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Complex exponentials of the type czn and Aest remain 
basically invariant under the action of time shifts and
derivatives.  
 

The response of an LTI system to a complex exponential input
is the same complex exponential with only a change in
(complex) amplitude: 
   Continuous-time LTI system: e H s est st→ ( )  

Discrete-time LTI system: z H z zn n→ ( )  
where the complex amplitude factors ( ), ( )H s H z  are functions 
of the complex variable s or z.  

The Responses of LTI Systems to 
Complex Exponential Signals



H. Deng 
L10_ECSE306

3

Input signals like [ ] nx n z=  and ( ) stx t e=   
are called eigenfunctions of LTI systems. 
 
Fact: the response of an LTI system to such a signal is 
the input signal multiplied by a complex constant.  
 
The complex gains are the system's eigenvalues 
corresponding to the eigenfunctions. 

Eigenfunctions of LTI Systems
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Let the impulse response of an continuous-time LTI 
system be h(t). Then the response of the system to est is:

The system's response has the form y(t) =H(s)est

Thus est is an eigenfunction of an LTI system.

Eigenfunctions of CT LTI systems
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Let h[n] be the impulse response of a discrete-time LTI systems. Its 
response to a complex exponential zn  is: 

y n h k x n k h k z

z h k z
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n k
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n k

k

[ ] [ ] [ ] [ ]

[ ]

= − =

=

=−∞

+∞
−

=−∞

+∞

−

=−∞

+∞

∑ ∑

∑
  

The system's response has the form y n H z zn[ ] ( )= , where 

H z h k z k

k

( ) [ ]= −

=−∞

+∞

∑ .  

Thus, zn is an eigenfunction of DT LTI systems.

Eigenfunctions of DT LTI systems
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Recall: periodic signals satisfy x t x t T t( ) ( ),= + −∞ < < +∞
for some positive value of T . The smallest such T is 
called the fundamental period of the signal, and its
fundamental frequency is defined as ω π

0
2

=
T

(radians/s). 
Note: the signal x t( ) is entirely determined by its values
over one fundamental period T . 
Also recall: harmonically-related complex exponentials
have frequencies that are multiples of ω 0 : 

0( ) : , 0, 1, 2,jk t
k t e kωφ = = ± ± K  

Harmonically-Related Complex Exponentials
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Recall: Harmonically related signals are orthogonal over 
the fundamental period: 

The orthogonal property of harmonics
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Each one of these periodic signals has a fundamental frequency that is a
multiple of ω 0 .  

Let's have a look at the imaginary part of φ k t( )  for k = 0 1 2, ,  and T = 1
second. 
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1 

1

Im{ ( )} sin( )φ π1 2t t=Im{ ( )} sin( )φ π2 4t t=Im{ ( )}φ 0 0t =

Example of harmonics
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A linear combination of the complex exponentials φ k t( )  is 
also periodic with fundamental period T: 

x t a e a ek
jk t

k
k

jk
T

t

k

( )
( )

= =
=−∞

+∞

=−∞

+∞

∑ ∑ω
π

0

2

.  

The two terms with k = ±1 in this series are collectively called 
the fundamental components or the first harmonic components
of the signal.  
The two terms with k = ±2 are referred to as the second 
harmonic components (with fundamental frequency 2 0ω ), and 
more generally the components for k N= ±  are called the Nth 
harmonic components. 

A linear combination of harmonics
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Example 4.1: Consider the periodic signal with 
fundamental frequency 0 2  rad/sω π=   
made up of the sum of five harmonic components:
 

5
2

5

0 1 2

3 4 5

( ) ,

0, 0.2026, 0,
0.0225, 0, 0.0081

jk t

k
k

x t a e

a a a
a a a

π

=−

± ±

± ± ±

=

= = − =

= − = = −

∑
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Collecting the harmonic components together, we obtain 
 

3 3 5 5
2 2 2 2 2 2( ) 0.2026( ) 0.0225( ) 0.0081( )

3 50.4052cos( ) 0.0450cos( ) 0.0162cos( )
2 2 2

j t j t j t j t j t j t
x t e e e e e e

t t t

π π π π π π

π π π

− − −
= − + − + − +

= − − −
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3 3 5 5
2 2 2 2 2 2( ) 0.2026( ) 0.0225( ) 0.0081( )

3 50.4052cos( ) 0.0450cos( ) 0.0162cos( )
2 2 2

j t j t j t j t j t j t
x t e e e e e e

t t t

π π π π π π

π π π

− − −
= − + − + − +

= − − −
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Representing periodic signals using 
Fourier series

x t a e a ek
jk t

k
k

jk
T

t

k

( )
( )

= =
=−∞

+∞

=−∞

+∞

∑ ∑ω
π

0

2

Most engineering periodic signals can be represented using 
a linear combination of harmonically related complex 
exponentials:

∫∫
−− ==

T t
T

jkT tjk
k dtetx

T
dtetx

T
a

0

)2(

0
)(1)(1

0

π
ωwhere (4.8)

(4.7)

(4.7) is referred to as the Fourier representation of periodic signals, and 
as the synthesis equation. (4.8) is referred to as the analysis equation.

0

2
ω
π

=T
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The coefficient of the Fourier Series is obtained by 
considering the orthogonality of harmonics. 

0 0 0

0 0

0 0

0

( )
T T

jn t jk t jn t
k

k

T
jk t jn t

k n
k

x t e dt a e e dt

a e e dt Ta

ω ω ω

ω ω

+∞
− −

=−∞

+∞
−

=−∞

=

= =

∑∫ ∫

∑ ∫   

The Coefficients of Fourier Series for a 
Continuous Time Periodic Signal

∫∫
−− ==

T t
T

jnT tjn
n dtetx

T
dtetx

T
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0

)2(

0
)(1)(1

0

π
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Therefore, the nth coefficient of the Fourier series is:
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Representing a signal in the time-domain 
and the frequency domain 

The coefficient a0 is the dc component of the signal. 

The Fourier series (4.7) gives us a time-domain 
representation of the signal as a sum of periodic complex 
exponential signals. 

The Fourier series coefficients ak (4.8) give us a frequency-
domain representation or the spectral coefficients of the 
signal. Each of these complex coefficients measures how 
much the corresponding harmonic component of a given 
frequency contributes to the signal x(t).
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The set of spectral coefficients { }ak k=−∞
+∞  determines x t( ) completely. The

duality between the signal and its spectral representation is denoted as

x t a
FS

k( )↔ .  The following properties of the Fourier series are easy to show
(do it as an exercise.) 

Linearity 

The operation of calculating the Fourier series of a periodic signal is linear.

For x t a
FS

k( )↔ , y t b
FS

k( )↔ , if we form the linear combination
z t Ax t By t( ) ( ) ( )= + , then we have 

z t Aa Bb
FS

k k( )↔ + . 

Properties of Continuous-Time 
Fourier Series
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Time shifting leads to a multiplication by a complex exponential. For 

x t a
FS

k( )↔ , 

x t t e a
FS jk t

k( )− ↔ −
0

0 0ω
. 

Remark: The magnitudes of the Fourier series coefficients are not 
changed, only their phases. 

Time Shifting
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Time reversal leads to a "sequence reversal" of the
corresponding sequence of Fourier series coefficients: 

x t a
FS

k( )− ↔ − .  

Interesting consequences: 

• For x t( ) even, the sequence of coefficients is also even 
(a ak k− = ) 

• For x t( ) odd, the sequence of coefficients is also odd 
(a ak k− = − ) 

Time Reversal
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Time scaling applied on a periodic signal changes the fundamental
frequency of the signal (but it remains periodic "with the same
shape".) For example x t( )α  has fundamental frequency αω 0 and 

fundamental period 
T
α

.  The Fourier series coefficients do not change:

x t a
FS

k( )α ↔ ,  

but the Fourier series (the synthesis equation) itself has changed as the 
harmonic components are now at the frequencies
± ± ±αω αω αω0 0 02 3, , ,K 

Time Scaling
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Suppose that x t( )  and y t( )  are both periodic with period T . 

For x t a
FS

k( )↔ , y t b
FS

k( )↔ , we have 

x t y t a b
FS

l k l
l

( ) ( )↔ −
=−∞

+∞

∑  , 

i.e., a convolution of the two sequences of spectral
coefficients! 

Multiplication of Two Signals
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Taking the conjugate of a periodic signal has the effect of
conjugation and time reversal on the spectral coefficients.  

  x t a
FS

k
∗ ∗

−↔( )  

Interesting consequences: 

• For x t( ) real, the sequence of coefficients is conjugate 
symmetric (a ak k−

∗= ). This implies  

0phase phase, ( ) ( ), ,
Re{ } Re{ }, Im{ } Im{ }

k k k k

k k k k

a a a a a
a a a a

− −

− −

= = − ∈

= = −

R
 

Conjugation and Conjugate Symmetry
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For a real signal x t( ), we have a ak k−
∗= . Let , ,kj

k k k ka A e Aθ θ= ∈R. 
Then we have a real form of the Fourier series:  

x t a e a a e a e

a a e

a A k t

k
jk t

k
k

jk t
k

jk t

k

k
jk t

k

k k
k

( )

Re{ }

cos( )

= = + +

= +

= + +

=−∞

+∞
∗ −

=

+∞

=

+∞

=

+∞

∑ ∑

∑

∑

ω ω ω

ω

ω θ

0 0 0

0

0
1

0
1

0 0
1

2

2

 

The Fourier series of a real signal
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• For x t( ) real and even, the sequence of coefficients is also
real and even ( k ka a− = ∈R )

• For x t( ) real and odd, the sequence of coefficients is also
real odd (a ak k−

∗= − purely imaginary )

• For even-odd decomposition of the signal

x t x t x te o( ) ( ) ( )= + , x t a x t j ae

FS

k o

FS

k( ) Re{ }, ( ) Im{ }↔ ↔

The Fourier series of real even/odd signals
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The set of complex Fourier series coefficients { }ak k=−∞

+∞ of a
signal can be plotted with separate graphs for their magnitude
and phase.  
 
The combination of both plots is called the line spectrum of the
signal. 

Graph of the Fourier Series Coefficients: 
The Line Spectrum
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Periodic “sawtooth” signal. 
 
