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Course Details (see syllabus)
Schedule Sep. 2- Dec.2 MWF 10:30 – 11:25 ENGTR 1100

Dec. 2 T 10:30 – 11:25 ENGTR 1100

W? 02:35 – 04:25? ENGTR 0060?

T? 04:35 – 06:25? ENGTR 2120?

Tutorials Sep. 8 – Dec. 7

Lectures

Required Text:
B. Boulet, Fundamentals of Signals and Systems, Da Vinci Engineering Press, 
Charles River Media, 2006.

Suggested Text:
A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd 
Eddition. Prentice Hall, New Jersey, 1997

Grading:
10 Assignments: 10%

Midterm 1 (Sep. 29): 20%

Midterm 2 (Nov. 5): 20%

Final exam (TBD): 50%
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What is the course about

• Mathematical formulations of signals and systems
• Methods for describing, analyzing the responses of 

systems to input signals
– Fourier Series
– Fourier Transform
– Laplace Transform
– Z-Transform
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How to be successful in the course 

• Pay full attention to lectures and tutorials
• Carefully read textbooks
• Test your understanding and proficiency about 

concepts and methods by doing exercises and 
assignments

• Do your best in exams
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What is a system

A system is a combination of components that act 
together to perform a function not possible with 
any of the individual parts 

IEEE: Electronic Terms http://www.mame.mu.oz.au/mechatronics/imse/imse_ppt/01des.pdf.

Examples:

An RLC circuit 

An algorithm for processing data

An equation describing input and output relationships

A car or an aircraft 

http://www.mame.mu.oz.au/mechatronics/imse/imse_ppt/01des.pdf
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What is a signal
A signal is a function of independent variables. 
Examples: 

• Electrical signals: voltages, currents, …
• Acoustic signals: music, speech, car noise, …
• Optical signals: pixel intensities in an image, …
• Biological signals: neuron firing signals, blood 

pressure, …
• Natural signals: earth quake signals, air pressure, 

wind speed, temperature, sea level, …
• Social signals: population, financial data, …

All signals contain information about their underlying systems. 
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The independent variables of signals

• Can be 1-D, 2-D, …, N-D

• Can be continuous 
e.g., the temperature of a day, the speed of a car, the 
air pressure …

• Can be discrete
e.g., the instants of taking data, the population, …

This course focuses on a 1-D independent variable 
denoted as “time”.
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Continuous-time (CT) signals
• Continuous-time signals are functions of a 

continuous variable (time). 

Example:

The speed of a car

t 

V(t)
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Discrete-time (DT) signals
Discrete-time signals are functions of a discrete variable, 
i.e., they are defined only for discontinuous values of the 
independent variable (time instants, …).

Example: The value of a stock at the end of each month

month n 
1 2 3 

stock  value $ 
x[n]
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Transformations of the time variable

1. Time scaling
2. Time reversal
3. Time shift
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Time scaling: y(t)=x(αt)
Multiplying the time variable by a real positive constant.

Case  0<α <1: The signal is "slowed down" or "expanded". 

Example: α=0.5 

 

 

 

 
t 4 -4 

( ) (0.5 )y t x t=

t  2  -2 

y(t)=x(t)
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Time scaling case 2: time compression

Case a > 1: The signal is "sped up" or "compressed"  

Example: a = 2  

 

 

 

 
t 1 -1 t  2  - 2 

x(t)y(t)=x(2t)
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Time compression of DT signals 
(decimation, down-sampling)

Be careful: down-sampling may introduce aliasing noise, as seen later in the course.
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Time reversal: y(t)=x(-t)

t 2 -2 

A time reversal is achieved by multiplying the time variable by -1

t 2 -2 

x(t) x(-t)
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Time shift: y(t)=x(t+T)

t 2 -2 

t 0 -4 

y t x t( ) ( )= + 2

t 
0 4 

y t x t( ) ( )= − 2

A time shift delays or advances the signal in time by a time 
interval 

y=x(t)
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Possible properties of signals

Periodic

Finite-energy

Finite-power

Even

Odd 
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Periodic signals

A continuous-time signal x(t) is periodic if there exists a  positive real T for 
which:  

  x t x t T( ) ( )= +  

A discrete-time signal x n[ ]  is periodic if there exists a positive integer N for 
which:  

x n x n N[ ] [ ]= +  

The smallest such T  or N  is called the fundamental period. 

(1.5)

(1.6)
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The power and energy of a CT signal

The average power of a CT signal is defined as:

dttxE
2

)(: ∫
∞

∞−∞ =

dttx
T

P
T

TT

2
)(

2
1lim: ∫−∞→∞ =

It is the average power dissipated in a one-ohm resistor, 
assuming x(t) is the voltage of a one-ohm resistor.

The total energy of a CT signal is defined as:
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The power and energy of a DT signal

∑
−=

∞→∞ +
=

N

NnN
nx

N
P 2][

12
1lim:

∑
∞

−∞=
∞ =

n
nxE 2][:

The average power of a DT signal is defined as:

The total energy of a DT signal is defined as:
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Finite-energy and finite-power signals

Finite-Energy Signals: signals with E∞ < ∞ .

Finite-Power Signals: signals for which P∞ < ∞ .

Examples:     

x(t)=4   has infinite energy but an average power of 16.

ejωt has unit power over one period.
Check them yourself.
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Even and odd signals

x t x t x n x n( ) ( ), [ ] [ ]= − = −

x t x t x n x n( ) ( ), [ ] [ ]= − − = − −

x t( ) even x[n] odd

n 

1 

0 1 2 

-1 

-1 

9 

-9 

t 

A signal is even if

A signal is odd if
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Even and odd components of a signal

Even component:   

Odd component:

2
)()()( txtxtxeven

−+
=

2
)()()( txtxtxodd

−−
=

Derive and check them!

)()()( txtxtx oddeven +=
A signal can be decomposed as:

(1.46)

(1.45)

(1.47)
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CT Exponential Signals
x t Ce C aat( ) , ,= real   

Case a=0: We get the constant signal   x t C( ) = . 
Case a>0: The exponential tends to infinity as t →∞  (here C>0). 

t 

 
Case a<0: The exponential tends to zero as t →∞ . 

t 

x t( )

C

( ) atx t Ce=

C

(1.10)
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DT real exponential signals
 

 
Six cases: α = 1, α > 1, 0 1< <α , α < −1, α = −1 and − < <1 0α . Here we 
assume that C>0. 
 
Case α = 1: We get a constant signal x n C[ ] = . 
 
Case α > 1: We get a positive signal that grows exponentially. 

n 

x n C Cn[ ] , ,= α α real

x n[ ]

(1.11)
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Case 0 1< <α : The signal is positive and decays exponentially. 

n 

 
Case α < −1: The signal alternates between positive and negative values 
and grows exponentially. 
 

 
 

 

x n[ ]
C

n 

x n[ ]

C
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Case α = −1: The signal alternates between +C and -C. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Case  − < <1 0α : assignment 1.1. 

n 

... ... 

C

−C

x n[ ]
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CT complex exponential signals

0 0( ) ( )( ) j t j tat j tx t Ce Ae e Ae eα ω ω θθ α+ += = =

0complex

( )
, , ,

at

j

x t Ce
C a C Ae a jθ α ω

=

= = +

0 0( ) cos( ) sin( )t tx t Ae t jAe tα αω θ ω θ= + + +

Using Euler's relation, we get real part and 
imaginary part of the signal

Sketch x(t), given different α values. See B.Boulet’s p.12-15.

(1.12)

(1.13)
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Harmonics of CT signals
Periodic exponential (or sinusoidal) signals are 

harmonics if their fundamental frequencies are 
integer multiples of a frequency.

,...1,0,1...,,0 −=ke tjkω
(1.20)

Fundamental frequency: ω0 /2π (Hertz)

There are infinite number of CT harmonics.

Fundamental period: 2π/ ω0 (Second)

Fundamental angular frequency: ω0 (radians/second)
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Orthogonal CT signals
Two signals x(t) and y(t) are orthogonal over an 

interval [t1, t2] if their inner product is equal to 
zero: 

∫ =2

1

0)()( *t

t
dttytx (1.21)

X*(t) is the complex conjugate of x(t).

(1.23)

(1.24)

Distinct harmonics are orthogonal over their fundamental period:

∫
⎩
⎨
⎧

=
≠

=−
0

0

00

2

0 2

0
ω
π

ω
π

ωω

mk
mk

dtee tjmtjk
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DT complex exponential signals
nje ω

πω 2
N
m

=

It is NOT periodic, unless

If m and N have no common factors, then the fundamental 
frequency is:  Ω0=2π/N (in radians).

(1.30)

π
ω

2mN =

The fundamental period of the DT exponential signal is:
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Harmonics of DT signals

1,...,0,2
−= Nkn

N
jk

e
π

There are N distinct DT complex harmonics.

