−
=

−
=

For the case α=β , we have 

The derivative times 
j

α
 yields w n n u nn[ ] [ ]= −α 1 , 

and the multiplication by e jω  is a unit time advance, 
so finally  

y n n u n n u nn n[ ] ( ) [ ] ( ) [ ]= + + = +1 1 1α α . 



H. Deng, L28_ECSE306 15

With the two signals as defined above: 

∫ −↔
π

θωθ θ
π 2

)( )()(
2
1][][ deXeYnynx jj

  

Remarks 

• Note that the resulting DTFT is a periodic convolution of the 
two DTFTs.  

• This property is used in discrete-time modulation and sampling.

Multiplication of Two Signals

θ
π

θ
π

θ
π

θωθ

π

θωθ

π

ωθθ

π

ω

deXeY

denxeY

edeeYnxenynx

jj

nj

n

j

njnjj

n

nj

n

)()(
2
1

}][){(
2
1

})(]{[
2
1][][

)(

2

)(

2

2

−

−−
∞

−∞=

−
∞

−∞=

−
∞

−∞=

∫

∑∫

∫∑∑

=

=

=Proof:



H. Deng, L28_ECSE306 16

First Difference 

The first difference of a signal has the following spectrum: 

x n x n e X ej j[ ] [ ] ( ) ( )− − ↔ − −1 1
F

ω ω  

Running Sum (accumulation) 

The running sum of a signal is the inverse of the first difference.  

x m
e

X e
m

n

j
j[ ]

( )
( )

=−∞
−∑ ↔

−

F 1
1 ω

ω   

First difference and running sum
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Taking the conjugate of a signal has the effect of
conjugation and frequency reversal of the DTFT.  

x n X e
F

j∗ ∗ −↔[ ] ( )ω
 

Conjugation and Conjugate Symmetry
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For x[n] real, the DTFT is conjugate symmetric:  
X e X ej j( ) ( )ω ω= ∗ − .  

This implies  

)}(Im{)}(Im{
)},(Re{)}(Re{

,)1(
),()(

|,)(||)(|

ωω

ωω

ωω

ωω

jj

jj

jj

jj

eXeX
eXeX

realX
eXeX

eXeX

−=

=

=
−∠=∠

=

−

−

−

−

 

For x[n] real and even, the DTFT is also real and even 

realeXeX jj == − )()( ωω
 

Real and even x[n] 
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For x n[ ]  real and odd, the DTFT is purely imaginary and odd 

imaginaryeXeX jj =−= − )()( ωω
 

 
For even-odd decomposition of the signal  

x n x n x ne o[ ] [ ] [ ]= + ,  

x n X e x n j X ee
j

o
j[ ] Re{ ( )}, [ ] Im{ ( )}↔ ↔

F F
ω ω

 

Real-odd and even-odd x[n]
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∫∑ =
∞

−∞=
π

ω ω
π 2

22 |)(|
2
1|][| deXnx j

n  

the energy of the signal = the energy in its spectrum. 

The squared magnitude of the DTFT X e j( )ω 2

 is referred to as 
the energy-density spectrum of the signal x n[ ] . 

Parseval’s Relation

Proof by yourself.
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