The fundamental period is 1sT = ; hence 

0 2 rad/sω π= . First, the average over one period 
(the DC value of the signal) is 0, so a0 0= . 

Example
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1
2

0
1

2

0

1
12 2

0
0

0

1 ( )

(1 2 )

1 1(1 2 )  (integration by parts)
2

1 1 1
2 2

jk t
k

jk t

jk t jk t

a x t e dt
T

t e dt

t e e dt
jk jk

jk jk jk
j

k

π

π

π π

π π

π π π

π

−

−

− −

=

=

= −

− ⎡ ⎤= − −⎣ ⎦

= + =

−
=

∫

∫

∫
14243
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Consider the Fourier series coefficients of the 
sawtooth signal.  
 

Their magnitudes are given by 1
ka

k π
= , 

0k ≠ , and 0 0a = , and their phases are given 

by 
, 0

2

, 0
2

k

k
a

k

π

π

⎧− >⎪⎪∠ = ⎨
⎪ <
⎪⎩

 and 0 0a∠ =  
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Consider the following periodic rectangular wave of

fundamental period T  and fundamental frequency ω π
0

2
=

T
. 

Periodic even rectangular wave



H. Deng, L11_ECSE306 3

 DC value: 0
0

2ta
T

= .  

( )

0

0 0

0

0
0 0 0 0 0

0

0 0 0 0

2

2

0 0

0 0

0 0

0

1 1( )

1 1

2sin( )2
2

2sin
, 0

tT
jk t jk t

k
T t

tjk t jk t jk t

t

jk t jk t

a x t e dt e dt
T T

e e e
jk T jk T

k te e
k T j k T

tk
T k

k

ω ω

ω ω ω

ω ω

ω ω

ω
ω ω

π

π

− −

− −

− −

−

−

= =

⎡ ⎤= − = − −⎣ ⎦

⎛ ⎞−
= =⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠= ≠

∫ ∫

 

FS coefficients of an even rectangular wave

The FS coefficients of even and real rectangular 
wave signals are also real and even.
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The real continuous "sinc" function is defined as 

   sinc( ):
sin

x
x

x
=

π
π .   

Sinc function is one at x=0, and is zero at x= ±1, ±2, ±3, 
…   
 
 
 
 
 
 

x 

1 

1 2 3 -1 -2 -3 

sinc( )x

The sinc function: sinc(x)=sin(πx)/πx
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The duty cycle of the rectangular wave is defined as 

 
02: t

T
η =

.  
The spectral coefficients of an even rectangular wave are 
then 

( )

0

0 0 0

0
sinc

sinc

2sin
2 2 2

2k

k t
t t k tTa k tT T T

T
k

π

π

η η

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⎜ ⎟

⎝ ⎠

=
 

The duty cycle of a rectangular wave
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F o r  a  5 0 %  d u ty  c y c le ,  th a t  i s ,  1
2

η = :  

π

π
ηη

2

)
2

sin(

2
1)

2
(sinc

2
1)sinc( k

k
kkak ===

What does a negative frequency mean?

For a 60Hz square wave, the 60 Hz component is:
)cos(2 0111

00 taeaea tjtj ωωω =+ −
−

The power of other harmonic components? --- Assignment 4
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The shorter the duty cycle is, the wider are the lobes of the 
spectral coefficients, the more coefficients we get in each 
lobe the more harmonic components in a bandwidth.

E.g., a periodic rectangular wave has a fundamental frequency f0=100
Hz, and a duty cycle η=0.01. Then, there are 0th, 1st ,…, 99th harmonic 
components in the bandwidth  0-100 f0 Hz.

The harmonic components of a periodic 
rectangular wave and its duty cycle
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Let us approximate a periodic signal with a finite sum of
exponentials (a truncated version of the infinite sum).  

x t a eN k
jk t

k N

N

( ):=
=−

+

∑ ω 0  

What coefficients can make the "best" approximation? 

Examine the approximation error: 

e t x t x t x t a eN N k
jk t

k N

N

( ): ( ) ( ) ( )= − = −
=−

+

∑ ω 0  

Approximating a periodic signal using 
finite sum of harmonic exponentials
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0 0

0 0

0 0

0

0 0

0 0

2

0
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k N k N

T T N N
jk t jn t

k n
k N n N

T TN N
jk t jk t

k k
k N k N

T
j

k n

E x t a e x t a e dt

x t x t dt a e a e dt

x t a e dt x t a e dt

x t dt a a e

ω ω

ω ω

ω ω

+ +
∗ −∗

=− =−

+ +
∗ −∗
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+ +
∗ − ∗

=− =−

∗

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟
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− −

= +
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0
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k
k N n N k N

TN
jk t

k
k N

T T TN N N
jk t jk t
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k N k N k N

dt a x t e dt

a x t e dt

x t dt T a a a x t e dt a x t e dt

ω ω

ω

ω ω

+ +
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∗

=−

+ + +
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=− =− =−
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∑ ∫
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The energy of the approximation error in 
one period
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Denote the coefficients in rectangular form:  

a jk k k= +α β .  

Then the error energy is 

0

0

0

0

2 2 2

0 0

0

2 2 2

0 0

0

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 2 Re ( )

2 Im ( )

T TN N
jk t

N k k k k
k N k N

TN
jk t

k k
k N

T TN N
jk t

k k k
k N k N

T
jk t

k
k N

E x t dt T j x t e dt

j x t e dt

x t dt T x t e dt

x t e dt

ω

ω

ω

ω

α β α β

α β

α β α

β

+ +
−

=− =−

+
∗

=−

+ +
−

=− =−

+
−

=−

= + + − −

− +

⎧ ⎫⎪ ⎪= + + − ⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪− ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑∫ ∫

∑ ∫

∑ ∑∫ ∫

∫
N

∑

 

 

The energy of the approximation error in 
one period
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The optimal coefficients of the finite sum 
of harmonic exponentials

0})(Re{22
0

=−=
∂
∂ ∑ ∫∑

−=

−

−=

N

Nk

T tjk
N

Nk
k

k

N dtetxTE
oωα

α

The coefficients minimizing the error energy can be obtained 
by taking partial derivatives of the error energy and setting 
them to zero:

The coefficient satisfying the above equation is then: 

})(Re{
0

0∫ −=
T tjk

k dtetx ωα
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})(Im{
0

0∫ −=
T tjk

k dtetx ωβ

Similarly, minimizing the approximation error energy with 
respect to  βk yields 

∫ −=
T tjk

k dtetxa
0

0)( ω

Thus, the complex coefficients minimizing the approximation 
error energy is just the FS: 

The FS coefficients minimize the 
approximation error energy
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Now if the signal x(t) has a Fourier series representation, 
then the approximation error energy is zero as N tends to 
infinity. 

0}|)()(|{lim 2 =−∫∞→
dttxtx NTN

The Fourier series of a signal converge in the sense that the power in the 
difference between the signal and its Fourier series representation 
approaches zero. 

The difference between a signal and its FS 
representation
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Existence of a Fourier Series Representation

What classes of periodic signals have Fourier series 
representation (i.e., the FS coefficients ak are finite)?

One that does is the class of periodic signals with finite 
energy over one period , i.e., signals satisfy

∞<∫
T

dttx
0

|)(|



H. Deng, L11_ECSE306 15

Another broad class of signals that have Fourier series
representation are signals that satisfy the Dirichlet 
conditions.  
Such a signal equals its Fourier series representation, 
except at isolated values of t where x(t) is discontinuous 
(e.g. finite jumps). At these t values, the Fourier series
converges to the average of the values on either side of
the discontinuity.  
If a signal is continuous very where, then its FS converges
and equals the original signal at any value of time t. 
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Dirichlet Conditions
Condition 1: Over any period,  must be absolutely integrable, i.e.,  

∞<∫
T

dttx
0

)(|
Condition 2: In any finite interval of time, x(t) must be of bounded 
variations. This means that  must have a finite number of maxima and 
minima during any single period.  A signal not satisfying this 
condition is:

Condition 3: In any finite interval of time, x(t) has a finite number of 
discontinuities. Furthermore, each of these discontinuities is finite.

)2sin()(
t

tx π
=

Note: Engineering signals generally satisfy Dirichlet conditions and the convergence 
of  FS can be guaranteed.
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let us compare a discontinuous periodic signal with its
truncated Fourier series.  
This is easy to do using Matlab:  
Compute the spectral coefficients up to k = ±7  ( 7N = ), 
and plot the real approximation to the rectangular wave 
signal  

x t a e a a k tN k
jk t

k N

N

k
k

( ): cos( )= = +
=−

+

=
∑ ∑ω ω0

0 0
1

7

2
. 

Gibbs Phenomenon: a discontinuous 
periodic signals is different from its FS
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The graph over one period looks like this: 

  

There are ripples in the truncated FS, especially close to the 
discontinuities in the signal. The maximum peaks of these 
ripples don't diminish even if we add more terms in the 
truncated Fourier series! This phenomenon is called the 
Gibbs phenomenon after a mathematical physicist who first 
provided an explanation of this phenomenon. 

t 
T1 

1 

-T1 

x t7 ( )

The ripples in the FS representation of a 
discontinuous signal
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For example, for N=19, the approximation gets closer to a 
square wave but we can still see rather large ripples around 
the discontinuities.  
 
 
 
 t 

T1 

1 

-T1 

x t19 ( )

The energy of the approximation error 

Since the signal x(t) satisfies Dirichlet conditions, xN(t) should be the 
average value at either side of the discontinuous points for any large N 
values. 



H. Deng, L11_ECSE306 20

As N grows larger, the peak amplitude doesn't diminish and
the first overshoot on both sides of the discontinuity remains
at 9% of the height of the discontinuity  
 
However, as N approaches infinite, the energy in these 
ripples vanishes because the area of the ripples approaches
zero. Also for any fixed time (not at the discontinuity), the
approximation tends to the signal value x t x tN N

( ) ( )1 1→
→+∞  (this 

is called pointwise convergence). At the discontinuity for
time T1, the approximation converges to half of the jump. 