Harmonics of DT signals are also orthogonal:

{ mk
mkN

n
N

jmN

n

n
N

jk
ee ≠

=

−

=

−
=∑ ,0

,

21

0

2 ππ
(1.28)

Note: Two DT signals are orthogonal if their inner product is zero:

0][][
1

0

* =∑
−

=

N

n
nynx

⎪⎩

⎪
⎨
⎧

=
=

≠
−
−

−

=
∑

1,

1,
1

1

1

0

α

α
α
α

α
NN

n

n
N

formulasumfinite
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Compare ejωt and ejωn

ejωt ejωn

Periodicity

Fundamental 
period

Fundamental 
frequency

Always periodic Only if ω=2πm/N

2π/ω N =2πm/ω

ω (radians/sec) 2π/N (radians)
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Representing complex signals in the 
complex plan
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DT Unit Step Function (Signal)

{ 0,1
0,0:][ ≥

<= n
nnu

The discrete-time unit step function is defined as:
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DT Unit Impulse Function 
(Signal)

{ 0,1
0,0:][ =

≠= n
nnδ

The discrete-time unit impulse function is defined as:

]1[][)( −−= nununδ
Then, we have
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Representing DT signals in terms of 
impulse signals

∑
−∞=

=
n

k
knu ][][ δ

∑
∞

−∞=

−=
k

nkkxnx ][][][ δ ∑
∞

−∞=

−=
k

knkxnx ][][][ δ

n-1 0 1

x[0]δ[n]

x[1]δ[n-1]
x[-1]δ[n+1]

n-1 0 1

x[0]δ[n]

x[1]δ[1-n]
x[-1]δ[-1-n]
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CT Unit Step Function (Signal)

1, 0
( ) :

0, 0
t

u t
t
>⎧

= ⎨ ≤⎩

t 

1 

u t( )

The continuous-time unit step function is defined as:
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CT Unit Impulse Function (Signal)

t 

The continuous-time unit impulse function is defined as:

Δ

1/Δ

δΔ(t)

)(lim:)(
0

tt Δ→Δ
= δδ

t 

1 

δ(t)

⎪
⎪
⎩

⎪
⎪
⎨

⎧ Δ<<
Δ

=Δ

otherwise

t

t
,0

0,1

:)(δ

δ(t) is  represented using an 
arrow at t=0, with height 
equal to the area of the 
impulse, “1”.

0
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Physical meaning of CT impulse signal δ(t)

An idealized signal, for which 
Energy is finite 
Amplitude is “infinite” large or very large 
Duration is “infinite short” or short enough to a system

The response of a system to the impulse signal is called 
impulse response
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Examples of impulse signals
1. The sound of a gun shoot
2. The current i(t) of a capacitor discharging through a 

zero-ohm resistor R (s2 is on) 

V 

s2 

+ 
- 

C 
R 

R1 S s1 

+ 

- 

i(t)

Note: shorting a capacitor can get a huge 
current and burn the device, and is dangerous!

)()()()( tCV
dt

tduCV
R
tuti δ=−==

The current through the zero-ohm resistor R i(t) can be modeled 
using the impulse signal:

u(t)RC
t

Vetu
−

=)(

CVδ(t)

i(t)

t
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∫ ∞−
=

t
tud )()( ττδ

∫
∞

∞−
=1)( dttδ

)()( t
dt

tdu δ=

(1.62)

Properties of the unit impulse signal



H. Deng, L2_ECSE306 21

Properties of the unit impulse signal

( ) ( ) ( )T x t d x t Tδ τ τ τ
∞

−∞

− − = −∫

Sampling property:

∫
∞

∞−
= )0(

||
1)()( xdtttx
α

αδTime scaling: 
(1.71)

(1.68))()()()( 000 tttxtttx −=− δδ

Time shifting: (1.73)

)()()( 00 txdttxtt =−∫
∞

∞−

δ

Assuming x(t) is continuous at t0.
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Convolution of CT signals

∫∫
∞

∞−

∞

∞−
−=−= ττττττ dtxydtyxtytx )()()()(:)(*)(

)(*)()(*)( txtytytx =

)()(*)( txttx =δ

Deductions:



H. Deng, L2_ECSE306 23

Derivatives of the unit impulse signal

dt
tdt )(:)(' δδ =

0 t

δ'(t)

Unit doublet:

Δ

δ(t)/Δ

δΔ′(t)

dt
td

dt
td )(lim)(

0

Δ

→Δ
=

δδ

- δ(t)/Δ

0
t

Infinite area

Infinite area



H. Deng, L2_ECSE306 24

Properties of unit doublet

)0(')()(' xdttxt −=∫
∞

∞−

δ (1.74)

)0()1()()( )()( kkk xdttxt −=∫
∞

∞−

δ
(1.75)

∫ ∫−= vduuvudv

0)(' =∫
∞

∞−

dttδ
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System Models

A system can be modeled as a mathematical relationship 
between its input signal and its output signal. 

Different physical systems can have similar mathematical 
representations.

E.g., an RLC circuit and mass-spring system can be described 
using similar deferential equations.
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Input-Output Models of Systems

 
y G x G x= +1 2  

G1

G2

x y

y1

y2

+

+

 
y G G x= 2 1  

x y1
y

G1
G2

Cascade Interconnection Parallel Interconnection

 
e x G y
y G e
= −
=

2

1

  

G1

G2

+

−

x e y

Feedback 
Interconnection
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Examples

Amplifier Loudspeaker Sound
signal

Speech 
signal

Microphone 

Knowing the feedback helps design a system to avoid instability.
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Possible Properties of Systems
• Causality
• Linearity
• Time-invariance
• Invertibility
• Bounded-input bounded-output stability
• Memory-less
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Causality

A system is causal if its output at time t  (or n ) 
depends only on past or current values of the
input. 

Otherwise the system is said to be non-causal.  

consequence:  

If y Sx y Sx x x t1 1 2 2 1 2= = = ∀ ∈ −∞, ( ) ( ) ( , ]and τ τ τ , then 
y y t1 2( ) ( ), ( , ]τ τ τ= ∀ ∈ −∞ . 
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Examples

y n x n k
k

n

[ ] [ ]= −
=−∞
∑

Non-causal.
The output  for negative times depends on future values of 
the input up to .

Causal?

Causal? y(t)=x(t)cos(t+10) 

Note: Non-causal system can be used for processing recorded 
signals, or applications allowing delays.
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Linearity
A system S is linear if it has the additivity property and

the homogeneity property.
Additivity: The response of S to the sum of two signals
x x1 2+  is the sum of the individual responses y Sx1 1= and 
y Sx2 2= . 

Homogeneity (scaling):  ay1=S(ax1), a is complex
Note:  the output of a linear system is zero if the input is zero. 

y y S x x1 2 1 2+ = +( )
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Principle of Superposition of linear systems

The additivity and homogeneity of linear systems are 
summarized as the principle of superposition:

The response of a linear system to a linear combination of input 
signals is the same linear combination of the corresponding 
output signals .

System Systemx1(t) x2(t)y1(t) y2(t)

SystemAx1(t) + Bx1(t) Ay1(t)+ By2(t)

A and B are complex numbers.
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Examples

Linear?  Y[n]=2x[n]+4

Linear? y(t)=Re{x(t)}

No additivity. No homogeneity.

Additivity; but, no homogeneity for complex scaling.
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Time-invariance

A system S is time-invariant if its response to a time-delayed input 
signal x[n-N]  or x(t-T) equals the time-delayed original response, 
i.e.,

y n Sx n y n Sx n N y n y n N1 2 2 1[ ] [ ], [ ] [ ], [ ] [ ]= = − = −then

System Delay t0

SystemDelay t0

x(t)

x(t)

x(t-t0)

y(t)
y1(t)=y(t-t0)

y2(t)

Illustrate above statements into diagrams of systems :
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Example

Time-invariant? y(t)=x(2t)

System Delay t0

SystemDelay t0

x(t)

x(t)

x(t-t0)

y(t)=x(2t)

y1(t)=y(t-t0)=x(2t-2t0)

y2(t)=x(2t-t0)

Delayed response

Response to the 
delayed input

Because y1(t) ≠ y2(t), the system y(t)=x(2t) is NOT time-invariant. 
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Invertibility
A system S is invertible if the input signal can be uniquely 
recovered from the output signal.  
 
Mathematically, for x x y Sx y Sx1 2 1 1 2 2≠ = =, , , we have 
y y1 2≠ .  

The inverse system S −1 is such that the following cascade
interconnection is equivalent to the identity system. 

 

x y1 y x=

S

S −1S



H. Dneg, L3_ECSE306 10

Examples of Inverse Filters

x[n] w[n]=x[n]∑
−∞=

=
n

k
kxny ][][ ]1[][][ −−= nynynw

w[n]=x[n]
][][][

1
nxknyany

M

k
k +−= ∑

=

][][][
1

knyanynw k

M

k
−−= ∑

=

1. The DT integrator and differentiator

2. The vocal-tract filter and its inverse filter

Speech 
signal y[n]

Glottal 
wave x[n]
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Bounded-Input Bounded-Output (BIBO) 
Stability

A system S is BIBO stable if for any bounded input x ,  
the corresponding output y  is also bounded. 

