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Consider a stable transfer function in terms of poles and zeros: 
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Let s j   to obtain the frequency response of the system. 
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For a frequency , each first-order pole (zero) factor corresponds to a 

vector originating at the pole pj (zero zk) and ending at j, contributing 

to the overall frequency response. 

 

Frequency response as a function of the poles 
and zeros of a transfer function
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The magnitude at frequency    is given by: 

the product of the lengths of the vectors originating at zeros 

divided by the product of the lengths of the vectors 

originating at poles. 

 

The phase at frequency   is given by: 

the sum of the angles of the vectors originating at zeros 

minus the sum of the angles of the vectors originating at 

poles. 
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 A stable first-order system with transfer function  
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In the s-plane, the denominator 2  j  can be viewed as a 

vector, which is a function of . 

Example

 =1

 =-1

 =0
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 as   goes from   to 0 : 

the magnitude of 2 j  (the vector's length) goes from   to 2 

while its phase goes from  2  to 0 . 

  

   magnitude of H j j( ) ( )   2 1
 varies from 0  to 05.  

while its phase goes from  2  to 0 . 
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As   goes from 0 to  : 

the magnitude of 2  j  (the vector's length) goes from 2 to  

   while its phase goes from 0 to  2 radians. 

 

The magnitude of H j j( ) ( )   2 1

 varies from 0.5 to 0 while 

its phase goes from 0 to  2 radians. 
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The frequency response of a first-order pole system is 
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For a higher-order system, its overall frequency response 

can be obtained from multiple first-order pole and zero 

systems. 
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A stable third-order system with transfer function  
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has the frequency response 
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Example of third-order system
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Frequency response as a function of zeros 
and poles
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For the above example, we can make the following 
qualitative observations. 

 

At   0 , the lengths of the vectors originating from 
the two zeros are minimized, and the output level is 
low. 

At    2 , the lengths of the vectors originating 

from the poles p j1 2 2 2,     are minimized, and the 

output level is high. 
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 The phase at   0  is   and has a net contribution

of   only from the zero z1 2 .

 The phase around    2  should be more

sensitive to a small change in   than elsewhere. This

is even more noticeable when the complex poles are
closer to the imaginary axis.
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 At    , the phase is  2 . This comes from a 

contribution of  2  from the three pole vectors, a 

contribution of  2  from the RHP zero vector, and a 

contribution of  2  from the LHP zero vector. 
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 At    , the phase is  2 . This comes from a 

contribution of  2  from the three pole vectors, a 

contribution of  2  from the RHP zero vector, and 

a contribution of  2  from the LHP zero vector. 
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Remark:

The definition of an angle is sometimes ambiguous.

For most purposes the angle  2  can be considered

the same as 3 2
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The plots of 20log10|H(j)| and H(j) versus log10 () are 

referred to as Bode plots. 
 

The benefits of using a log scale to plot the frequency 

response: 

 To cover a wide dynamic range of the magnitude  

 To cover a wide range of frequency 

 To add rather than multiply the magnitudes of product 

of frequency responses, which is easier to do 

graphically: 

log ( ) log ( ) log ( )Y j H j X j     

Bode plots
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dB (Decibels)
It is customary to use decibels (dB) as the magnitude units.

)(|)(|log20 10 dBjH 

Magnitude gains expressed in dB 

Gain Gain (dB) 

0   dB 

0.01 -40 dB 

0.1 -20 dB 

1 0 dB 

2  3 dB 

2 6 dB 

10 20 dB 

100 40 dB 

1000 60 dB 

 



H. Deng, L23_ECSE306

20

The power gain is defined as:  

10 2010

2

10log ( ) log ( )H j dB H j dB 
  

 

i.e., the power gain is identical to the amplitude gain in dB. 

Power gain in dB
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Consider again the first-order system with frequency 

response 
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It is convenient to write it as the product of a gain and a 

first-order transfer function with unity gain at DC: 
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Example of a firstExample of a first--order systemorder system
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The Bode plot of the magnitude is the graph of  
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The Bode plot of the magnitudeThe Bode plot of the magnitude



H. Deng, L23_ECSE306

23

The lowThe low-- and highand high--frequency asymptotes of frequency asymptotes of 
a firsta first--order systemorder system

For low frequencies (  2 ),  

20 6 20 1 610 10log ( ) logH j dB dB dB      . 

i.e., for low frequencies, the frequency response approximates a 

straight line –6 dB. 
 

For high frequencies (  2 ), 
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i.e., for high frequencies, the frequency response approximates a 

straight line with a slop –20 dB/decade. 
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For   10 , we get -20 dB; for   100 , we get -40 dB, 

etc. The slope of the asymptote is therefore -20dB/decade 

as    . 

 

The break frequency is the frequency at which the two 

asymptotes meet. 

 

The two asymptotes meet at the break frequency = 2 

radians/s, we can sketch the magnitude Bode plot as 

follows (dashed line: actual magnitude): 
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The break frequency is also the frequency at which the 

magnitude drops from the DC gain by 3 dB  .