The energy of the approximation error
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 It would be useful to have a Fourier series representation of an 
impulse train.  

  v t t nT
n

( ) ( )= −
=−∞

+∞

∑δ .   

t 

1 

T -T -2T 2T 3T 

v t( )

Periodic Impulse Train 
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The spectrum of an impulse train is a real constant sequence.  

k 

1/T 

8 -8 -16 16 

ak

T
dtet

T
a

T

T

tjk
k

1)(1 2/

2/
0 == ∫−

− ωδ

Fourier Series of a Periodic of Impulse Train
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A periodic signal x(t) can be described as a convolution of a 
single period of the signal with a train of impulses. Let 

  ⎩
⎨
⎧ <≤

=
other

Tttx
txT ,0

0,)(
)(  

Then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T
n n

T T
n n

x t t nT x t nT x t d

nT x t d x t nT

δ δ τ τ τ

δ τ τ τ

+∞+∞ +∞

=−∞ =−∞−∞

+∞+∞ +∞

=−∞ =−∞−∞

= − ∗ = − −

= − − = −

∑ ∑∫

∑ ∑∫  

Periodic signals as convolutions of the 
impulse train and time-limited signals
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T t  

T t  T t  2T 

h t x tT( ) ( )=

x t( )
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Sampling: The operation of periodically sampling a continuous-time
signal can also be conveniently represented by a multiplication of
an impulse train with the signal (more on this later.)

v t t nT
n

( ) ( )= −
=−∞

+∞

∑δ

x t( )
x( )0

x T( )
x T( )2 x T( )3

t t

y t( )

x 

Application of the impulse train in 
sampling
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Parseval Theorem 

The average power in the kth harmonic component of x(t) is: 

Parseval Theorem: the total average power of a periodic signal
equals the sum of the average powers in all of its harmonic 
components. 

Note: Pk=P-k , and the total average power of the kth

harmonic component of the signal is 2Pk. 

∑∫
∞

−∞=

=
k

kT
adttx

T
22 |||)(|1

It can be shown that the total average power of a periodic 
signal x(t) is

∫∫ ===
T kkT

tjk
kk adta

T
dtea

T
P 222 ||||1||1

0ω
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Compute the total average power of the unit-amplitude square 
wave with period T and 50% duty cycle. 
We have already computed its spectral coefficients: 

 sinc
1
2 2k

ka ⎛ ⎞= ⎜ ⎟
⎝ ⎠ .  

According to Paseval’s theorem, the total average power is 

Example

2 2
2

1

2

2

1,3 ,5 ,... 1 ,3 ,5 ,.. .

2

2 2 2 2
1 ,3 ,5 ,...

1 1 1s in c 2 s in c
2 2 4 4 2

s in1 1 1 1 2s in c
4 2 2 4 2

2
1 1 1 2 1 1 1 22 1
4 4 9 2 5 4 8
1
2

k
k k k

k k

k

k kP a

k
k

k

k

π

π

π
π π π

∞ ∞ ∞

= − ∞ = − ∞ =

= =

=

= = = +

= + = +

⎡ ⎤⎡ ⎤= + = + + + + = + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∑ ∑ ∑

∑ ∑

∑ L
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Now, we computer the total average power of the periodic 
rectangular wave in the time-domain:

4
2 2

4

1 1 1 1( ) 1
4 4 2

T

T T

T TP x t dt dt
T T T−

⎛ ⎞= = = + =⎜ ⎟
⎝ ⎠∫ ∫
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The power spectrum of a signal is the sequence of |ak|2, 
i.e., the average powers of harmonic components. 
For real periodic signals, the power spectrum is a real even
sequence as 

 a a ak k k−
∗= =2 2 2

. 
Example: Power spectrum of the rectangular wave. 

1/ 8η =

Power Spectrum
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Example  x t A t( ) sin( )= ω 0 . 

x t A t A
j

e ej t j t( ) sin( ) ( )= = − −ω ω ω
0 2

0 0

,  

so a j A a j A a kk1 12 2
0 1= − = = ≠ ±−, , ,  

k 

0.25A2  

1 -1 

| |ak
2

Negative frequency is caused by the use of complex exponentials to 
represent sin(kω0t) and cos(kω0t) signals. The actual component at kω0 is 

Physical meaning of negative frequency 

tjk
k

tjk
k eaea 00 ωω −

−+
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Total Harmonic Distortion
Assume that a signal of a pure sine 
wave is distorted.

How to measure the degree of 
distortion?

2

2
2

1

: 100 %
k

k
a

THD
a

+∞

==
∑

Total harmonic distortion (THD):

THD means the RMS (root mean square) of all the harmonics 
that “should not be there” divided by the RMS of the 
fundamental component. 
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The response of an LTI system with impulse response h(t) to 
a complex exponential signal  est  is  

)(

)()(*)()( )(

sHe

dehedehethty
st

ssttsst

=

=== ∫∫
∞

∞−

−∞

∞−

− ττττ ττ

  

For s=jω, the output is y t H j e j t( ) ( )= ω ω .  
 
H(s) is called the transfer function (or system function). 
H(jω) is called the system's frequency response. 

The Frequency Response of an LTI System
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Remarks: 
• “steady-state” means the system has been subjected to

the same input from time t = −∞ .  
• Thus there is no transient response from initial

conditions in the output signal.  
• Also if the system is unstable, then the output would

tend to infinity, so we assume that the system is stable. 
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A periodic signal can be represented by a Fourier series  

x t a ek
jk t

k

( ) =
=−∞

+∞

∑ ω 0

  
By superposition, the response of an LTI system to x(t) is: 

y t a H jk ek
jk t

k

( ) ( )=
=−∞

+∞

∑ ω ω
0

0

.  
Thus, the Fourier series coefficients of the periodic output 
y(t) are given by  
 

 b a H jkk k= ( )ω 0 . 

FS of the response of a LTI system to a 
periodic signal
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Example: A periodic rectangular wave is the input of an LTI 
system  
 

 

 

 

 

 

 

 

 

k 

k 

k 
h t( )

ak
bk

H jk( )ω 0

( )x t ( )y t
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The responses of a system to different components
of a signal are different: some components can be
amplified while some can be suppressed. 
 
Filtering signals with an LTI system involves the
design of a filter with a desirable frequency spectrum
H(jkω0) that retains certain frequency components
and cuts off others.   

Filtering 
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Consider a filter with impulse response h t e u tt( ) ( )= −
 (a 

simple RC circuit with RC=1). The frequency response of
this filter is:   

ω
ττω ωττ

j
deuejH j

+
== ∫

∞ −−

1
1)()(

0

We can see that as the frequency  increase, the magnitude 
of the frequency response of the filter  decreases. In fact, 
this filter is a low-pass filter (LPF). 

Example: 
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The input signal to the LPF is the rectangular wave, then 
the output signal will have its Fourier series coefficients bk

given by 
0 0

0
0

0
0 0

sin( )( ) , 0
(1 )

2(0)

k k
k tb a H jk k

k jk
tb a H

T

ωω
π ω

= = ≠
+

= =  

The reduced power at high frequencies produces an output 
signal that's "smoother" than the input signal (remember 
that discontinuities produce high frequencies). 

Filtering a rectangular wave
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This aperiodic signal can be thought of being periodic with an 
infinite fundamental period  T → +∞ . 

Aperiodic wave as the limit of the periodic wave

Now define a signal x(t) equal to the periodic signal over 
one period and zero elsewhere.

The periodic signal:

The “single-period” signal:
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The FS coefficients ka  of the periodic signal ( )x t% can be 
obtained from the “single-period” signal x t( ) : 

∫∫
∞

∞−

−

−

− == dtetx
T

dtetx
T

a tjkT

T

tjk
k

00 )(1)(1 2/

2/

ωω
 

Define: 

  ∫
∞

∞−

−= dtetxjX tjωω )(:)(  

Then, ak  can be viewed as samples of X j( )ω : 

    a
T

X jkk =
1

0( )ω  
and X(jω) can be viewed as the envelop of the ak sequence, 
i.e., the spectral envelope of the periodic signal. 

The envelop of FS coefficients
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Now the periodic signal ~( )x t  has the Fourier series 
representation 

~( ) ( )x t
T

X jk e jk t

k

=
=−∞

+∞

∑ 1
0

0ω ω . 

Or, equivalently, since ω π
0

2
=

T
, 

~( ) ( )x t X jk e jk t

k

=
=−∞

+∞

∑1
2 0 0

0

π
ω ωω  

Periodic signal in term of its spectral 
envelop
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The periodic signal as a function of frequency:  

~( ) ( )x t X jk e jk t

k

=
=−∞

+∞

∑1
2 0 0

0

π
ω ωω

 

As T → +∞ , we get  

• ω ω0 → d  
• kω ω0 →  
• the summation tends to an integral 

• 
~( ) ( )x t x t→  

 1( ) ( )
2

j tx t X j e dωω ω
π

+∞

−∞

= ∫

Aperiodic signal in term of the spectral 
envelop of its periodic signal
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These two equations are called the Fourier transform pair. 
Inverse Fourier transform of x(t):   
 

 
Fourier transform of x(t) 
 
 
 
 

1( ) ( )
2

j tx t X j e dωω ω
π

+∞

−∞

= ∫

( ) ( ) j tX j x t e dtωω
+∞

−

−∞

= ∫

Fourier Transform pair
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Example: the Fourier series of a periodic  
rectangular wave as T ∞

Consider the Fourier series representation of a periodic 
rectangular signal )(~ tx
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Multiplying the spectral coefficients of ~( )x t  by T, and assuming that 
t0 is fixed, we get 

( ) 0
0sinc sinc

2
2k

k t
Ta T k t

T
η η ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

The FS of the periodic rectangular wave

• Note that the spectra is plotted against the frequency variable kω 0  

• The first zeros on each side of the main lobe are at frequencies 
0t

πω = ±  
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As the period T increases, the frequency interval (ω0) 
between adjacent harmonics degreases. As T  ∞, the 
harmonics become continuous. 

The effect of the period T on the FS of 
periodic wave 
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We denote the relationship between a signal and its

Fourier transform as ( ) ( )x t X jω↔
FT

. Try to derive the
following properties as an exercise. 