1

2 where

| ( ) | ,
| ( ) | , ,  

x t K t
y t K t y Sx

< − ∞ < < ∞
⇒ < − ∞ < < ∞ =

 

t 
S 

 

x t( )
K1

−K1

K2

−K2

y t( )

BIBO stability is important to establish for feedback control systems, or filters.
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Examples
1. The speed of a car and the force forms a BIBO 

system

2. y(t)=tx(t)

Stable?  
NO. 
Consider the input x(t) is bounded: |x(t)|<B. 
For any large K, there exists t>T such that 
y(T)=|TB|>K 
i.e., the output is unbounded. 
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Memory-less
A system is memoy-less if its output y  at time t  or n
depends only on the input at that same time. 

Examples: y n x n[ ] [ ]= 2 , y t x t
x t

( ) ( )
( )

=
+1

, 

Resistor  
R 

   v t Ri t( ) ( )=  

A system has memory if its output at time  t  or  n
depends on input values at some other times. 

+ −v t( )

i t( )→
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Examples
y(t)=x2(t) is memory-less 

y[n]=x[n]-x[n-1] has memory 
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1. Linear time-invariant systems
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3. Properties of convolution
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From Sep. 15 to Dec. 2, the classroom is changed to ENGTR 2120
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Linear Time-Invariant Systems

• Systems with linearity and time-invariance
are called linear time-invariant (LTI) 
systems

• LTI systems have properties:
– Superposition
– Time-invariance
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The Impulse Response of a LTI System  

The response a LTI system to an impulse signal is 
called impulse response, denoted as h(t), or h[n]

DT LTI System δ[n]  h[n]

CT LTI System δ(t)  h(t)
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Impulse Responses Represent LTI 
Systems

h(t), or h[n] can represent a LTI system 
because 

the response of a LTI system to an arbitrary 
input signal is a linear combination of time-
shifted h(t) or h[n]
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Decomposing DT Signals into Impulses
 

A DT signal is a linear combination of time-
shifted impulses: 

x n x k n k
k

[ ] [ ] [ ]= −
=−∞

∞

∑ δ
 

 
 

......]2[]2[]1[]1[
][]0[]1[]1[]2[]2[......][

+−+−+
++−++−+=

nxnx
nxnxnxnx

δδ
δδδ

 

(2.1)
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Example
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n   

n   

n   

n   

x n[ ]

x n[ ] [ ]− +2 2δ

x n[ ] [ ]− +1 1δ

x n[ ] [ ]5 5δ −

+

+

| |

+
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The Response of a DT LTI System to x[n] 

DT LTI 
System

 δ[n-k]  hk[n]=h[n-k]

From time-invariance, we have: 

From linearity, we have: 
DT LTI 
System x[k]δ[n-k]  x[k]h[n-k]

From additivity, we have: 

DT LTI 
System

 y[n]=?∑
∞

−∞=

−=
k

knkxnx ][][][ δ

∑
∞

−∞=

−=
k

knhkxny ][][][DT LTI 
System

x[n]
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Compare LTI Systems With Time-Varying 
Systems

The impulse response h[n] of a DT LTI system 
characterizes the system for all times.   
 
In contract, to characterize a linear time-varying system, 
different impulse responses are needed for different times: 
hk[n], k=…, -1, 0, 1, 2,… 
The response of a linear time-varying system to x[n] is 

∑∑
∞

−∞=

∞

−∞=

−≠=
kk

k knhkxnhkxny ][][][][][
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The Convolution Sum 

The convolution sum is the response of a DT
LTI system to an arbitrary input x[n]: 

y n x k h n k
k

[ ] [ ] [ ]= −
=−∞

∞

∑   
denoted as 

   ][*][][ nhnxny =  
 

The summation runs over all entries of the input 
signal x[n] and of the impulse response h[n]. 
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Method 1 of Calculating x[n]*h[n]:
Use time-shifted h[n]

1. Plot h[n-k] as functions of n
2. For k=…,-1,0, 1, 2,…, calculate the weighted and shifted impulse 

responses x[k]h[n-k]
3. Sum x[k]h[n-k] over all k’s
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Method 2 of Calculating x[n]*h[n]:
Use Time-reversed and Shifted h[k]

With n being fixed:
1. Plot h[n-k] as a function of k (time reversed and 

shifted h[k]):
shift h[-k] to the right if n is positive or to the left 
if n is negative

2. For  k=…,-2, -1, 0, 1, 2, ..., calculate x[k]h[n-k] 
3. Sum x[k]h[n-k] over all k’s
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Example:
Compute y[0] and y[1] for the following x[n] and h[n]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 2 1 0 

1 

k 2 1 0 

3 

2 
1 

x k[ ]

h k[ ]
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Calculate y[0] of x[n]*h[n] Using Method 2

W ith n being fixed as n=0
1: Plot x[k] and h[-k] for k=…, -1, 0, 1, 2,… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 2 1 0 

1 

k 2 1 0 

3 

2 
1 

-1 -2 

h k[ ]−

x k[ ]



H. Deng, L4_ECSE306 14

Step 2: Calculate x[k]h[-k] for all k’s 
 
 
 
 
 
 
 
 
 
 
Step 3: Sum x[k]h[-k] from k = −∞  to +∞  to get 
y[0]=3 

k 2 1 0 

3 

-1 -2 
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Calculating y[1] of x[n]*h[n]
Step 1: Draw x[k] and h[-k+1]=h[-(k-1)] (i.e., the signal h[-k] 
delayed by 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k 2 1 0 

1 

k 2 1 0 

3 

2 

1 

-1 -2 

h k[ ( )]− − 1

x k[ ]
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Step 2: calculate x[k] h[1-k] for all k’s 
 
 
 
 
 
 
 
 
 
 
Step 3: Sum x[k]h[1-k] from  k = −∞  to +∞  to get 
y[1] =2+3=5. 

k 2 1 0 

3 

-1 -2 

2 
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Properties of Convolution: 
Commutative 

 

Commutative: 
 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

k m

m

v n w n v k w n k v n m w m

w m v n m w n v n

∞ −∞

=−∞ =∞

+∞

=−∞

∗ = − = −

= − = ∗

∑ ∑

∑  
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Properties of Convolution:
Associative

Associative

[ ] ( [ ] [ ]) [ ] ( [ ] [ ]) [ ]* [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

k

m k m k

k m k m

m

v n w n y n v n y n w n v n y wk n k

v m y k w n m k y k v m w n m k

y k v m w n m k y k v m w n k m

y n v m

+∞

=−∞

+∞ +∞ +∞ +∞

=−∞ =−∞ =−∞ =−∞

+∞ +∞ +∞ +∞

=−∞ =−∞ =−∞ =−∞

=−∞

∗ ∗ = ∗ ∗ = −

⎛ ⎞
= − − = − −⎜ ⎟

⎝ ⎠

= − − = − −

= ∗

∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

[ ] [ ] ( [ ] [ ])

( [ ] [ ]) [ ]

w n m y n v n w n

v n w n y n

+∞⎛ ⎞
− = ∗ ∗⎜ ⎟

⎝ ⎠
= ∗ ∗

∑
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Distributive:  x[n]*(v[n]+w[n])=x[n]*v[n]+x[n]*w[n] 
 

[ ] ( [ ] [ ]) [ ]( [ ] [ ])

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

k

k k

x n v n w n x k v n k w n k

x k v n k x k w n k x n v n x n w n

+∞

=−∞

+∞ +∞

=−∞ =−∞

∗ + = − + −

= − + − = ∗ + ∗

∑

∑ ∑  

Properties of Convolution: 
Distributive
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Properties of Convolution: 
Multiplication and Time-Shift

Commutative with respect to multiplication by a scalar

a v n w n av n w n v n aw n( [ ] [ ]) ( [ ]) [ ] [ ] ( [ ])∗ = ∗ = ∗   

…check as an exercise. 

 

Time-shifted when one of the two signals is time-shifted 

v n w n N v k w n N k v w n N
k

[ ] [ ] [ ] [ ] ( )[ ]∗ − = − − = ∗ −
=−∞

∞

∑  
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Convoluting x[n] with δ[n]

[ ] [ ] [ ] [ ] [ ]
k

x n n x k n k x nδ δ
∞

=−∞

∗ = − =∑
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Example: calculating x[n]*y[n] using method 2

Let the impulse response of an LTI system be: 

otherwise

(0.8) , 0 5
[ ]

0,

n n
h n

⎧ ≤ ≤
= ⎨

⎩

*Method 2 is called numerical computation in Boulet’s book.

 

2 -1 0 

1 

3 4 1 5 -2 -3 6 7 2 -1 0 3 4 1 5 -2 -3 6 7 

x n[ ] [ ]h n

n n

Obtain the response of the system to x[n] shown below:
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Step 1: Sketch  h[-k] and x[k] as functions of k
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Step 2: Find ranges of k and n where h[n-k]x[k]  ≠0

for n>0, h[-(k-n)] means shifting h[-k] to the right
for n<0, h[-(k-n)] means shifting h[-k] to the left

For n<1: x[k] and h[n-k] don’t overlap, so, x[k]h[n-k]=0 for all k 
hence y[n]=0. 
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For 1≤n ≤3: there is some overlap

n
nn

n

n

m

mn
n

k

n

k

knknhkxny

)8.0(55
2.0

1)8.0(
)8.0(1
)8.0(1)8.0(

)8.0()8.0()8.0(][][][

1
1

1

0

1

1 1

−=
−

−
=

−
−

=

==−=

−

−
−

−

=

−−

= =

− ∑∑ ∑

Here is h[n-k] for n=2 

⎪⎩

⎪
⎨
⎧

=
=

≠
−

−

−

=
∑

1,

1,
1

1

1

0

α

α
α

α
α

NN

n

n
N
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For 4 ≤n≤6: g[k]:=x[k]h[n-k]≠0, for k=1, 2, 3. 

