
Lecture 27

Properties of Fourier Series of DT signals
1. Time scaling (down-sampling and up-sampling)
2. Periodic convolution 
3. Multiplication
4. Difference
5. Running sum
6. Conjugation and symmetry
7. Parseval’ relation for DT FS

Fourier Transform of DT signals
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Signal x[mn] is called a decimated or downsampled version of 
x[n], i.e., only every mth sample of x[n] is retained.  
 
x[mn] is periodic if ∃M  such that  

[ ] [ ( )] [ ]x mn x m n M x mn mM= + = + .  
 
The above condition holds if ∃p, M ∈Z such that 

mM pN= .   
 
Letting m=p<N, M=N, then the signal x mn[ ]  is also periodic 
of period N. 

Time Scaling x[mn], m>1 (decimation or down-
sampling)
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The signal 
[ ], if  is a multiple of 

[ ] :
0, if  is not a multiple of m

x n m n m
x n

n m↑

⎧
= ⎨

⎩
    

is sometimes called an upsampled version of the periodic signal x n[ ].  

The upsampling operation inserts m-1 zeros between consecutive samples of
the original signal.  

The up-sampled signal has a fundamental period mN, because 

[( ) ] [ / ] [ / ], if  is a multiple of 
[ ] :

0, if  is not a multiple of 
[ ]

m

m

x n mN m x n m N x n m n m
x n mN

n m
x n

↑

↑

+ = + =⎧
+ = ⎨

⎩
=

 

Thus, the up-sampled signal has a fundamental frequency 
2π
mN

. 

Time Scaling x[n/m], m>1 (up-sampling)
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Example (upsampling) 

 

 

 

 

 

 

 

Example
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The Fourier series coefficients of the upsampled signal [ ]mx n↑  are given by: 

1[ ] kmx n a
m↑ ↔

FS

, 

where { }1
m ka  is viewed as a periodic sequence of period mN .  

Proof: 

2 2

0, ,.., ( 1)

2

1 1[ ] [ ]

1 1[ ]

jk n jk n
mN mN

k m
n mN n m m N

jk p
N

k
p N

b x n e x n m e
mN mN

x p e a
mN m

π π

π

− −

↑
= = −

−

=

= =

= =

∑ ∑

∑
  

FS of up-sampled DT signals
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Suppose that x n[ ]  and y n[ ]  are both periodic with period N.  

For x n ak[ ]↔
FS

, y n bk[ ]↔
FS

, we have 

kk

FS

Nm
bNamnymx ↔−∑

>=<

][][  .   

Remarks 

• The periodic convolution is itself periodic of period N (Show it as an 
exercise) 

• Periodic convolution is useful in periodic signal filtering. The DTFS
coefficients of the input signal are a sk ' . b sk ' are designed to attenuate 
or amplify certain frequencies. The resulting DT output signal is given by 
the periodic convolution above. 

Periodic Convolution of Two Signals
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With the two periodic signals as defined above, we have: 

x n y n a bl k l
l N

[ ] [ ]↔ −
=
∑

FS

,  

i.e., multiplication in the time domain corresponds to a 
periodic convolution of the spectral (FS) coefficient 
sequences. (Recall: the spectral (FS) coefficient sequence is also 
periodic.) 
This property is used in the discrete-time modulations of a 
periodic signal. 

Multiplication of two periodic signals
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The first difference of a periodic signal is often used as an 
approximation to the continuous-time derivative. 

It has the following spectral (FS) coefficients: 

x n x n e a
jk

N
k[ ] [ ] ( )− − ↔ −

−
1 1

2FS π

  

First Difference
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The running sum of a signal is the inverse of the first difference.  

Note: the running sum of a periodic signal is periodic only if a0 0= , i.e., 
only if the DC component of the signal is 0.  

x m
e

a
m

n

jk
N

k[ ]
( )=−∞ −

∑ ↔
−

FS 1

1
2π   

Running Sum
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Taking the conjugate of a periodic signal has the effect of
conjugation and frequency reversal on the spectral coefficients.  

  x n a
FS

k
∗ ∗

−↔[ ]  

Consequently: 

• For x n[ ] real, the sequence of coefficients is conjugate symmetric 
(a ak k−

∗= ). This implies 

 0, ( ) ( ), , Re{ } Re{ },
Im{ } Im{ }

k k k k k k

k k

a a a a a a a
a a

− − −

−

= ∠ = −∠ ∈ =

= −
.  