 

Linearity 

The Fourier transform is a linear operation: 

  ( ) ( ) ( ) ( )ax t by t aX j bY jω ω+ ↔ +
FT

  

Properties of the Fourier Transform: 
Linearity
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Time Shifting 

A time shift results in a phase shift in the Fourier transform:

0
0( ) ( )j tx t t e X jω ω−− ↔
FT

 

 

Time Shifting
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Scaling the time variable either expands or contracts the 
Fourier transform.  

1( ) ( / )x t X jα ω α
α

↔
FT

 

For α > 1, the signal x t( )α is sped up (or compressed in
time), so its spectrum (Fourier transform) expands to higher
frequencies. 

On the other hand, when the signal is slowed down (α < 1),
the Fourier transform gets compressed to lower frequencies. 

Time/Frequency Scaling
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In general the signal is complex, you can prove the FT of its 

is:  ( ) ( )x t X jω∗ ∗↔ −
FT

  

If the signal is real, x t x t∗ =( ) ( ) , then  
•  the Fourier transform has conjugate symmetry: 

X j X j∗ = −( ) ( )ω ω  
• Re{ ( )} Re{ ( )}X j X jω ω= − , an even function of  ω  
• Im{ ( )} Im{ ( )}X j X jω ω= − − , an odd function of ω  
• | ( )| | ( )|X j X jω ω= − , an even function of   ω  

• ∠ = −∠ −X j X j( ) ( )ω ω , an odd function of  ω  

Conjugation and Conjugate Symmetry
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If x(t) is real and even, then you can show that 
X j X j X j( ) ( ) ( )ω ω ω= − = ∗

,  
i.e., the spectrum is even and real. 

 
If x(t) is real and odd, we have 

X j X j X j( ) ( ) ( )ω ω ω= − − = − ∗
, 

 i.e., the spectrum is odd and purely imaginary. 

Even/odd signals and their spectra
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Differentiating a signal results in a multiplication of the 
Fourier transform by jω . 

( ) ( )d x t j X j
dt

ω ω↔
FT

  

Differentiation in the time domain
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Integrating a signal results in a division of the Fourier
transform by jω . However, to account for the
possibility that x t( ) has a nonzero average value, i.e.,

( 0) ( ) 0X j x t dt
+∞

−∞

= ≠∫ , we must add the term

π δ ωX ( ) ( )0  to the Fourier transform. That is, a finite
energy concentrated at ω = 0 is represented as an
impulse at that frequency. 

 
1( ) ( ) (0) ( )

t

x d X j X
j

τ τ ω π δ ω
ω−∞

↔ +∫
FT

 

Integration in the time domain
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The convolution of two signals results in the multiplication of
their Fourier transforms in the frequency domain. 

( ) ( ) ( ) ( )x t y t X j Y jω ω∗ ↔
FT

 

A direct application is the calculation of the response of an LTI 
system to an arbitrary input signal:  

( ) ( ) ( )Y j H j X jω ω ω=  

The output signal in the time-domain is obtained by taking the 
inverse Fourier transform of its spectrum. 

Convolution in the time domain
multiplication in the frequency domain
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This property is the dual of the convolution property.
The multiplication of two signals in the time domain
results in the convolution of their spectra.  

1( ) ( ) ( ) ( )
2

x t y t X j Y jω ω
π

↔ ∗
FT

 

Modulation is based on this property. 

Multiplication in time domain 
convolution in the frequency domain



H. Deng, L13_ECSE306 19

Consider the modulation system described by  

y t t x t( ) cos( ) ( )= ω 0 . 

We'll see later that the Fourier transform of 0( ) : cos( )c t tω= is

composed of two impulses of area π , one at −ω 0  and the other at ω 0 .
Suppose that the spectrum of x t( )  looks like this 

Example: Signal Modulation  
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Then the Fourier transform of the output signal looks like this 

 

 

 

 

 

 

 

 

Hence multiplication of a signal by a sinusoid shifts its spectrum to 
another frequency band (it also creates a mirror image in the negative 
frequencies) for easier transmission over a communication channel. For 
example, music (bandwidth less than 20kHz) transmitted over typical 
AM radio has modulation frequencies in the range 500kHz to 1500 kHz. 
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The energy-density spectrum of an aperiodic signal ( )x t is defined as 
2( )X jω . We can find the energy of a signal in a given frequency band by

integrating: 

   
2

[ , ]
1 ( )

2

b

a b

a

E X j d
ω

ω ω
ω

ω ω
π

= ∫  

The energy-density spectrum
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Note that for real signals, it is customary to include the negative
frequency band as well.  

 

For example, if we wanted to compute the energy contained in a real
signal between, say, 5kHz and 10kHz, we would compute  

20000 10000
2 2

[10000 ,20000 ]
10000 20000

20000
2

10000

1 ( ) ( )
2

1 ( )

E X j d X j d

X j d

π π

π π
π π

π

π

ω ω ω ω
π

ω ω
π

−

−

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

=

∫ ∫

∫
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The total energy in an aperiodic signal is equal to the total
energy in its spectrum. 

Parseval's Relation

∫∫
∞

∞−

∞

∞−
= ωω

π
djXdttx 22 |)(|

2
1|)(|
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Parseval's Relation

∫∫
∞

∞−

∞

∞−
= ωω

π
djXdttx 22 |)(|

2
1|)(|

∫

∫

∫ ∫

∫ ∫∫∫

∞

∞−

∞

∞−

∞

∞−

−∞

∞−

∞

∞−

∞

∞−

−∞

∞−

∞

∞−

=

=

=

==

ωω
π

ωωω
π

ωω
π

ωω
π

ω

ω

djX

djXjX

ddtetxjX

dtdejXtxdttxtxdttx

tj

tj

2

*

*

**
2

|)(|
2
1

)()(
2
1

])()[(
2
1

])(
2
1)[()()(|)(|Prove: 

Note |X(jω)|2 is the energy density spectrum of x(t).

Eq. (5.21) means the total energy in the time domain= the total 
energy in the frequency domain. 

(5.21)
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The FTs of  δ(t) and δ′(t)

ωδωδ

δδδ ω

jtFj
dt

tdF

dtetdtettF tj

==

=== ∫∫
∞

∞−

∞

∞−

−

)}({})({

1)()()}({ 0
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FT of a rectangular signal

The FT of the rectangular signal is:

)
2

sin(2)(
2/

2/

ωτ
ω

ω
τ

τ

ω EdtEejF tj == ∫−
−

⎩
⎨
⎧

≥
≤

=
2/||0
2/||

)(
τ
τ

t
tE

tf



H. Deng, 
L14_ECSE306

5

FT of single-sided eat

0
00
0

)( >
⎩
⎨
⎧

<
≥

=
−

a
t
te

tf
at

ω

ω
ω

ω

ω

ωωω

ωω

ja

e
ja

tjade
ja

dte

dteedtetfjF

tjatjatja

tjattj

+
=

∞
+−

=+−
+−

==

==

+−∞ +−∞ +−

∞ −−∞

∞−

−

∫∫

∫∫

1
0)(

1])([
)(

1

)()(

)(

0

)(

0

)(

0

The magnitude spectrum |F(jω)| and phase spectrum ∠F(jω)| (in class)

The FT of f(t):
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Midterm 1 problems and beyond
• Properties of signals and systems
• Calculation of convolutions
• Use of unit step function u(t)
• Initial value of ha(0+)
• Application of superposition property
• System inter connection
• Mathematical skills:

– Implementation of Eqs.: correct, effective, efficient
– A language of calculation: expressive, understandable

• Application skills
– Applications of learned theories/knowledge (mathematics, 

physics, electricity, computer, signals and systems,…)
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Physical meanings of t and τ in the convolution

• t (or n): the time when the input and output are observed
• τ (or k): how long prior to  t (or n)

∑∑

∫∫
∞

∞=

∞

∞=

∞

∞−

∞

∞−

−=−=

−=−=

kk
khknxknhkxnhnx

dhtxdthxthtx

][][][][][*][

)()()()()(*)( ττττττ

x(τ)
h(t-τ)

τ
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An implementation of the DT convolution

h(0)

h(1)

h(2)

h(k)

h(N)

D 

x(n)

D 

D 

x(n-1)

x(n-2)

x(n-N)

D 
x(n-k)

x(n)h(0)

x(n-1)h(1)

x(n-2)h(2)

x(n-k)h(k)

x(n-N)h(N)

y(n)
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Example of the duality of FT pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω 

2T1
 

t 
 

1 
 

T1  

 

-T1  

 

t 
ω 
 

1 
 

W  

 

-W 
 

x t1 ( )

x t X j
FS

1 1( ) ( )↔ ω
X j1 ( )ω

π
T1

−
π
T1

π
W

−
π
W

X j2 ( )ω
x t2 ( )

x t X j
FS

2 2( ) ( )↔ ωW
π

The Fourier transform and the inverse Fourier transform have a 
symmetric relationship. This results in a duality between the time 
domain representation and the frequency domain representation of a 
signal, e.g., between a rectangular signal and its FT:
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Duality of FT pairs

∫
∞

∞−
= ωω

π
ω deXtx tj)(

2
1)(

Assume a signal y(t) =X(t), what is the FT of y(t)?

∫
∞

∞−

−= dtetxX tjωω )()(

The inverse FT:

Denote the FT of x(t) as

)( 2)()( ωπω ω −== ∫
∞

∞−

− xdtetXY tj

∫∫

∫
∞

∞−

−∞

∞−

Ω−

∞

∞−

Ω

=ΩΩ=−

ΩΩ=

dtetXdeXx

deXtx

jtj

tj

ωω

ππ
ω

π

)(
2
1)(

2
1)(

)(
2
1)(

This is because:

x(t) X( ω)

X(t) 2π x(-ω)
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FT of two-sided eat

Recall the time/frequency scaling property of FT

0
0
0

)( >
⎩
⎨
⎧

≤
≥

=
−

a
te
te

tf at

at

1( ) ( / )x t X jα ω α
α

↔
FT

0
00
0

)(1 >
⎩
⎨
⎧

<
≥

=
−

a
t
te

tf
at

where

)()()( 11 tftftf −+=Rewrite f(t) as:

2211
211)()()(

ωωω
ωωω

+
=

−
+

+
=−+=

a
a

jaja
jFjFjF

Then the FT of f(t) is
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FT of sgn(t)

0
0,
0,

)( >
⎩
⎨
⎧

≤−
≥

=
−

a
te
te

tf at

at

Let 

22

0

0

2

)()(

ω
ω

ω ωωω

+
−

=

+−== ∫∫∫
∞ −−

∞−

−∞

∞−

−

a
j

dteedteedtetfjF tjattjattj

ωω
ωωω

ja
jjFjSGN

aa

22lim)(lim)( 2200
=

+
−

==
>−>−

The FT of f(t) is:

Then the FT of sgn(t) is:

⎩
⎨
⎧

<−
>

=
0,1

0,1
:)sgn(

t
t

t
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FT of u(t)

ω
ωπδ

ω

j

tFFtFjU

1)(

)}{sgn(
2
1}

2
1{)}sgn(

2
1

2
1{)(

+=

+=+=
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FT of a constant 

∞<<∞−= tEtx ,)(

The FT of x(t) can be derived according to the duality of FT pairs.