We get: 
3 3 2 2

( 1) 1

1 1 0 0

1 3 3
1 3

1

[ ] [ ] (0.8) (0.8) (0.8) (0.8) (0.8)

1 (0.8 ) (0.8) (0.8)(0.8) 5(0.8) 5(0.8) 4.7656(0.8)
0.21 (0.8)

n k n m n m

k k m m

n n
n n n n

y n g k − − + − −

= = = =

− −
− −

−

= = = =

⎛ ⎞− −
= = = − =⎜ ⎟ −−⎝ ⎠

∑ ∑ ∑ ∑

  
where we used the change of variables 1m k= − . 

The case of n=5 is shown here.
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For 7 ≤n≤8, g[k]=x[k]h[n-k]≠0 for n-5≤ k ≤ 3. 

3 3 8 8
( 5) 5

5 5 0 0

1 9 6 3
5 3 6

1

[ ] [ ] (0.8) (0.8) (0.8) (0.8)

1 (0.8 ) (0.8) (0.8)(0.8) 5(0.8) 5(0.8)
0.21 (0.8)

n n
n k n m n m

k n k n m m

n n
n

y n g k
− −

− − + − −

= − = − = =

− − −
−

−

= = = =

⎛ ⎞− −
= = = −⎜ ⎟ −−⎝ ⎠

∑ ∑ ∑ ∑

  
where we used the change of variables ( 5)m k n= − − . 
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Finally for n>=9, the two signals do not overlap, so 
y[n]=0.

3

3 6

0, 0
5 5(0.8) , 1 3

[ ] 5(0.8) 5 (0.8) , 4 6

5(0.8) 5(0.8) , 7 8
0, 9

n

n

n

n
n

y n n

n
n

−

−

≤⎧
⎪ − ≤ ≤⎪
⎪⎡ ⎤= − ≤ ≤⎨⎣ ⎦
⎪ − ≤ ≤⎪
⎪ ≥⎩

In summary,
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The Response of CT LTI System to x(t)

CT LTI 
System

 y(t)=?x(t)

CT LTI 
System

 δ(t)  h(t)

Given that h(t) is the impulse response of the CT LTI system:
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Calculating The Response of CT System to x(t)
“Divide and Conquer” Strategy

"Chopping up" the signal x t( )  into sections of width Δ . 

  
 

 

 

 

 

 

 

t 0 

x t( )

Δ 2Δ−Δ

$( ): ( ) ( )x t x k t k
k

= −
=−∞

∞

∑ Δ Δ ΔΔδ
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Divide: Decompose x(t) into x(kΔ)δΔ(t-kΔ)
Define a signal $( )x t  as  

 $( ): ( ) ( )x t x k t k
k

= −
=−∞

∞

∑ Δ Δ ΔΔδ   

As Δ → 0 ,  

       (1)  kΔ → τ  

(2)  x k x( ) ( )Δ → τ  

(3) δ δ τΔ Δ( ) ( )t k t− → −  

(4) Δ → dτ   

(5) The summation approaches an convolution integral 
x(t)*δ(t)=x(t) 

t Δ

1

Δ δΔ(t)

0
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The Response of a CT System to x(kΔ)δΔ(t-kΔ)

Let $ ( )h tkΔ  be the responses of the linear time-varying system to δΔ Δ( )t k− . 
  

Then, from the Principle of Superposition, the response of S to $( )x t  is 

$( ): ( ) $ ( )y t x k h t
k

k=
=−∞

∞

∑ Δ ΔΔ
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Conquer: Convert summation into Integral

ττ τ dthxtyty )()()(lim)(
0 ∫

∞

∞−

∧

→Δ
==

As Δ→ 0, 

For a LTI system, hτ(t)=h(t-τ), then y(t) becomes

τττ dthxty )()()( ∫
∞

∞−
−=

The above integral is called convolution integral. Denoted as

y(t)=x(t)*h(t)
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Properties of Convolution Integral

1. Commutative: 
x(t)*y(t)=y(t)*x(t)

2. Associative: 
x(t)*[y(t)*z(t)]=[x(t)*y(t)]*z(t)

3. Distributive: 
x(t)*[y(t)+z(t)]=x(t)*y(t)+x(t)*z(t)
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4. Commutative with respect to multiplication by 
a scalar

α[x(t)]*y(t)= x(t)*[αy(t)]
5. Time-shifted by T, if one of the two signals is 

time-shifted by T:
Let x(t)*y(t)=z(t), then
[x(t-T)]*y(t)=x(t)*y(t-T)=z(t-T)

6. x(t)*δ(t)=x(t)

Properties of Convolution Integral
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Method of Calculating x(t)*y(t)

With t being a fixed value
1. Sketch h(-τ) as a function of τ
2. find ranges of τ and t where x(τ)h(t-τ) ≠0

for t>0, h(t-τ) means shifting h(-τ) to the right by t
for t<0, h(t-τ) means shifting h(-τ) to the left by |t|

3. Calculate g(τ)=h(t-τ)x(τ)
4. Integrate g(τ) to get y(t) for a given range of t
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Example

Impulse response: ( ) ( ), 0ath t e u t a−= >  

Input signal: ( ) ( )x t u t= .  

( )h t  
( )x t  ( )y t  
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Step 1. Find overlap regions

Case 0t ≥  

Case 0t <  No overlap 
( ) 0y t =  

Overlap 
0≤τ≤t
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Step 2. Integrate x(τ)h(t- τ) with respect to τ

Thus for 0t ≥ , we have 

0

0

( )

0

( ) ( ) ( )

( ) ( )

1 1

t

t

t
a t at

y t g d g d

x h t d

e d e
a

τ

τ τ τ τ

τ τ τ

τ

+∞

−∞

− − −

= =

= −

⎡ ⎤= = −⎣ ⎦

∫ ∫

∫

∫
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Combine the Results

Combining the results for t < 0  and 0t ≥ , we get the response

y t
a

e u t tat( ) ( ) ( ),= − − ∞ < < ∞−1 1   
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Calculating Convolution Integral y(t)=x(t)*h(t)

The key issue of calculating the convolution integral is to 
determine the ranges of τ in terms of time shift “t”, 
which depend on the relative positions of the two 
signals.

The best approach is to combine analytical method with 
graphical method to determine the bounds of τ in terms 
of “t”.

( ) ( ) ( )y t x h t dτ τ τ
∞

−∞

= −∫
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Analytical Method: Determine upper and lower 
bounds of τ (in terms of t) where x(τ )h(t-τ) ≠0

• If h(t) ≠0 for T1≤ t ≤ T2, then h(t-τ) ≠0 for T1 ≤ t-τ ≤ T2,

i.e., h(t-τ) ≠0 for t- T2 ≤ τ ≤ t-T1

• If x(t) ≠0 for T3 ≤ t ≤ T4, then 
x(τ) ≠0 for T3 ≤ τ ≤ T4

• Hence, to have x(τ )h(t-τ) ≠0, τ should be
max{t- T2, T3 } ≤ τ ≤ min{t-T1, T4}

⎩
⎨
⎧

+<
+≥

=
323

322
32 T,

T,T-t
},T-max{t

TtifT
Ttif

T
⎩
⎨
⎧

+>
+≤−

=−
144

141
41 T,

T,Tt
},Tmin{t

TtifT
Ttif

T
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Graphical Method: Determine upper and lower 
bounds of τ (in terms of t) where h(t- τ)x(τ)≠0

• For t>0, shift h(-τ) to the right, and determine the upper 
and lower bounds of τ where h(t- τ)x(τ)≠0
– for different positive “t”, h(t- τ)x(τ) may have 

different expressions

• For t<0, shift h(-τ) to the left, and determine the upper 
and lower bounds of τ where h(t- τ)x(τ)≠0
– for different negative “t”, h(t- τ)x(τ) may have 

different expressions



H. Deng, L6_ECSE306 5

Example

Impulse response: ( ) ( 1)h t u t= +  

Input signal: 2( 1)( ) ( ( 1))tx t e u t−= − − −  

( )h t  ( )x t   
 y(t)=?
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Determine the ranges of τ where h(t- τ) ≠0,
in terms of the time-shift “t”

Because
h(t)≠0 for t>-1, 

then 
h(t- τ) ≠0 for t- τ>-1

thus
h (t- τ) ≠0 for τ<t+1

h(t-τ) for t=0
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Determine the regions of τ where h(t-τ)x(τ)≠0
in terms of time-shift “t”

Because
x(τ ) ≠0 for τ<1
h (t- τ) ≠0 for τ<t+1

then
x(τ )h (t- τ) ≠0 for -∞<τ<min(1, t+1)
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1. For t≤0,  h(t-τ)x(τ)≠0 over the interval -∞τ<t+1 
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2. For t>0, h(t-τ)x(τ)≠0 over the interval -∞<τ≤1 
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Thus for 0t ≤ , we get 
1

