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*  Analysis of frequency responses using the poles and zeros of
transfer functions

 Bode plots
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Frequency response as a function of the poles
and zeros of a transfer function
Consider a stable transfer function in terms of poles and zeros:
K(s—z)-(s—2,)

H(s) =
S = =) o=py) -

LetS =J@ to obtain the frequency response of the system.
K]0z
[Tijo-p,]

LH(ja)):LK+Zm:L(ja)—Zk)_Zn:4(ij)—pj)

k=1 j=1

| H(jo)|=

For a frequency w, each first-order pole (zero) factor corresponds to a

vector originating at the pole p; (zero ;) and ending at jw, contributing
to the overall frequency response.
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e The magnitude at frequency @ 1s given by:
the product of the lengths of the vectors originating at zeros
divided by the product of the lengths of the vectors
originating at poles.

e The phase at frequency ¢ 1s given by:
the sum of the angles of the vectors originating at zeros
minus the sum of the angles of the vectors originating at
poles.
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Example

A stable first-order system with transfer function
1

H(S):S+2

, Re{s} > -2

H(jo) = —
Its frequency response is SO = jw+2

In the s-plane, the denominator 2+J@ can be viewed as a

vector, which is a function of ®.

2+ 71 1
)
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_< » =0 Re{s}
2 1M1
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e as w goes from —oo to 0:

the magnitude of 2+ jw (the vector's length) goes from oo to 2
while its phase goes from — /2 to 0.

= magnitude of H(jw)= 2+ jw)"' varies from 0 to 0.5
while its phase goes from 7/2 to 0.
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e As @ goes from 0 to O :

the magnitude of 2+/j@ (the vector's length) goes from 2 to
%0 while 1ts phase goes from 0 to 7/2 radians.

The magnitude of H(j®)=(2+j®)" varies from 0.5 to 0 while
its phase goes from 0 to —7/2radians.
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The frequency response of a first-order pole system 1s

Jj arctan(?)

1 e

H(jo)=- =
jo+2 4+

For a higher-order system, its overall frequency response
can be obtained from multiple first-order pole and zero
systems.
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Example of third-order system

A stable third-order system with transfer function

(s +1)(s —2) T
(S+3)(S—I—\/§—j\/§)(s+\/§+j\/§): e{s} > J2

H(s) =

has the frequency response
. (jo+)(jo-2)
H(jw) =
) (ja)+3)(ja)+\5—j\5)(ja)+ﬁ+jﬁ).
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Frequency response as a function of zeros
and poles

Re{s}
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For the above example, we can make the following
gualitative observations.

e At ® =0 the lengths of the vectors originating from
the two zeros are minimized, and the output level is
low.

o At ®=+V2 the lengths of the vectors originating
from the poles 71 =2+ 42 gre minimized, and the
output level is high.
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The phase at @ =0 is—7 and has a net contribution
of —7 only from the zero z, =2 .

The phase around @ = +2 should be more
sensitive to a small change i than elsewhere. This

IS even more noticeable when the complex poles are
closer to the imaginary axis.
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At @ = 400, the phase is— /2 . This comes from a
contribution of — 7/2 from the three pole vectors, a
contribution of 7/2 from the RHP zero vector, and a
contribution of 7/2 from the LHP zero vector.
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At @ = —0 , the phase is 7/2 . This comes from a
contribution of 77/2 from the three pole vectors, a
contribution of —77/2 from the RHP zero vector, and
a contribution of — 7T/ 2 from the LHP zero vector.
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Remark:

The definition of an angle is sometimes ambiguous.
For most purposes the angle 7T/2 can be considered

the same as —37/2
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Bode plots

The plots of 20log;9|H(jw)| and £H(jw) versus log;y (®) are
referred to as Bode plots.

The benefits of using a log scale to plot the frequency
response:

e To cover a wide dynamic range of the magnitude
e To cover a wide range of frequency

e 7o add rather than multiply the magnitudes of product
of frequency responses, which 1s easier to do
graphically:

log‘Y(ja))‘ = log‘H(ja))‘ + log‘X(ja))‘
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dB (Decibels)

It 1s customary to use decibels (dB) as the magnitude units.
20log,, | H(jw)|  (dB)

Magnitude gains expressed in dB

Gain | Gain (dB)
0 —0 dB
0.01 -40 dB
0.1 -20 dB
1 0dB
J2 3 dB
2 6 dB
10 20 dB
H. Deng, L23_ECSE306 100 40 dB
1000 60 dB 19




Power gain 1in dB

The power gain 1s defined as:
10log,,|H(j)|" dB = 20log, |H(jw)|dB

1.e., the power gain 1s 1dentical to the amplitude gain in dB.
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Example of a first-order system

Consider again the first-order system with frequency
response

1
jo+2 -

H(jo) =

It 1s convenient to write 1t as the product of a gain and a
first-order transfer function with unity gain at DC:;

L1
H(jo)=—
Vo) =S w1,
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The Bode plot of the magnitude

The Bode plot of the magnituc

20log,,|H(jo)| = 20log,, ,

e 1s the graph of
1 1

+20log,,

dB
1

Jo
2

=—-20log,,2 - 2Olog10‘j7‘” + 1‘ dB

=—6dB —

H. Deng, L23_ECSE306

201log,,|5> + 1‘ dB

22



The low- and high-frequency asymptotes of
a first-order system

For low frequencies (@ <<2),
20log, |H(jw)| ~ —6dB —20log,,|l|dB =—6dB

1.e., for low frequencies, the frequency response approximates a
straight line —6 dB.

For high frequencies (@ >>2),

20log, |H(jw)| ~ —6dB —20log,, % dB

=-6dB - 20log,,|w|dB+20log,, 2dB
=-20log,,|w|dB

1.e., for high frequencies, the frequency response approximates a
straight line with a slop —20 dB/decade.
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For @ =10, we get -20 dB; for ® =100 | we get -40 dB,
etc. The slope of the asymptote 1s therefore -20dB/decade
as ), __)"FCX).

The break frequency is the frequency at which the two
asymptotes meet.

The two asymptotes meet at the break frequency = 2
radians/s, we can sketch the magnitude Bode plot as
follows (dashed line: actual magnitude):
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The break frequency 1s also the frequency at which the
magnitude drops from the DC gain by 3 dB .
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