Given a signal x(t):

We know the FT of δ(t) is a constant 1:

δ(t) 1

Then according to the duality of FT pairs, we have

E   2E πδ(ω)                     see Appendix D
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The Fourier transform of ( ), , 0ate u t a jα β α− = + >  is given by 
(see Boulet’s book): 

FT of the Complex Exponential

aj
jX

+
=

ω
ω 1)(

For the case a > 0  real, the magnitude is 
 
 

ω  

1/a 

a -a 

1
1| ( ) |X j

j a
ω

ω
=

+

1
2a
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The phase spectrum: 

ω  

π/2 

a -a 

−π/2 
−π/4 

π/4 

1
1( )X j

j a
ω

ω
∠ = ∠

+

Case: a>0, real
The magnitude spectrum: 
 
 

ω  

1/a 

a -a 

1
1| ( ) |X j

j a
ω

ω
=

+1
2a
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For the case where ( )ate u t−  is the impulse response h t( )  of a first-
order differential LTI system:  

• The system is a lowpass filter with DC gain of 1/ a  

• High frequencies in the input signal are attenuated 

• The cutoff frequency of the filter is ω c a= , where frequency 
components of the input signal are attenuated by a factor 
1 2  

• The maximum phase added to the input signal is −π 2  for 
ω → +∞  

Remarks
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In the case a j= + > >α β α β, ,0 0 , X j2 ( )ω can be obtained by
shifting the magnitude and phase of X j1( )ω : 

X j X j
j2 1

1( ) ( ( ))
( )

ω ω β
ω β α

= + =
+ +

.  

Note that this is a shift to the left in the frequency domain, so the
magnitude and phase of X j2 ( )ω  are plotted as follows: 

 

 

 

 

 

 

 

ω  α−β −α−β 
−β 

| ( )|X j2 ω

1
2α

1
α

Case: a is complex
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Phase:

ω  

π/2 

-α−β 

−π/2 

−π/4 

π/4 
α−β 

−β 

∠X j2 ( )ω
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By the linearity and conjugation properties, we can write 

0 0( ) ( )
3 0

3
0 0

0 0

0 0

0
2 2

0

1( ) sin( ) ( ) ( ( ) ( ))
2

1 1 1( )
2 ( ) ( )

( ) [ ( ) ]1
2 [ ( ) ][ ( ) ]

( )

j t j ttx t e t u t e u t e u t
j

X j
j j j

j j
j j j

j

α ω α ωα ω

ω
ω ω α ω ω α

ω ω α ω ω α
ω ω α ω ω α

ω
ω α ω

− + − −−= = −

↔

⎛ ⎞
= −⎜ ⎟− + + +⎝ ⎠

⎛ ⎞+ + − − +
= ⎜ ⎟− + + +⎝ ⎠

=
+ +

FT

 

FT of  e-atsin(ω0t)
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Here the signal was real so we should get an even | ( )|X j3 ω  and an odd
∠X j3 ( )ω .

ω   

| ( )|X j3 ω

ω
ω α

0

0
2 2+

1
2α

2 2
0ω α−2 2

0ω α− −
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ω  

π 

 

−π 

−π/2 

π/2 

∠X j3 ( )ω

2 2
0ω α+

2 2
0ω α− +
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Fourier Transform of a "Sawtooth"  

Let's calculate the Fourier Transform of the sawtooth signal x t( )

 

 

 

 

 

 

 

 

 

 

 

t -T1 T1 

-T1 

T1 
x t( )
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1

1

0

1 1
0

1 1
2

( ) ( )

( ) ( )

2sin( ) 2

j t

T
j t j t

T

X j x t e dt

T t e dt T t e dt

T T
j

ω

ω ω

ω

ω
ωω

+∞
−

−∞

− −

−

=

= − − + −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫

∫ ∫
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An ideal lowpass filter with cutoff frequency ω c  as given by its spectrum 

⎩
⎨
⎧

>
<

=
c

cjH
ωω
ωω

ω
||,0
||,1

)( .  

The corresponding impulse response is calculated: 

1 1 1( ) ( )
2 2 2 ( )

sin( )sin( )
sinc

c
c

c
c

j t j t j t

c

c c c c

c

h t H j e d e d e
jt

tt
t

tt

ω
ωω ω ω

ω
ω

ω ω ω
π π π

ω
πω ω ω ωπ

ω ππ π π π
π

++∞

−
−∞ −

⎡ ⎤= = = ⎣ ⎦

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

∫ ∫

  

The Inverse Fourier Transform of an 
ideal low-pass filter



H. Deng, 
L15_ECSE306

19

t 

π
ω c

−
π

ω c

h t( )

ω
π

c

Thus the impulse response of an ideal lowpass filter is a (real) sinc function
extending from t = −∞  to t = +∞
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In the case when the Fourier transform is in the form of a rational
function of jω (a ratio of two polynomials).  

• It is much easier to perform a partial fraction expansion of the
Fourier transform, and then to identify each term in this
expansion using a table of Fourier transforms and their
corresponding time-domain signals.  

• This method is usually preferred to obtain the output response
of a stable differential LTI system using the convolution
property. 

Inverse Fourier transforms of rational functions
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Consider the response of an LTI system with impulse response 2( ) ( )th t e u t−= ,
(which meets the Dirichlet conditions) to the input 3( ) ( )tx t e u t−= .  

Rather than computing their convolution, we will find the response by
multiplying the Fourier transforms of the input and the impulse response.  

1 1( ) , ( )
3 2

X j H j
j j

ω ω
ω ω

= =
+ +

 

Then, 
1( ) ( ) ( )

( 3)( 2)
Y j X j H j

j j
ω ω ω

ω ω
= =

+ +
.  

Example: obtaining the response of a system 
via Inverse FT
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The partial fraction expansion consists of expressing this transform 
as a sum of simple first-order terms. 

1( )
( 2)( 3) ( 2) ( 3)

A BY j
j j j j

ω
ω ω ω ω

= = +
+ + + +

  

 

The constants A B,  can be determined by substituting values for 
the frequency ω  (e.g., 0) and to solve the resulting system of linear 
equations.  

Inverse Fourier transform Step 1: 
partial fraction expansion 
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Another easier technique consists of applying the following procedure.  

(1) Equate the transform with its sum of partial fractions, and let s j= ω ; 

1
( 2)( 3) ( 2) ( 3)

A B
s s s s

= +
+ + + +

 

(2) To obtain A, multiply both sides of the equation by ( 2)s +  and 
evaluate for s a= − . 

  2 2

1 ( 2)
( 3) ( 3)

1 1
2 3

s s

s BA
s s

A

=− =−

+
= +

+ +

⇒ = =
− +
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Applying step (2) for the constant B, we obtain 

 3 3

1 ( 3)
( 2) ( 2)

1 1
3 2

s s

s A B
s s

B

=− =−

+
= +

+ +

⇒ = = −
− +
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Finally, the partial fraction expansion of the Fourier transform of 
the output is given by 

1 1( )
( 2) ( 3)

Y j
j j

ω
ω ω

= −
+ +

  

Using Table D.1 of basic Fourier transform pairs in the textbook, 
we find that 

2 3( ) ( ) ( )t ty t e u t e u t− −= − . 

Step 2: Inverse Fourier Transform of the 
partial fraction expansion
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Obtaining the output of a stable LTI system with impulse
response h(t) and an input x(t): 

• Method 1: convolution y(t)=x(t)*h(t)   
• Method2 : applying FT and the inverse FT   

Y j H j X j( ) ( ) ( )ω ω ω=  

  ∫
∞

∞−
= ωω

π
ω dejYty tj)(

2
1)(  

 
 
 

X j( )ω H j( )ω Y j( )ω

Obtaining the responses of LTI systems Obtaining the responses of LTI systems 
using FTusing FT
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For a cascade of two stable LTI systems with impulse 
responses h t h t1 2( ), ( ) , we have  

 

 

 

 

 

 Y j H j H j X j( ) ( ) ( ) ( )ω ω ω ω= 2 1  

X j( )ω
H j1( )ω

Y j( )ω
H j2 ( )ω

Frequency responses of connected LTI Frequency responses of connected LTI 
systemssystems
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For a parallel connection of two stable LTI systems wit

4

h
impulse responses h t h t1 2( ), ( ) , we have  

 

 

 

 

 

 

 

 Y j H j H j X j( ) [ ( ) ( )] ( )ω ω ω ω= +1 2  

+ 

+ X j( )ω
H j1( )ω

Y j( )ω

H j2 ( )ω
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For a feedback interconnection of two stable LTI systems with 
impulse responses h t h t1 2( ), ( ) , we would have  

 

 

 

 

 

 

  

5

1

1 2

( )
( ) ( )

1 ( ) ( )
H j

Y j X j
H j H j

ω
ω ω

ω ω
=

+
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Consider the stable LTI system defined by an Nth-order linear constant-coefficient
differential equation initially at rest: 

   a d y t
dt

b d x t
dtk

k

k
k

N

k

k

k
k

M( ) ( )
= =

∑ ∑=
0 0

. 

 

Assume that X j Y j( ), ( )ω ω  denote the Fourier transforms of the input x t( ) and
the output y t( )  respectively. Taking FT on LHS and RHS of the Eq., and
applying the derivative property of FT, we have 

   a j Y j b j X jk
k

k

N

k
k

k

M

( ) ( ) ( ) ( )ω ω ω ω
= =

∑ ∑=
0 0

.  