1

1
2( 1) 2 2

( ) ( ) ( )

( ) ( )

1 10
2 2

t

t

t
t t

y t g d g d

x h t d

e d e eτ

τ τ τ τ

τ τ τ

τ

+∞ +

−∞ −∞

+

−∞

+
−

−∞

= =

= −

⎡ ⎤= − = − − = −⎣ ⎦

∫ ∫

∫

∫
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Thus for 0t > , we get 
1

1

1
2( 1) 0

( ) ( ) ( )

( ) ( )

1 10
2 2

y t g d g d

x h t d

e d eτ

τ τ τ τ

τ τ τ

τ

+∞

−∞ −∞

−∞

−

−∞

= =

= −

⎡ ⎤= − = − − = −⎣ ⎦

∫ ∫

∫

∫
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Piecing the two intervals together we obtain the response 

21 1( ) ( ) ( )
2 2

ty t e u t u t= − − −  

Combine the results
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Techniques of Calculating 
h[n]*x[n] or h(t)*x(t)

• Apply the definition 
– Method 1: use time shifted h(t) or h[n] (or x(t) or x[n])
– Method 2: 

1. Reverse h(τ); 2. Shift h(-τ) by “t”; 3. Multiply h(t-τ)x(τ), 4. Integrate 
h(t-τ)x(τ)

• Divide and conquer based on properties of convolution
– Decompose the input signal into multiple simpler signals: 

x=x1+x2+x3+…
– Calculate y1=x1*h, y2=x2*h, y3=x3*h, ….
– Sum up y=y1+y2+y3….
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The Commutative Properties of LTI System
This comes from the fact that a convolution is commutative

x(t)*h(t)=h(t)*x(t)
x[n]*h[n]=h[n]*x[n]

hx y

h x y
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Commutative

1hx y
2h

2hx y
1h

y=(x*h1)*h2=(x*h2)*h1

e.g., a low-pass filter and a high-pass filter can be connected one 
after the other in two different orders.
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The Distributive Properties of LTI Systems

x*(h1+h2)=x*h1+x*h2

1h
x

2h

y+

+

1 2h h+ yx
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The Associative Property of LTI Systems 
This property of LTI systems comes from the fact that 
the convolution operation is associative. 

 

y x h h x h h= ∗ ∗ = ∗ ∗( ) ( )1 2 1 2  

 

 

 

 

 

y
h1

x

y
h h1 2∗

x

h2
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LTI Systems with and without Memory 

A system is memoryless if its output at any time depends only
on the value of its input at that same time. 
 

To be memoryless, a CT LTI system must have an impulse 
response of the form h(t)=Aδ(t), and a DT LTI system must 
have an impulse response of the form h[n]=Aδ[n].  
This can be seen from the convolution equations 

 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( )

t t

t t

t

t

y t x h t d x A t d

Ax t t d Ax t

τ τ τ τ δ τ τ

δ τ τ

+ +

− −

+

−

= − = − −

= − =

∫ ∫

∫  
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Invertibility of LTI Systems 

Recall: a system S is invertible if and only if there exists 
an inverse system S-1 such that S-1S is the identity system 
Aδ(t). 
 
For an LTI system with impulse response h, invertibility is 
equivalent to the existence of another system with impulse 
response h1 such that h1*h=δ. 
 

y x=hx h1
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Causality of an LTI System 
Recall: a system is causal if its output depends only on past
and/or present values of the input signal.  
 

For a DT LTI system to be causal, y[n] should NOT depend 
on x[k] for k>n. This means in the convolution sum, h[n-k]=0 
for k>n, which is equivalent to h[k]=0 for k<0.  
 

Thus, a DT LTI system is causal if its impulse response
h[n]=0 for t<0.  
 

A similar analysis for a CT LTI system leads to the same 
conclusion: a CT LTI system is causal if its impulse response 
h(t)=0 for t<0. 
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Sufficient Condition for BIBO Stability 
of DT LTI Systems 

Recall:  a system is BIBO stable if for every bounded input, the 
output is also bounded.  
Let the impulse response of a DT system be h[n]. If the DT signal 
x[n] is bounded by B for all n, then the system output magnitude 
can be bounded as:   

 

y n x k h n k h k x n k

B h k

k k

k

[ ] [ ] [ ] [ ] [ ]

[ ]

= − ≤ −

<

= − ∞

∞

= − ∞

∞

= − ∞

∞

∑ ∑

∑   

Thus, h k
k

[ ]
=−∞

+∞

∑ < ∞  is a sufficient condition for BIBO systems. 
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Necessary Condition for BIBO Stability of 
DT LTI Systems

 Suppose that h k
k

[ ]
=−∞

+∞

∑ = +∞ . Then we can construct an input 

signal ⎩
⎨
⎧

<−−
>−

=−=
0][,1

0][,1
])[(][

kh
kh

khsignnx
,  

which is bounded by 1 and leads to an output that's 
unbounded at n=0. 

 
y x k h k h k h k h k

k k k

[ ] [ ] [ ] sgn( [ ]) [ ] [ ]0 = − = − − = = ∞
=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑ ∑
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Sufficient and Necessary Condition 
for BIBO Stability of LTI Systems

In summary, a discrete-time LTI system is BIBO stable if 

and only if h k
k

[ ]
=−∞

+∞

∑ < ∞ , i.e., the impulse response is 
absolutely summable.  
 
The same analysis applies to continuous-time LTI systems 

for which stability is equivalent to ∫
∞

∞−
∞<ττ dh |)(| , i.e., 

the impulse response is absolutely integrable. 
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Unit Step Responses of LTI Systems

∑∑∑∑
−∞=

−∞

=

∞

=

∞

=

==−=−=
n

mnmkk
mhmhknhknhkuns ][][][][][][

00

Thus, the unit step response of a DT LTI system is the 
running sum of its impulse response h[n]; the unit step 
response of a CT LTI system is the running integral of its 
impulse response h(t). 

h[n]u[n] s[n] h(t)u(t) s(t)

dllhdllhdthdthuts
t

t ∫∫∫∫ ∞−

−∞∞∞
=−=−=−= )()()()()()(

00
τττττ

(2.41)

(2.43)
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Derive Impulse Responses 
from Step Responses

Thus, the impulse response of an LTI system is the 
first-order derivative of its unit step response.

)()()( ts
dt
dldlh

dt
dth

t
== ∫ ∞−

]1[][][ −−= nsnsnhFrom (2.41):

From (2.43): (2.44)

(2.42)
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Example: The unit step response and the 
impulse response of an RC circuit

 

 

 

 

 

 

 

 

 

 

1/RC 1 

s t e u t
t

RC( ) ( ) ( )= −
−

1

t

 

1 

 R C 

t

t

v t u tin ( ) ( )= v t s tout ( ) ( )=

1( ) ( )
t

RCh t e u t
RC

−

=
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Differential and Difference LTI Systems

Differential and difference LTI systems constitute an 
extremely important class of systems in 
engineering. They are used for: 

• circuit analysis, 
• filter design, 
• controller design, 
• process modeling, etc. 
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Differential Systems: A Subset of LTI 
Systems

systems

This is a class of LTI systems, for which the input and output signals 
are related implicitly through a linear constant coefficient differential 
equation.
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CT LTI Systems Described Using 
Differential Equations

Example: First-order differential equation relating the input x t( )  
to the output y t( )  

  ( )1000 300 ( ) ( )dy t y t x t
dt

+ =   

where y(t) is the speed of a car, which is subjected to a friction 
force proportional to the speed, and the tractive force x(t). 

We have to solve the differential equation to obtain the speed of 
the car, an output signal of the system. 

Driving force x(t)
Speed of the car y(t)
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A general form of differential equations

In general, an Nth-order linear constant coefficient 
differential equation has the form: 

a d y t
dt

b d x t
dtk

k

k
k

N

k

k

k
k

M( ) ( )
= =
∑ ∑=

0 0
  

which can be expanded to 

 a d y t
dt

a dy t
dt

a y t b d x t
dt

b dx t
dt

b x tN

N

N M

M

M

( ) ( ) ( ) ( ) ( ) ( )+ + + = + + +L L1 0 1 0  
where x(t) is input signal, y(t) is output signal. To find a 
solution, we need N initial conditions on the output variable 
and its derivatives to be able to fully determine a solution. 
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The solutions of differential equations 
Recall from previous math courses:
The complete solution 
= the homogeneous solution + the particular solution
• The homogeneous solution is a solution of the differential 

equation with the input signal set to zero 
– Homogeneous solution is also called natural response

of the system, and depends on initial conditions and
forced response

• The particular solution is a function that satisfies the 
differential equation.
– Particular solution is also called forced response of the system, 

and usually has the form of the input signal
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Example: 
Consider the system  

( )1000 300 ( ) ( )dy t y t x t
dt

+ =   (**) 

We will calculate the output of this system to the input signal
2( ) 5000 ( ) Ntx t e u t−= . 

Let  

y t y t y th p( ) ( ) ( )= +  

where the particular solution satisfies (**), and the homogeneous 
solution y th ( )  satisfies the zero-input equation: 

( )
1000 300 ( ) 0h

h
dy t

y t
dt

+ =  . 
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The particular solution

For the particular solution (forced response) for t > 0 , we look at a 
signal y tp ( )  of the same form as x t( )  for t > 0 :  

2( ) t
py t Ce−= .  