Conjugation and Conjugate Symmetry
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• For x[n] real and even, the sequence of coefficients is also 
real and even ( ak=a-k ∈Real ) 

• For x[n] real and odd, the sequence of coefficients is purely 
imaginary and odd (a ak k− = − purely imaginary ) 

• For even-odd decomposition of the signal
x n x n x ne o[ ] [ ] [ ]= + , x n a x n j ae

FS

k o

FS

k[ ] Re{ }, [ ] Im{ }↔ ↔  
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Parseval’s Relation for Discrete Time 
Fourier Series

∑∑
>=<>=<

=
Nk

k
Nn

anx
N

22 |||][|1

The above Eq. says:

The average power in one period 

= The sum of the average powers in all (N) harmonic 
components of x[n].
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Consider the following periodic signal ~[ ]x n , and x n[ ]  equal to ~[ ]x n
over one period. 

From periodic signals to aperiodic signals

⎩
⎨
⎧ −=

=
otherwise

Nnnx
nx

,0
1,...1,0,][~

][
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Let's examine the DTFS pair of 
~[ ]x n  given by 

~[ ]x n a ek

jk
N

n

k N

=
=
∑

2π

,  

 

n
N

jk

n

n
N

jkn

nn

n
N

jk

Nn
k

enx
N

enx
N

enx
N

a

π

ππ

2

22

][1

][~1][~1 2

1

−∞

−∞=

−

=

−

>=<

∑

∑∑

=

==
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Define the function,  

X e x n ej j n

n

( ): [ ]ω ω= −

=−∞

+∞

∑ , 

we see that the DTFS coefficients ak  are scaled samples of this 
continuous function of frequency ω . That is, 

a
N

X e
N

X ek

j
N

k j k= =
1 12

0( ) ( )
π

ω . Using this expression,  

 ~[ ] ( ) ( )x n
N

X e e X e ejk jk n

k N

jk jk n

k N

= =
= =
∑ ∑1 1

2
0 0 0 0

0
ω ω ω ω

π
ω .

This is a Riemann Sum. 

Definition of FT of DT signals
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Apply the concept of Riemann Sum to the above. 
Taking the limit of the above equation as N → +∞ , we get  

• kω ω0 →  
• the summation over N → ∞  intervals of width

ω π ω0
2

= →
N

d  tends to an integral over an interval of 
width 2π  

• ~[ ] [ ]x n x n→  

Thus,    ∫=
π

ωω ω
π 2

)(
2
1][ deeXnx njj

 

~[ ] ( ) ( )x n
N

X e e X e ejk jk n

k N

jk jk n

k N

= =
= =
∑ ∑1 1

2
0 0 0 0

0
ω ω ω ω

π
ω
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∫=
π

ωω ω
π 2

)(
2
1][ deeXnx njj   

X e x n ej j n

n

( ) [ ]ω ω= −

=−∞

+∞

∑  

Fourier transform pair of discrete-time 
signals
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Fourier transform of x n[ ]  is periodic of period 2π :

( 2 ) ( 2 )

2

( ) [ ]

[ ]

[ ] ( )

j j n

n

j n j n

n

j n j

n

X e x n e

x n e e

x n e X e

ω π ω π

ω π

ω ω

+∞
+ − +

=−∞

+∞
− −

=−∞

+∞
−

=−∞

=

=

= =

∑

∑

∑

FT of DT signals is periodic
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Sufficient conditions for convergence of the infinite summation of the 
DTFT.  

The DTFT [ ] j n

n
x n e ω

+∞
−

=−∞
∑  will converge either if:  

the signal is absolutely summable, i.e., x n
n

[ ]
=−∞

+∞

∑ < ∞ , 

or if the sequence has finite energy, i.e.,  x n
n

[ ] 2

=−∞

+∞

∑ < ∞ . 

In contrast, the finite integral in the synthesis equation always converges.

Convergence of the DT Fourier Transform
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Consider the exponential signal [ ] [ ], , 0 1nx n a u n a a= ∈ < < . 

 

 

 

 

 

Its FT is:  X e a e ae
ae

j n j n

n

j n

n
j( ) ( )ω ω ω
ω= = =

−
−

=

+∞
−

=

+∞

−∑ ∑
0 0

1
1

 

n 

x n[ ]

Example 1: The FT of DT exponentials
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Note that this infinite sum converges because ae aj− = <ω 1 .

The magnitude of X e j( )ω  is plotted below:

-2π 2π -π π 0 

X e j( )ω

ω

1
1 − a

1
1 + a

Can you see the periodicity of the spectrum?
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Consider the rectangular pulse 0

0

1,
[ ]

0,
n n

x n
n n

⎧ ≤⎪= ⎨ >⎪⎩
. 

Example 2: The FT of DT rectangular 
function
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The Fourier transform of a pulse with 0 2n = : 

 

 

 

 

 

 
-2π 2π -π π 0 
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sin (2 1 2)( )
sin( 2)

jX e ω ω
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Example 3
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