The frequency response of an LTI The frequency response of an LTI 
Differential System Differential System 
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The frequency response of the system is given by: 

H j Y j
X j

b j

a j

k
k

k

M

k
k

k

N( ) ( )
( )

( )

( )
ω ω

ω

ω

ω
= = =

=

∑

∑
0

0

 

The frequency response of a differential The frequency response of a differential 
systemsystem
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A second-order LTI differential system is defined by 
d y t

dt
dy t

dt
y t dx t

dt
x t

2

2 3 2( ) ( ) ( ) ( ) ( )+ + = −  
Suppose we want to obtain the step response of the system. 
  

Step 1. Calculating the frequency response of this system by 
taking FT on the two sides of the Eq. 

[( ) ] ( ) ( ) ( )j j Y j j X jω ω ω ω ω2 3 2 1+ + = −   

H j Y j
X j

j
j j

( ) ( )
( ) ( )

ω ω
ω

ω
ω ω

= =
−

+ +
1

3 22   

Example 1: Obtaining the step Example 1: Obtaining the step 
response of a differential system response of a differential system 
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From Table D.1 and Lecture 15, we know the Fourie

9

r
transform of the step function is:  

  X j
j

( ) ( )ω
ω

πδ ω= +
1

 

From the convolution property of FT, the FT of the step 
response is: 

)(
2
1

]23)[(
1

)](1[
23)(

1)()()(

2

2

ωπδ
ωωω

ω

ωπδ
ωωω

ωωωω

+
++

−
=

+
++

−
==

jjj
j

jjj
jjXjHjY

 

Step 2: Obtain the FT of the step responseStep 2: Obtain the FT of the step response
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Expanding the rational function on the right-hand side into 
partial fractions. 
Let s=jω, we get 

s
s s s

s
s s s

A
s

B
s

C
s

−
+ +

=
−

+ +
= +

+
+

+
1

3 2
1

1 2 1 22 ( )( ) , 

where the coefficients A, B and C are computed as follows:

A s
s s s

=
−

+ +
= −

=

1
1 2

1
20( )( )         B s

s s s

=
−
+

=
−
−

=
=−

1
2

2
1

2
1( )      

2

1 3
( 1) 2s

sC
s s =−

−
= = −

+  

Hence,  2
1

2
3

1
2)](1[

2
1)(

+
−

+
++−=

ωω
ωπδ

ω
ω

jjj
jY  

Step 3: represent the FT of the response in Step 3: represent the FT of the response in 
terms of partial fractionsterms of partial fractions
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Step 4: Look up FT pair Table and obtain Step 4: Look up FT pair Table and obtain 
the inverse FT of the partial fractionsthe inverse FT of the partial fractions

2
1

2
3

1
2)](1[

2
1)(

+
−

+
++−=

ωω
ωπδ

ω
ω

jjj
jY

)(]
2
32

2
1[)( 2 tueety tt −− −+−=

0)Re(,1)( <
−

↔ a
aj

tueat

ω
)(1)( ωπδ

ω
+↔

j
tu

In the TF pair Table (Appendix D), we find:

Then, the inverse FT of Y(jω) is
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Remark: When M>N in differential equation, the 
frequency response has a numerator polynomial with 
higher order than the denominator polynomial.  

∑∑
==

=
N

m
m

m

m

N

n
n

n

n ty
dt
dbty

dt
da

00
)()(        H(jω)     ∑

∑

=

== N

n

n
n

M

m

m
m

sa

sb
sH

0

0)(
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Consider the LTI differential s

13

ystem initially at rest described by  

2 2
2

2

dy t
dt

y t d x t
dt

dx t
dt

x t( ) ( ) ( ) ( ) ( )+ = − − . 

The frequency response of this system is given by 

H j j j
j

j j
j

( ) ( )
( . )

( )( )
( . )

ω ω ω
ω

ω ω
ω

=
− −
+

=
− +

+

2 2
2 0 5

2 1
2 0 5

. 

Example 2Example 2
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Let s j= ω  and write H s( )  as 

H s s s
s

As B C
s

( )
( . ) ( . )

=
− −
+

= + +
+

2 2
2 0 5 0 5

. 

Multiplying both sides by 2 0 5( . )s + , we can identify each coefficient. 

s s s As B C As A B s C B2 22 2 0 5 2 2 2 2− − = + + + = + + + +( . )( ) ( )

A =
1
2

, B = −
3
4

, C = −
5
8

 

Thus, H s s s
s

s
s

( )
( . ) ( . )

=
− −
+

= − −
+

2 2
2 0 5

1
2

3
4

5
8

1
0 5
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Expanded frequency response:

H j j
j

( )
( . )

ω ω
ω

= − −
+

1
2

3
4

5
8

1
0 5

.

Finally, the impulse response is

h t d
dt

t t e u tt( ) ( ) ( ) ( ).= − − −1
2

3
4

5
8

0 5δ δ .
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Stable second-order LTI differential system, whose characteristic polynomial
has complex zeros:   

d y t
dt

dy t
dt

y t x t
2

2

( ) ( ) ( ) ( )+ + =      

The frequency response of this system is given by: 

H j Y j
X j j j

j j j j
( ) ( )

( ) ( )
( )( )

ω ω
ω ω ω

ω ω
= =

+ +
=

+ − + +

1
1

1
1
2

3
2

1
2

3
2

2  

Example 3Example 3
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Letting s j= ω , and expanding the right-hand side into partial fractions, we get

1
1 1

1
1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

2s s
s j s j

A

s j

B

s j
+ +

=
+ + + −

=
+ +

+
+ −( )( )

 

the coefficients are computed as follows: 

A
s j

j

s j

=
+ −

=

=− −

1
1
2

3
2

1
3

1
2

3
2

, B
s j

j

s j

=
+ +

= −

=− +

1
1
2

3
2

1
3

1
2

3
2
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Hence, 

1( )
1 3 1 3( )( )
2 2 2 2

1 1 1 1
3 1 3 3 1 3

2 2 2 2

H j
j j j j

j j
j j j j

ω
ω ω

ω ω

=
+ + + −

= −
+ + + −
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Using Table D.1 of Fourier transform pairs in the book, we 
find the output by inspection 

19

1 3 1 3
2 2 2 2

1 3( )
2 2 2

1
2

1
2

( ) ( )
3 3

2 Re ( )
3

2 3cos( ) ( )
2 23

2 3sin( ) ( )
23

t j t t j t

t j t

t

t

j jh t e e u t

e e u t

e t u t

e t u t

π

π

− − − +

− − −

−

−

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

= −

=
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Consider a signal x(t) with Fourier transform that is a single
impulse of area 2π at frequency kω0: 
  X j k( ) ( )ω πδ ω ω= −2 0 .  
Taking the inverse Fourier transform yields 

 
tjktjk edektx 00)(2

2
1)( 0

ωω ωωωπδ
π

=−= ∫
∞

∞−  
Thus, 
 
    ejkω0t 2πδ(ω - kω0) 

Fourier transform of Fourier transform of eejkjkωω00tt

(5.67, 5.68)
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A general periodic signal has the time-domain Fourier series  

x t a ek
jk t

k

( ) =
=−∞

+∞

∑ ω 0

. 

Taking Fourier transform of the above LHS and RHS and 
applying Eqs. (5.67, 5.68), we get: 

X j a kk
k

( ) ( )ω π δ ω ω= −
=−∞

+∞

∑ 2 0 . 

Therefore, the Fourier transform of a periodic signal is a 
train of impulses of area 2πak , occurring at the frequencies 
kω 0 , with ak’s being the FS coefficients of the signal. 

21

Fourier transform of general periodic SignalsFourier transform of general periodic Signals

(5.69)

(5.70)
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The Fourier transform of a sinusoidal signal of the form 
x t A t( ) sin( )= ω 0  is  

 

 X j jA jA( ) ( ) ( )ω πδ ω ω πδ ω ω= + − −0 0  

ExampleExample
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Consider the impulse train signal 

  x t t kT( ) ( )= −
−∞

+∞

∑ δ . 

 

 

 

 

 

 

 

t 

1 

T -T  -2T 2T 3T 

x t( )

FT of impulse trainFT of impulse train



H. Deng, L16_ECSE306

We know Eq. (5.69) 

X j a kk
k

( ) ( )ω π δ ω ω= −
=−∞

+∞

∑2 0    

 
We know that the FS coefficients the impulse train are

24

1ka T= , hence 

  0
2( ) ( )

k
X j k

T
πω δ ω ω

+∞

=−∞

= −∑  
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We can also calculate the Fourier transform of the 
impulse train using the integral formula. This yields 

( ) j kT

k
X j e ωω

+∞
−

=−∞

= ∑  
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( ) j kT

k
X j e ωω

+∞
−

=−∞

= ∑  

This Fourier transform is actually a periodic train of impulses of 
period 

26

ω π0 2= T  (note that the period is a frequency here!) in the 
frequency domain. That is, the above series converges to the 
impulse train shown below. 

ω ω0 -ω0 -2ω0 2ω0 3ω0 

2π/Τ 

X j( )ω
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There are two important classes of signals for which the Fourier transform converges. 

1. Signals of finite total energy, i.e.  ∞<∫
∞

∞−
dttx 2|)(|   

2. Signals that satisfy the Dirichlet conditions: 

(1) x t( )  is absolutely integrable, i.e., ∞<∫
∞

∞−
dttx |)(| , 

(2) x t( )  has a finite number of maxima and minima over any finite interval of 
time, 
(3) x t( )  has a finite number of discontinuities over any finite interval of time. 
Furthermore, each of these discontinuities must be finite. 

Convergence of the Fourier TransformConvergence of the Fourier Transform
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Types of convergence
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Signals of finite energy: there is no energy in the error 
between a signal x t( )  and its inverse Fourier transform  

∫
∞

∞−
= ωω

π
ω dejXtx tj)(

2
1)(

~
.  