Substituting the exponentials for x t( )  and y tp ( ) in the differential 
equation, we get 

  2 2 22000 300 5000t t tCe Ce e− − −− + = ,  

which yields 5000 2.9411700C = − = −  and  

2( ) 2.941 , 0t
py t e t−= − > .  
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The Natural Response
Now we want to determine y th ( ) , the natural response of the
system. We hypothesize a solution of the form of an
exponential:  

y t Aeh
st( ) = .  

Substituting this exponential in the homogeneous differential
equation, we get 

 1000 300 (1000 300) 0st st stAse Ae Ae s+ = + = ,  

which holds for 0.3s = − . Also with this value for s ,  
0.3( ) t

hy t Ae−=   
is a solution to the homogeneous equation  for any A.  
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Combining the natural response 
(homogenous solution)  and the forced 

response (particular solution)

The solution to the differential equation is: 

 0.3 2( ) ( ) ( ) 2.941 , 0t t
h py t y t y t Ae e t− −= + = − > . 

  

As the value of A  is still unknown due to an unknown initial 
condition on y t( ) ,this response is not completely determined.  
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Initial conditions for the solution
For causal LTI systems defined by Nth-order linear 
constant coefficient differential equations, the initial
conditions are always 

 y dy
dt

d y
dt

N

N( ) ( ) ( )0 0 0 0
1

1= = = =
−

−L   
for what's called "initial rest".  
For our car example, initial rest implies that y( )0 0= , so that

0 0(0) 2.941 2.941 0y Ae e A= − = − =  
and we get 2.941A = . Thus, for t > 0 , the solution (output 
signal) is: 

  0.3 2( ) 2.941( ), 0t ty t e e t− −= − > . 
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What about the negative times? 

The condition of initial rest and causality of the system
implies that y(t)=0 for t<0 since x(t)=0 for t<0. This is
true in general for causal LTI systems. 

 

For causal differential systems, the condition of initial 
rest means that the output of the system is zero until 
the time when the input becomes nonzero. 
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Speed of the car
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DT LTI Described by Difference Equations

In a DT causal LTI difference system, the discrete-time input 
x[n] and output y[n] signals are related implicitly through a 
linear constant-coefficient difference equation. 
In general, an Nth-order linear constant coefficient difference
equation has the form: 

a y n k b x n kk
k

N

k
k

M

[ ] [ ]− = −
= =
∑ ∑

0 0
   

which can be expanded to 
a y n N a y n a y n b x n M b x n b x nN M[ ] [ ] [ ] [ ] [ ] [ ]− + + − + = − + + − +L L1 0 1 01 1  
We need N initial conditions on the output variable (its N 
past values) to be able to compute a specific solution. 
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A general solution can be expressed as the sum of a
homogeneous solution (natural response) to

a y n kk
k

N

[ ]− =
=
∑

0

0 and a particular solution (forced

response), in a manner analogous to the continuous-time 
case. 

y n y n y nh p[ ] [ ] [ ]= + . 

The concept of Initial rest of the LTI causal system
described by the difference equation here means that
x n n n[ ] ,= <0 0  implies y n n n[ ] ,= <0 0 . 

General Solution
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Consider the first-order difference equation initially at 
rest: 

[ ] 0.5 [ 1] ( 0.8) [ ]ny n y n u n+ − = −       (&) 
The solution is composed of a homogeneous response,
and a particular solution of the system: 

[ ] [ ] [ ]h py n y n y n= + , 
where the particular solution satisfies (&) for n≥0, and 
the homogeneous solution satisfies: 

yh[n] + 0.5yh[n-1] = 0. 

Example
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for 0n ≥ , we look at a signal [ ]py n  of the same form as [ ]x n :

[ ] ( 0.8)n
py n Y= − . Then, we get 

1

1

( 0.8) 0.5 ( 0.8) ( 0.8)

1 0.5( 0.8) 1

8
3

n n nY Y

Y

Y

−

−

− + − = −
⇔

⎡ ⎤+ − =⎣ ⎦

=

 

which yields 8[ ] ( 0.8)
3

n
py n = − . 

The particular (forced) solution 
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Now we want to determine [ ]hy n , the natural response of the
system. We hypothesize a solution of the form of an exponential
signal: [ ] n

hy n Az= . Substituting this exponential in the
difference equation, we get 

  

1

1

0.5 0

1 0.5 0
0.5

n nAz Az

z
z

−

−

+ =
⇔

+ =
= −

  

With this value for z, [ ] ( 0.5)n
hy n A= −  is a solution to the 

homogeneous equation for any choice of A . 

The homogenous (natural) solution 
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The solution for n>=0 is :   
8[ ] [ ] [ ] ( 0.5) ( 0.8)
3

n n
h py n y n y n A= + = − + − .  

The assumption of initial rest implies y[-1]=0. But we need to use an 
initial condition at a time “n” when the particular solution exists, e.g. 
y[0]=? y[0] can be found by recursion: 

0

[ ] 0.5 [ 1] ( 0.8) [ ]
0 : [0] 0.5 [ 1] ( 0.8) 0 1 1

ny n y n u n
n y y

= − − + −

= = − − + − = + =  

Then we can compute the value of A:  
0 08 51 [0] ( 0.5) ( 0.8)

3 3
y A A= = − + − ⇒ = −  

Thus, the complete solution is (check as an exercise): 

 
5 8[ ] ( 0.5) [ ] ( 0.8) [ ]
3 3

n ny n u n u n= − − + − . 

Combining the natural response and the 
forced response 
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Recursive Solution
For DT systems output y[n], we can compute it recursively, 
derive the current output from the input and previous outputs:

}][][{1][
0 10
∑ ∑
= =

−−−=
M

k

N

k
kk knyaknxb

a
ny

Suppose that the system is initially at rest. Then, the 
condition of initial rest means that

y[-1]=y[-2]=…=y[-N]=0

One can start computing  recursively. This is often how 
digital filters are implemented on a computer or a DSP board.



H. Deng L7_ECSE306 21

Consider the difference equation: 
5 1[ ] [ 1] [ 2] 3 [ ] 2 [ 1]
6 6

y n y n y n x n x n− − + − = − − . 

 
Rearranging, we obtain the recursive form: 

5 1[ ] [ 1] [ 2] 3 [ ] 2 [ 1]
6 6

y n y n y n x n x n= − − − + − − . 

Example

Assuming initial rest and that the input is an impulse 
x[n]=δ[n]. We have y[-2]=y[-1], and the recursion can 
be started as follows. 
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5 1[0] [ 1] [ 2] 3 [0] 2 [ 1]
6 6
5 1(0) (0) 3(1) 2(0) 3
6 6
5 1[1] [0] [ 1] 3 [1] 2 [0]
6 6
5 1 1(3) (0) 3(0) 2(1)
6 6 2
5 1[2] [1] [0] 3 [2] 2 [1]
6 6
5 1 1 1( ) (3) 3(0) 2(0)
6 2 6 12

y y y x x

y y y x x

y y y x x

= − − − + − −

= − + − =

= − − + −

= − + − =

= − + −

= − + − = −

M
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Obtaining recursive solution using Matlab
% computes the response of a difference system recursively
% time vector
n=0:1:15;
% define the input signal: delta function
x=[1 zeros(1,length(n)-1)];
y=zeros(1,length(n));
% initial conditions
yn_1=0;
yn_2=0;
xn_1=0;
xn=0;
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% recursion
for k=1:length(n)

xn=x(k);
yn=(5/6)*yn_1-(1/6)*yn_2+3*xn-2*xn_1;
y(k)=yn;
yn_2=yn_1;
yn_1=yn;
xn_1=xn;

end
% plot output
stem(n,y)
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Obtaining the impulse response given a differential 
equation

1. Deriving the impulse response ha(t) of a homogeneous 
differential equation 

2. Linearly combining ha(t) and its derivatives
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which can be expanded to 

 a d y t
dt

a dy t
dt

a y t b d x t
dt

b dx t
dt

b x tN

N

N M

M

M

( ) ( ) ( ) ( ) ( ) ( )+ + + = + + +L L1 0 1 0   
 

 

x t t( ) ( )= δ( ) ( )x t tδ=

0 0

( ) ( )k kN M

k kk k
k k

d y t d x ta b
dt dt= =

=∑ ∑
y(t)=h(t)=?

