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Steps of drawing Bode plots

Step 1: Dividing multi-order system into cascade of 
multiple 1st-order systems, each containing a single 
pole or zero;

Step 2: Determining the asymptotes and break 
frequencies of these 1st-order systems;

Step 3: Adding up the Bode plots of these 1st–order 
systems.
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Consider again the first-order system with frequency 
response 
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It is convenient to write it as the product of a gain and a 
first-order transfer function with unity gain at DC: 
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Example of a first-order system
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The Bode plot of the magnitude is the graph of  
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The Bode magnitude plot of the first-order system

The Bode magnitude plot of a 1st-order system has 2 
asymptotes: one straight line for very low frequencies, and one 
straight line for very high frequencies. The frequency at which 
the two asymptotes meet is called the break frequency.
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The low- and high-frequency asymptotes of the first-
order system

For low frequencies (ω<<2),  
20 6 20 1 610 10log ( ) logH j dB dB dBω ≈ − − = − . 

i.e., for very low frequencies the Bode magnitude plot 
approximates a straight line. 
For high frequencies (ω>>2), 
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i.e., for very high frequencies, the Bode magnitude plot 
approximates a straight line with a slop –20 dB/decade, or 
–6 dB/octave. 
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For ω>> 2, say ω = 10 , we get -20 dB; for ω = 100 , we get -
40 dB, etc.  
Therefore, the slope of the asymptote is -20dB/decade. 
 
The 2 asymptotes meet at the break frequency 2 radians/s, at 
which the magnitude drops from the DC gain by 3 dB.   
 
Given the 2 asymptotes and the drop at the break frequency, 
we can sketch the magnitude Bode plot (the dashed line as 
follows). 

The slop of the high-frequency asymptotes
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The phase response is given by:  
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For ω<<2, the phase approximates 0; for ω>>2 the phase is 

approximates −
π
2 . i.e., at very low and very high frequencies the 

phase response approximates to 2 parallel asymptotes, respectively
Connecting the 2 parallel asymptotes is a straight line, the third 
asymptotes. The three asymptotes are given by the following piece 
wise linear function: 
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The asymptotes of the Bode phase plot of the 1st-order 
system 
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Break frequencies of the 
Bode phase plot

The break frequencies of the Bode phase plot of 
the 1st-order system
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Given a numerator (jω+2), i.e., the inverse of 1/( jω+2), the 
Bode magnitude plot is simply the Bode magnitude plot of 
1/(jω+2) flipped around the frequency axis, because: 

The Bode magnitude plot of a single-zero system
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The Bode phase plot of a single-zero system

Given a single-zero system (s+2), i.e., the inverse of 1/(s+2), 
the Bode phase plot is simply the Bode phase plot of 1(s+2) 
flipped around the frequency axis, because: 
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Second-Order Example: 
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which has the frequency response 
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The break frequencies are 1, 10 and 100 radians/s. 

The Bode plots of a second-order system
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The Bode magnitude plot is the graph of  
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At low frequencies (ω<<1),  
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The Bode magnitude plot of the second-order 
system 
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For high frequencies (ω>>100), 
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We can plot the asymptotes of each first-order term on the 
same magnitude graph (dashed lines) and then add them
together to obtain the Bode magnitude plot (solid line). 
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A first-order lag has a transfer function of the form 
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where 0 1≤ <α , τ > 0  is the time constant.  
 

This system is called a lag because it has an effect similar 

to a pure delay e s−τ
 at low frequencies for α = 0 . To the 

first order, the two systems are the same, as can be seen 
from the Taylor series around s=0: 
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First-order lag system
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Assuming that 0 1α< < , the frequency response of the first-order 
lag system is 
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The Bode magnitude plot of the above system is shown below. 

The Bode magnitude plot of the first-order lag system

Break frequencies
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The phase Bode plot of the first-order lag system

1
1)1(

1
1)(

1}Re{
1
1)(

+
∠++∠=

+
+

∠=∠

−>
+
+

=

ωτ
ωατ

ωτ
ωατω

ττ
ατ

j
j

j
jjH

s
s
ssH

Break frequencies



H. Deng, 
L24_ECSE306

20

The step response of the first-order lag system

For the case 0 1< <α  (lag) and time constant τ, i.e., 
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The transfer function of a first-order lead system has the 
same algebraic expression as that of first-order lag 
system: 

H s s
s

( ) =
+

+
ατ
τ

1
1  

where τ > 0 , but  α>1. 

First-Order Lead

For α>1, the break frequency (1/ατ) given by the numerator is smaller 
than that (1/τ) given by the denominator.

Recall: in a first-order lag system, α<1, and the break frequency (1/ατ)
given by the numerator is greater than that (1/τ) given by the 
denominator.
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For a first-order lead system, in which α>1, the magnitude increase 
from a level to a higher level as frequency increases.

Compare with the first-order lag system, in which α <1, the 
magnitude decrease from a level to a lower level for a system.

The Bode magnitude plot
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The Bode phase plot
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For the case where τ ατ→ →0, T , then the first-order lead is 
equivalent to a differentiator with gain T in parallel with the 
identity system: H s Ts( ) = +1     
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For the case 1α >  (lead) and time constant τ , i.e.,
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The step response of the first-order lead system
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The first-order lead may be used  
• To "differentiate" signals at frequencies higher than

( )ατ −1  but lower than τ −1 .  
• To "reshape" pulses that could have been distorted by a

communication channel with a lowpass frequency
response.  

•  As a controller because it adds positive phase to the
overall loop transfer function . 

Applications of first-order lead systems
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