 

Signals satisfying the Dirichlet conditions: ~( )x t  is equal to 
x t( )  at every time t  (pointwise convergence), except at 
discontinuities where ~( )x t  will take on the average of the 
values on either side of the discontinuity. 
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Frequency-selective filters are filters that allow frequency
components over a given frequency band (the passband), 
components to pass undistorted, while attenuate components
at other frequencies (the stopband).  
 
 
 
 + 

 
 

+ 
 
 filter 

n t( )

x t( )
~( )x t

x t1( )
H j( )ω

Frequency selective filter
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An ideal lowpass filter cuts off frequency components higher 
than a cutoff frequency ω c . The frequency response of this filter 
is given by: 
 

 ⎩
⎨
⎧

≥
<

=
c

cjH
ωω
ωω

ω
||,0
||,1

:)(
.  

 

 

 

 

 

ω 

1 

ωc −ωc 

H jlp ( )ω

The frequency response of an ideal low-
pass filter 
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Recall Lecture 12: the frequency response of an LTI system

and its impulse response constitute a FT pair: h t H j
FT

( ) ( )↔ ω  
Thus, the impulse response of the LPF can be derived via
inverse FT of the frequency response H(jω) of the LPF: 

    π
πωω

π
ω

ω
ω

π
ω

π
ωω

ω

ω )/sinc()sin(
2

1
2
1)( t

t
te

jt
deth ccc

c

ctjtj
lp

c

c

==
−

== ∫−   
     
 
 
 
 t 

h tlp ( )

cω
π

cω
π

−

π
ωc

The impulse response of an ideal LP
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Although the above filter is termed "ideal" in reference to
its frequency response, it may not be so desirable in the
time-domain for some applications because of the ripples
in its step response.  
 
 
 
 
 
 t 

s tlp ( )
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One approximation to the ideal lowpass filter is the Butterworth 
filter. The magnitude of the frequency response of an Nth-order
Butter-worth LPF is given by: 

2/12 ])(1[

1|)(|
N

c

B jH

ω
ωω

+
=

 

The magnitude of the frequency response of a 2nd-order 
Butterworth filter with cutoff frequency ω c  is given by: 

 22

2

2)(
)(

cc

c
B jj

jH
ωωωω

ωω
++

=
 

Butter-worth LPF
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The magnitude of the frequency response of a 2nd-order 
butter-worth LPF: 
 
 
 
 
 
 

Around ω c is the transition band, where the magnitude 
"rolls off". The higher the order, the narrower the transition 
band becomes. 

ω 
 
 

1 
 
 

ωc 

 
 

−ωc 

 
 

| ( )|H jB ω

The transitional band of LPFs
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The second-order Butterworth filter is defined by its 
characteristic polynomial 

22 2)( cc sssp ωω ++=  
Therefore the differential equation relating the input and output
signals of this filter must have the form 

2
2 2

2

( ) ( )2 ( ) ( )c c c
d y t dy t y t x t

dtdt
ω ω ω+ + = . 

Representing the LPF using a differential 
equation
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The impulse response of a 2nd-order butter-worth filter is given 
by (Assignment 6.1): 

h t e t u tB c

t
c

c

( ) sin( ) ( )=
−

2
2

2ω ωω

. 

This impulse response does not oscillate much even though it is a
damped sinusoid. The decay rate is fast enough to damp out the
oscillations. 
  
The step response of this second-order Butterworth filter is: 
 
  

t 

s tB ( )
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A High-pass filter cuts off frequency components lower than
its cutoff frequency ω c . The frequency response of an ideal
HPF is given by: 

⎩
⎨
⎧

>
≤

=
c

c
hpH

ωω
ωω

||,1
||,0

:
.  

 

ω 
 

1 
 
 

ωc 

 
−ωc 

 

H jhp ( )ω

High-Pass Filters
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Notice that the frequency response of an ideal highpass filter can be written
as the difference between 1 and the frequency response of an ideal lowpass
filter.  

H j H jhp lp( ) ( )ω ω= −1  

The resulting impulse response is simply 

  h t t h thp lp( ) ( ) ( )= −δ  

 
This suggests one possible but naïve approach to obtaining a realizable highpass 
filter:  
First, design a lowpass filter with cutoff frequency ω c  and desirable characteristics 
in the transition band and the stopband.  
Second, form the frequency response of the highpass filter using above equation 

Obtaining an HPF from an LPF
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We can design an HPF using the second-order lowpass Butterworth
filter of the above example. 

H j H j

j j

j j
j j

j j
j j

hp B

c

c c

c c c

c c

c

c c

( ) ( )

( )

( )
( )

( )
( )

ω ω

ω
ω ω ω ω

ω ω ω ω ω
ω ω ω ω

ω ω ω
ω ω ω ω

= −

= −
+ +

=
+ + −

+ +

=
+

+ +

1

1
2

2
2

2
2

2

2 2

2 2 2

2 2

2

2 2

  

 

ω 
 

1 
 
 

ωc 

 
 

−ωc 

 
 

| ( )|H jhp ω

Example
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The causal LTI differential equation corresponding to 
the above H(jω) is 

2 2
2

2 2

( ) ( ) ( ) ( )2 ( ) 2c c c
d y t dy t d x t dx ty t

dt dtdt dt
ω ω ω+ + = +  

 

and the impulse response is given by: 

h t t e t u thp c

t
c

c

( ) ( ) sin( ) ( )= −
−

δ ω ωω

2
2

2  

The differential Eq. for the HPF
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An ideal bandpass filter cuts off frequencies lower than its
first cutoff frequency ω c1 and higher than its second
cutoff frequency ω c2 . 
 The frequency response of such a filter is given by: 

    ⎩
⎨
⎧ <<

=
otherwise

H cc
bp ,0

|||,1
: 21 ωωω

 

.  
 

ω 
 
 

1 
 
 

ωc2 

 
 

−ωc2 

 
 

ωc1 

 
 

−ωc1 

 
 

H jbp ( )ω

Band-Pass Filters
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One approach to design bandpass filters: 
The frequency response of an ideal bandpass filter can be
written as the product of the frequency responses of ideal
overlapping lowpass and highpass filters.  

H j H j H jbp hp lp( ) ( ) ( )ω ω ω=  

The highpass filter should have a cutoff frequency of ω c1

and the lowpass filter ω c2 .    

Obtaining a BPF from a LPF and an HPF

hhp(t) hlp(t)x(t) y(t)

An implementation of BPF: 
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The bilateral Laplace transform of x(t) is defined as: 

   ∫
∞

∞−

−= dtetxsX st)(:)(   
where s is a complex variable. Notice that the Fourier 
transform is given by the same equation, only s j= ω  for 
the Fourier transform.  
Let the Laplace variable be written as s j= +σ ω .  

 ∫∫
∞

∞−

−−∞

∞−

+− ==+ dteetxdtetxjX tjttj ωσωσωσ ])([)(:)( )(
 

 
Then the Laplace transform can be viewed as the Fourier 

transform of the exponentially-weighted signal x t e t( ) −σ
.

The Definition of Bilateral Laplace Transform



H. Deng, 
L17_ECSE306

17

• Laplace transform can analyze unbounded signals or
unstable systems.   

• The unilateral Laplace transform can be used to analyze
differential LTI systems with nonzero initial conditions.  

 
In contrast, FT can only analyze bounded signals and zero-
initial systems. 

Motivations for Laplace transform
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Find the Laplace transform of x t e u t aat( ) ( ),= −  real . 

as
as

dtetuesX stat −>
+

== ∫
∞

∞−

−− }Re{,1)()(   

x t a( ), > 0

Note: for a=0, we have the LT of u(t).

Example 1: LT of e-atu(t), a>0
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This Laplace transform converges only for values of
s  in the open half-plane to the right of s a= − .

This half plane is the region of convergence (ROC) of
the Laplace transform. It is represented as follows:

Re{s} 
 
 

-a 

 
 

Im{s} 
 
 
ROC 
 
 

Region of convergence of the LT



H. Deng, 
L17_ECSE306

20

Consider the signal ( ) ( ),atx t e u t a−= ∈ R  
 

Its Fourier transform of converges only for a > 0  (decaying 
exponential). 
Whereas, its Laplace transform converges for any a (even 
for growing exponentials!), as long as Re{ }s a> − .  
 
In other words, the Fourier transform of  

x t e e u tt a t( ) ( )( )− − +=σ σ
  

converges for the region where Re{ }s aσ= > − . 

Compare: ROC of FT and ROC of LT
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Find the Laplace transform of x t e u t aat( ) ( ),= −−  real . 

0
( )

( ) ( )

1 , Re{ }

at st

s a t

X s e u t e dt

e dt

s a
s a

+∞
− −

−∞

− +

−∞

= −

=

= − < −
+

∫

∫
  

x t a( ), < 0

Example 2: LT of e-atu(-t), a<0
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The Laplace transform of the signal in example 2 converges
only in the ROC, which is the open half-plane to the left of 
s a= − .  
 
 
 
 
Important note: The ROC is an integral part of a Laplace
transform. It must be specified.  
Without ROC, you can't tell what the corresponding time-
domain signal is!  

Re{s} 
 
 

-a 

 
 

Im{s} 
 
 ROC 

 
 

Region of Convergence of LT
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The inverse Laplace transform is in general given by  

∫
∞+

∞−
=

j

j

stdsesX
j

tx
σ

σπ
)(

2
1:)(   

This integral is rarely used because we are mostly dealing
with linear systems and standard signals whose Laplace
transforms are found in tables of Laplace transform pairs.  
 
We will mainly use the partial fraction expansion technique 
to find the continuous-time signal corresponding to a
Laplace transform.  

Inverse Laplace Transform
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LT pairs
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Convergence of the Laplace integral depends on the value of σ, 
i.e. Re{s}, for which the Fourier transform of the exponentially-
weighted x(t) converge. In the s-plane, the region of convergence
of X(s) is either:  
• a left half-plane: σ<σ1 (if x(t) is left sided) 
• a right half-plane: σ>σ2 (if x(t) is right sided) 
• a vertical strip: σ2<σ<σ1 (if x(t) is two sided, for -∞<t<∞ ) 
• entire s-plane:  if x(t) is finite duration 
• nothing 

∫∫
∞

∞−

−−∞

∞−

+− ==+ dteetxdtetxjX tjttj ωσωσωσ ])([)(:)( )(

∫
∞

∞−

−= dtetxsX st)(:)(

Region of Convergence of the bilateral LT

(6.1)

(6.2)

Bilateral LT:
i.e.,



H. Deng, L18_ECSE306 3

Many LTs are rational functions (ratios of polynomials of s):
      X(s)=P(s)/Q(s)  
X(s) can be: 

The LT of sum of complex or real exponential signals;  
H(s), the LT of h(t), the impulse response of an LTI system. 