The Impulse Response of a 
Differential LTI System

The general form of a causal LTI differential system with 
input x(t) and output y(t):

∑∑
==

=
M

m
m

m

m

N

k
k

k

k dt
txdb

dt
tyda

00

)()(
(3.1)
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The equivalent system of the differential equation

)()(
0

tw
dt

tyda
N

k
k

k

k =∑
=

∑
=

=
M

m
m

m

m dt
txdbtw

0

)()(

w(t) y(t)ha(t)

Eq. (a)  can be view as a system with input w(t) and output y(t). Let 
ha(t) be the impulse response of the system defined by Eq. (a).
Then system (a) can be represented using the diagram:

(a)
Look at a system defined by:

)()(
0

tybty
M

m
mm∑

=

=

Let  ym(t) be the response of ha(t) to the mth-order derivative of x(t). From the 
principle of superposition of LTI systems, we then have:

(b)
Now, the input w(t) is:
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The response of an LTI system to the 
derivative of a signal

Let the response of an LTI system to an input signal x(t) be y(t). Then, the 
response of the LTI system to the derivative of x(t) is the derivative of y(t).

x(t) y(t)h(t)

x′ (t) y′ (t)h(t)

This property comes from the properties of superposition and the time-invariance 
of LTI systems. 
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1. Replace the whole right-hand side of the differential equation (3.1) by 
δ ( )t ,  

2. Integrate from t = −0  to t = +0  to find a set of initial conditions at t = +0 , 

3. Calculate the impulse response h ta ( ) of the homogeneous equation 
given these initial conditions, 

4. Finally, differentiate the impulse response h ta ( ) of the homogeneous 
equation, and use linear superposition to form the overall impose 
response of the system (3.1) 

Method 1: obtain h(t) from a differential equation 
according to the principle of superposition
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First replace the right-hand side of the differential equation
by a single unit impulse: 

a d h t
dt

tk

k
a
k

k

N ( ) ( )
=
∑ =

0

δ .  

Under the assumption that N M≥  and the system is 
initially at rest, then 

y dy
dt

d y
dt

N

N( ) ( ) ( )0 0 0 0
1

1
−

− − −

−= = = =L  

Step 1
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With δ(t) being the right hand of Eq. (a), the impulse on the left-
hand side can only be generated by the highest-order (i.e., Nth-
order) derivative  of h ta ( ). Otherwise, there would be δ(k)(t) for 
k>1 on the left-hand side of Eq. (3.1).   

Thus, h t dh t
dt

d h t
dta

a
N

a
N( ), ( ) , , ( )

L
−

−

1

1  have finite discontinuities at 

worst, and their integrals over an infinitely small interval of time 
are zeros: 

Step 2: determine initial conditions of the 
homogeneous impulse response ha(t)

1,...,1,0)0()( 10

0
−===

+−

∫
+

−
Nk

dt
hddt

dt
thd a

k

k
a

k
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Given the initial conditions at time t=0+ found in Step 2, find the 
homogeneous solution of the equation 

a d h t
dtk

k
a
k

k

N ( )
=
∑ =

0

0 .            (c) 

Assuming that the solution has the form of a complex exponential Aest

for t>0, substitute ha(t) with Aest in Eq. (c), we get: 

Ae a sst
k

k

k

N

=
∑ =

0

0  

Step 3: obtain the homogeneous solution of 
the deferential equation
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This last equation holds if and only if the characteristic polynomial 
below equals zero: 

p s a s a s a s ak
k

k

N

N
N

N
N( ):= = + + + =

=
−

−∑
0

1
1

0 0L  

This equation has N roots. Assume that the N roots are distinct, then 
there are N distinct functions A ek

s tk  that satisfy the homogeneous 
equation. Then, the homogeneous solution can be written as: 

   h t A ea k
s t

k

N
k( ) =

=
∑

1
. 
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The complex coefficients Ak’s can be computed 
using the initial conditions: 

0 0 0

1 1

= = =+

= =

+

∑ ∑h A e Aa k
s

k

N

k
k

N
k( )   

   

 
1

1
1

1
1

(0 )
0

(0 )1

N
a

k k
k

N N
Na

k kN
kN

dh
A s

dt

d h
A s

a dt

+

=

− +
−

−
=

= =

= =

∑

∑

M  

Determine the coefficients of the 
homogeneous solution ha(t)
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This set of linear equations can be written as 

1

1 2 2
2 2 2

1 2 3

1 1 1
1 2

0 1 1 1
0
0

1/

N

N

N N N
N N N

A
s s s A
s s s A

a s s s A− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

L

M M M M M M

L

The matrix in this equation is called a Vandermonde matrix 
and it can be shown to be nonsingular (invertible). So a 
unique solution always exists for the Ak’s which gives us 
the unique solution h ta ( ) 
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According to the linearity of the differential system
defined in Eq. (3.1), its impulse response is a linear
combination of h ta ( ) and its derivatives.   

Thus, the impulse response of the system defined
by Eq. (3.1) is: 

Step 4: linear combination of responses

∑
=

=
M

m
am

m

m th
dt
dbth

0

)()( (3.42)
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Consider the first-order system initially at rest 
with time constant τ 0  

τ 0
dy t

dt
y t d

dt
x t x t( ) ( ) ( ) ( )+ = + . 

Step 1: calculate the impulse response of the left-
hand side of the differential equation. 

 τ δ0
dh t

dt
h t ta

a
( ) ( ) ( )+ =  

Example
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Step 2: Find the initial condition of the homogeneous solution at 
t = +0  by integrating from t = −0  to t = +0 . Note that the impulse 

will be in the term τ 0
dh t

dt
a ( )

, so h ta ( ) will have a finite jump at 

most. Thus we have 

 1)0()(
0

0

00 == +∫
−

− a
a hdt
dt

tdh ττ  

Hence    ha ( )0 1

0

+ =
τ

  

is our initial condition for solving 

τ 0 0dh t
dt

h ta
a

( ) ( )+ = . 
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Step 3:  

Let the homogeneous solution be ha(t)=Aest. The characteristic 

polynomial is p s s( ) = +τ 0 1 and it has one root at s = −1

0τ
. 

Thus, h t Aea

t

( ) =
−
τ 0  for t > 0. The initial condition allows us

to determine the constant A : 

h Aa ( )0 1

0

+ = =
τ

, 

and   h t e u ta

t

( ) ( )=
−1

0

0

τ
τ . 
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)(1)(}11{

)(1)(1)(1

)(1)}(1{

)()()(

0

000

00

0
2

00

00
2

0

00

tetu

tuetetue

tuetue
dt
d

th
dt

tdhth

t

ttt

tt

a
a

δ
τττ

τ
δ

ττ

ττ

τ

τττ

ττ

−

−−−

−−

+−=

++−=

+=

+=

Step 4: Finally, the impulse response of the differential system is:
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t 

h t( )1

0τ1 1

0 0
2τ τ

−
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We have seen that 
( )( ) ds th t

dt
= .  

Thus we can obtain the impulse response of an LTI
differential system by first calculating its step
response, and then differentiating it. 

Method 2: by differentiating  the 
step response
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Consider the following second-order causal LTI differential
system initially at rest. 

&&( ) &( ) ( ) ( )y t y t y t x t+ + =3 2  

Let x t u t( ) ( )= . The characteristic polynomial of this 
system is  

p s s s s s( ) ( )( )= + + = + +2 3 2 2 1 , 

and its roots (i.e., values of s for which p s( ) = 0 ) are 
s = −2 and s = −1. Hence the homogeneous solution has
the form 

 y t A e A eh
t t( ) = +− −

1
2

2 . 

Example
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Denote a particular solution of the form y t Kp ( ) =  for t > 0  
when input is x t( ) = 1. Substituting in the differential equation, 
we find K=1/2. So,  

 y tp ( ) = 1
2

. 

Adding the homogeneous and particular solutions, we obtain 
the overall step response for t > 0 : 

 s t A e A et t( ) = + +− −
1

2
2

1
2

. 
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The initial conditions at t = −0  are &( ) ( )y y0 0 0− −= = . Because the 
input signal u(t) has a finite jump at t > 0 , this jump will be included
in &&( )y t  only and &( ), ( )y t y t  will be continuous. Hence 
&( ) &( ) , ( ) ( )y y y y0 0 0 0 0 0− + − += = = =  and  

 
y A A

y A A

( )

&( )

0 1
2

0

0 2 0

1 2

1 2

+

+

= + + =

= − − =
. 

The solution to these two linear algebraic equations is  
 

A A1 2
1
2

1= = −,  
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Thus, the step response of the system is: 

)(]
2
1

2
1[)( 2 tueets tt +−= −−

t 

s(t)
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Finally, the impulse response of the second-order system is obtained by
differentiating the step response.  

( )

( )

2

2 2

2

1 1( ) ( ) ( )
2 2

1 1( ) ( )
2 2

( )

t t

t t t t

t t

d dh t s t e e u t
dt dt

e e u t e e t

e e u t

δ

− −

− − − −

− −

⎡ ⎤⎛ ⎞= = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

= −

  

which evaluates to 0 at time t = +0 . Hence there is no jump in the
impulse response. 

  

t 

h t( )
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Obtaining the impulse response h[n] 
given a difference equation

∑∑
==

−=−
M

m
m

N

k
k mnxbknya

00
][][

The main idea is first to derive the solution ha[n] to the following 
equation:

][][
0

nknha
N

k
ak δ=−∑

=

From the principle of superposition of LTI systems, the impulse 
response of the system defined by Eq. (3.60) can then be 
obtained by linearly combining ha[n] and its delayed versions:

∑
=

−=
M

m
am mnhbnh

0
][][

(3.61)

(3.68)

The given difference equation has the following form:

(3.60)
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Step 1: determine the impulse response for 
the homogeneous equation

For n>=1, the input is zero, and thus ha[n] is the solution to the 
homogeneous equation: 

0][
0

=−∑
=

N

k
ak knha (3.62)

(3.61)][][
0

nknha
N

k
ak δ=−∑

=

For n=0, a0ha[0]=1, i.e., ha[0]=1/a0. This is due to the causality and 
initial rest conditions ha[-1]=…= ha[-N+1]=0.

Consider the system with input being the unit impulse signal:
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The solution of the homogeneous equation

ha[n] has the complex exponential form ha[n]=Czn. Substituting 
ha[n], we get: 

0
0

=∑
=

−
N

k

kn
kCza (3.63)

0][
0

=−∑
=

N

k
ak knha

0)...( 1
10 =+++ −− N

N
n zazaaCz

∑
=

−=
N

k

kN
k zazp

0
:)(

For n>=1, solve for ha[n] from the homogeneous equation:

i.e.,

p(z) is called the characteristic polynomial of Eq. (3.60).
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 Eq. (3.63) holds if and only if the characteristic polynomial 
p(z) vanishes at the complex number z: 

 p z a z a z a z ak
N k

k

N
N N

N( ):= = + + + =−

=

−∑
0

0 1
1 0L  

 p(z) has N zeros, zk, k=1, 2, …, N. If they are distinct, then
there are N distinct functions Ckzk that satisfy the 
homogeneous equation Eq. (3.62). 
Then the solution to the homogeneous equation is a linear
combination of these complex exponentials: 

   h n C za k k
n

k

N

[ ] =
=
∑

1 . (3.65)

The solution of the homogeneous equation
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The complex coefficients Ck can be computed using the 
initial conditions: 

1 0
0 1a

h Ca k
k

N

= =
=
∑[ ]      

 

0 1

0 1

1

1

1

1

= − =

= − + =

−

=

− +

=

∑

∑

h C z

h N C z

a k k
k

N

a k k
N

k

N

[ ]

[ ]

M

 

Determine the coefficients of the 
homogeneous solution 
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Finally, by the properties of the LTI difference system, 
the response of the left-hand side of the difference 
equation to its right-hand side inputs is a linear 
combination of ha[n] and its delayed versions.  
 
Combining Eq. (3.68) and Eq. (3.65), we get the 
impulse response of the general causal LTI system 
described by Eq. (3.60): 

∑ ∑∑
= =

−

=

=−=
M

m

N

k

mn
kkm

M

m
am zCbmnhbnh

0 10
)(][][

Determine the impulse response for the 
general difference equation
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Consider the following second-order, causal difference LTI 
system initially at rest: 

[ ] 0.5 [ 1] 0.06 [ 2] [ 1]y n y n y n x n− − + − = −  

The characteristic polynomial is given by: 

p z z z z z( ) . . ( . )( . )= − + = − −2 0 5 0 06 0 2 0 3  

and its zeros are z z1 20 2 0 3= =. , . . The homogeneous 
response is given by: 

[ ] (0.2) (0.3) , 0n n
ah n A B n= + > . 

Example
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The initial conditions for the homogeneous solution are
ha[-1]=0 and ha[0]=δ[0]=1. 
Now we can compute the coefficient A and B: 

1 1 10[ 1] (0.2) (0.3) 5 0
3ah A B A B− −− = + = + =  

[0] 1ah A B= + =  
Hence, 2, 3A B= − = , and the impulse response is 
obtained: 

1 1[ ] [ 1] 2(0.2) 3(0.3) [ 1]n n
ah n h n u n− −⎡ ⎤= − = − + −⎣ ⎦  
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  The characteristic polynomial of a causal differential 
LTI system is given by
 p s a s a s aN

N
N

N( ) = + + +−
−

1
1

0L . 
   p(s) depends only on the coefficients of the left-hand 
side of the differential equation, doesn't depend on the 
input, and thus characterizes the intrinsic properties of 
the differential system  
   The zeros sk of p(s) are the exponents of the exponentia
est forming the homogeneous response. So, sk’s indicate 
system properties, such as stability. 

Characteristic polynomials of differential 
systems
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Stability of an LTI differential system
Recall: an LTI system is BIBO stable if and only if its impulse response is absolutely 
integrable. 

Assume N>=M. The impulse response h(t) will have at worst
a single impulse, which integrates to a finite value when
integrated from t = −∞  to t = +0 . Then we examine the 
integral from t=0+ to ∞: 

0 1 0 10 0 0

0 1 0 10 0

Re{ }

0 1 10 0

( ) m m

m m

m m

k kM N M N
s t s t

k m k mk k
k m k m

kM N M N
ks t s t

k m k m mk
k m k m

M N N
k ks t s t

k m m k m m
k m m

d dh t dt b A e dt b A e dt
dt dt

db A e dt b A s e dt
dt

b A s e dt b A s e dt

+ + +

+ +

+ +

∞ ∞ ∞

= = = =

∞ ∞

= = = =

∞ ∞

= = =

⎛ ⎞ ⎛ ⎞
= ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

≤ ≤

∑ ∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑ ∑∫ ∫

∑ ∑∫ ∫
0

M

k=
∑ ∑
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The last upper bound will be finite if and only if Re{sm}<0. 
 
To summarize:  
A causal LTI differential system is BIBO stable if and only 
if the real part of all of the zeros of its characteristic 
polynomial are negative  
(we say that they are in the open left-half of the complex 
plane). 



H. Deng, L9_ECSE306 13

 Let's assess the stability of  

dy t
dt

y t d
dt

x t x t( ) ( ) ( ) ( )− = + . 

The characteristic polynomial is p s s( ) = −1 which 
has its zero at s = 1.  

This system is therefore unstable, which is easy to
see with an impulse response of the form Ae u tt ( )
(a growing exponential.) 

Example
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Recall: the characteristic polynomial of a causal difference 
LTI system 

a y n k b x n kk
k

N

k
k

M

[ ] [ ]− = −
= =
∑ ∑

0 0   

is given by p z a z a z a z ak
N k

k

N
N N

N( ):= = + + + =−

=

−∑
0

0 1
1 0L  

    The zeros zk (assumed to be distinct) of the characteristic 
polynomial are the arguments of the exponentials forming 
the homogeneous response, so they indicate system 
properties, such as stability. 

Characteristic polynomials of 
deference systems



H. Deng, L9_ECSE306 15

Recall: an LTI difference system is stable if and only if its impulse
response is absolutely summable.  
For the causal difference system above, this leads to the
upper bound  

0 0 0 0 0

0 0 1

0 1 0 1

0 1 0

[ ] [ ] [ ]

[ ]

M M

k a k a
n n k n k

M M N
n k

k a k m m
k n k k n k m

M N M N
n kn k

k m m k m m
k n k m kk m n
M N

r
k m m

k m r

h n b h n k b h n k

b h n k b C z

b C z b C z

b C z

+∞ +∞ +∞

= = = = =

+∞ +∞
−

= = = = =

+∞ +∞
−−

= = = = = =

+∞

= = =

= − ≤ −

= − =

≤ =

=

∑ ∑ ∑ ∑∑

∑∑ ∑∑ ∑

∑∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 

Stability of an LTI difference system 
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This above upper bound is finite if and only if zm <1, for all 
m N= 1, ,K .  Hence the causal LTI difference system is
BIBO stable if and only if all the magnitudes of the zeros of
its characteristic polynomial are less than 1.  
Example: Consider the causal first-order system  
  y n y n x n[ ] . [ ] [ ]− − =0 9 1 . 
Its characteristic polynomial is p(z)=z-0.9, which has a single 
zero at z=0.9. Hence this system is stable as |z|=0.9<1. The 
impulse response h[n] of the system is: 

 

n 

h n u nn[ ] . [ ]= 0 9
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The impulse response of an LTI differential system is a linear

combination of complex exponentials of the type Ae u tst ( )
and their derivatives. Consider the stable 1st-order system   

 a y t a y t Kx t1 0&( ) ( ) ( )+ =   
Its impulse response is a single exponential:  

h t Ae u ts t( ) ( )= 1   
where s1=-a0/a1 and A=K/a1.  The real number ω n s= 1  is 
called the natural frequency of the first-order system and its 
inverse τ ω0

1

0

1
= =

n

a
a  is called the time constant of the first-order 

system. 

Time constant of a 1st-order LTI differential system 
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The time constant indicates the decay rate of the impulse response and the rise time of the 
step response.  

At time t = τ 0 , the impulse response is  h Ae Ae A( ) .τ
τ
τ

0
1

0

0 0 368= = =
−

− , so the impulse 
response has decayed to 36.8% of its value at time t = 0 . 

 

 

 

 

 

 

 

 

 

A 

0.37A 

h t Ae u t
t

( ) ( )=
−
τ 0

τ 0
τ 0 tt

s t K
a

e u t
t

( ) ( ) ( )= −
−

0

1 0τ

K
a0

0 63
0

. K
a
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N
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1
1
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k

N
k( ) =
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∑

1
h n C za k k

n

k

N

[ ] =
=
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1

Continuous time Discrete time

Convolution 

Differential/differe
nce Eqs.

Homogeneous Eqs.

Solutions to the 
homogeneous Eq.

Aest Czn

Characteristic 
polynomials

Impulse response 
for the 
homogeneous Eq.

Impulse response 
for general 
differential/differe
nce Eq.
Stability Re{Sk}<0 |zk|<1
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