Laplace Transform and Rational Functions

The roots of P(s) are the zeros, and the roots of Q(s) are poles of X(s). 

For differential LTI systems (see Eq. 3.2), the zeros of the characteristic 
polynomial are the poles of the H(s).

To find the inverse LT of X(s), we can express X(s) in terms of algebraic 
expressions listed in Table D4, and then find x(t) .
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Case 1: rational X(s) has no multiple-order poles
Assume: 

1. X(s) has no multiple-order poles in its set of poles { } 1

m
k k

p
= . 

2. The order of the denominator polynomial is greater than the
order of the numerator polynomial. 
Then,  X(s) can be expanded as a sum of partial fractions: 

{
1 2

1 2

1 1 2

( )

N

N
k N

k k N
s ROC s ROCs ROC s ROC

A AA AX s
s p s p s p s p=

∈ ∈∈ ∈

= = + + +
− − − −∑ L

12314243 123
 

 
From the ROC of ( )X s , the ROCi of each individual partial 
fraction can be found, and then the inverse transform of each of 
these terms can be determined using Table D4. 
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{
1 2

1 2

1 1 2

( )

N

N
k N

k k N
s ROC s ROCs ROC s ROC

A AA AX s
s p s p s p s p=

∈ ∈∈ ∈

= = + + +
− − − −∑ L

12314243 123
 

The ROC of X(s) must contain at least the intersection of all
the ROCs of the partial fractions 

1, ,

ROC ROCi
i N=

⊇
K

I .  

•  If the ROCi  i=1,…,N, are open right half-planes, then the ILT of X(s) 
is: 

1 2
1 2( ) ( ) ( ) ( )Np tp t p t

Nx t A e u t A e u t A e u t= + + +L  
 

• If the ROCi  i=1,…,N, are open left half-planes, then the ILT of X(s) is: 
)(...)()()( 21

21 tueAtueAtueAtx tp
N

tptp N −−−−−−−=  

The Inverse LT and ROC
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The coefficients of partial fractions for case 1

k
kk ps

pssXA
=

−= ))((

{
1 2

1 2

1 1 2

( )

N

N
k N

k k N
s ROC s ROCs ROC s ROC

A AA AX s
s p s p s p s p=

∈ ∈∈ ∈

= = + + +
− − − −∑ L

12314243 123

k=1, 2, …, N



H. Deng, L18_ECSE306 7

Compute the inverse of the following Laplace transform: 

{ { {
1 2 3

31 2

3( ) , 0 Re{ } 2
( 1)( 2)

1 2
s ROC s ROC s ROC

sX s s
s s s

AA A
s s s
∈ ∈ ∈

+
= < <

+ −

= + +
+ −  

 
In order to have 1 2 3ROC ROC ROC ROC⊇ ∩ ∩ , the only possibility is: 

{ { {

31 2

Re{ } 1 Re{ } 0 Re{ } 2

( )
1 2

s s s

AA AX s
s s s

>− > <

= + +
+ − . 

Example

ROC
Re{s}

Im{s}

20
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The values of Ai are: 

1
1

( 3) 2 2( 1)
( 1)( 2) ( 1)( 3) 3s

sA s
s s s =−

⎛ ⎞+
= + = =⎜ ⎟+ − − −⎝ ⎠  

 

2
0

( 3) 3 3
( 1)( 2) (1)( 2) 2s

sA s
s s s =

⎛ ⎞+
= = = −⎜ ⎟+ − −⎝ ⎠  

 

3
2

( 3) 5 5( 2)
( 1)( 2) (2)(3) 6s

sA s
s s s =

⎛ ⎞+
= − = =⎜ ⎟+ −⎝ ⎠ . 

The coefficients of partial fractions

{ { {
1 2 3

31 2

3( ) , 0 Re{ } 2
( 1)( 2)

1 2
s ROC s ROC s ROC

sX s s
s s s

AA A
s s s
∈ ∈ ∈

+
= < <

+ −

= + +
+ −

For 
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Hence, the Laplace transform can be expanded as 

{ { {
Re{ } 1 Re{ } 0 Re{ } 2

2 1 3 1 5 1( )
3 1 2 6 2

s s s

X s
s s s

>− > <

= − +
+ −

 

 
 and from Table D.4 of Laplace transform pairs: 

22 3 5( ) ( ) ( ) ( )
3 2 6

t tx t e u t u t e u t−= − − − . 
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For multiple poles in X(s), the partial fraction expansion must 
contain fractions with all the powers of the multiple poles up to 
their multiplicity.  
 

To illustrate this, consider X(s) with ROC Re{ } Re{ }Ns p>  

1 1 1

( )( )
( ) ( )( ) ( ) ( )r

m m m N

n sX s
s p s p s p s p s p− +

=
− − − − −L L , 

{
{ ( ) ( )

1

1

1

1 11
2

1Re{ } Re{ }
Re{ } Re{ } Re{ } Re{ } Re{ } Re{ } Re{ } Re{ }

1

Re{ } Re{ } Re{ } Re{ }

( )
m

m m m

m N

m m m r
r

ms p m m
s p s p s p s p

m r N

m N

s p s p

A A AAX s
s p s p s p s p

A A
s p s p

+

+

+ + −

>
> > > >

+

+

> >

= + + + + +
− − − −

+ + +
− −

L L

123 14243 14243

L

14243 123
 

Case 2: X(s) has multiple-order poles
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If pm is a pole of multiplicity r, the coefficients 
1, ,m m rA A + −K  are computed as follows: 

1

1

1 ( ) ( ) , 1, ,
( 1)! m

i
r

m r i mi s p

dA s p X s i r
i ds

−

+ − − =
⎡ ⎤= − =⎣ ⎦−

K ,  
 
To compute the coefficient of the term with the highest
power of the repeated pole: 

1 ( ) ( )
m

r
m r m s p

A s p X s+ − =
⎡ ⎤= −⎣ ⎦ . 

The coefficients of partial fractions for case 2 
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If X(s) has a pair of complex conjugate poles, we can 

include a second-order term 
0

2 2
0

( )
( )
A B s

s
ω α

α ω
+ +

+ + in the partial 
fraction expansion.  
 
The idea is to use the damped or growing sinusoids in the 
table of Laplace transforms, such as 

0
0 2 2

0

sin( ) , Re{ }
( )

L
te t s

s
α ω

ω α
α ω

− ↔ > −
+ +  

0 2 2
0

cos( ) , Re{ }
( )

L
t se t s

s
α αω α

α ω
− +

↔ > −
+ +  

If X(s) has complex conjugate poles
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Compute the inverse of the following Laplace transform: 

( )
2

2

2 3 2( ) , Re{ } 0
2 4

s sX s s
s s s

+ −
= >

+ + . 
 

Note that 2 2 22 4 ( 1) ( 3)s s s+ + = + + , so that the complex poles 
are 1 1 3p j= − +  and 1 1 3p j= − −  

Example
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The transform ( )X s  can be expanded as follows: 

( ) ( ) {

2

22

Re{ } 0
Re{ } 1

2 3 2 3 ( 1)( )
2 4 1 3

s
s

s s A B s CX s
ss s s s

>
>−

+ − + +
= = +

+ + + +
1442443 . 

Coefficient c is obtained with the partial fraction technique: 
c= -1/2.  
 

Now, let s=-1 to compute 
3 1 1 3
3 2 23

A A−
= + ⇒ =

− ,  
 
Then multiply both sides by s and let s → ∞ and get 5 2B = .
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Then we have the following expansion: 

( ) {

( ) ( ) {

2

Re{ } 0
Re{ } 1

2 2

Re{ } 0
Re{ } 1 Re{ } 1

3 5( 3) ( 1) 1 22 2( )
1 3

3 5( 3) ( 1) 1 22 2
1 3 1 3

s
s

s
s s

s
X s

ss

s

ss s

>
>−

>
>− >−

+ +
= −

+ +

+
= + −

+ + + +

144424443

14243 14243

 

 
Taking the inverse Laplace transform using Table D.4 

3 5 1( ) sin( 3 ) cos( 3 ) ( ) ( )
2 2 2

t tx t e t e t u t u t− −⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
. 
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Consider the signal x t e u t e u tt t( ) ( ) ( )= −−2 + . Its Laplace transform 
is given by 

2

0
( 2) ( 1)

0

2

( ) ( ) ( )

1 1 , Re{ } 2 and Re{ } 1
2 1

3 , 2 Re{ } 1
2

t st t st

s t s t

X s e u t e dt e u t e dt

e dt e dt

s s
s s

s
s s

+∞ +∞
− − −

−∞ −∞

+∞
− + − −

−∞

= + −

= +

= − > − <
+ −

−
= − < <

+ −

∫ ∫

∫ ∫

 
x t( )

Example
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The ROC is a vertical strip between the real parts -2
and 1.

Re{s} 
 
 

1 

 
 

Im{s} 
 
 ROC 

 
 -2 
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If 1 1 1( ) ( ), ROCx t X s s↔ ∈
L

 and 2 2 2( ) ( ), ROCx t X s s↔ ∈
L

,
then  

1 2 1 2 1 2( ) ( ) ( ) ( ), ROC ROC ROCax t bx t aX s bX s s+ ↔ + ∈ ⊇ ∩
L

 

Properties of the bilateral LT: Linearity
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If ( ) ( ), ROCx t X s s↔ ∈
L

,  
then  

0
0( ) ( ), ROCstx t t e X s s−− ↔ ∈

L

 
Example:  
The impulse response of a zero-order hold is a unit 
pulse of duration T: h t u t u t T0 ( ) ( ) ( )= − − . Its LT is: 

  0
1 1 1( ) ,

sT
sT eH s e s

s s s

−
− −

= − = ∀ ∈ C  
Note: the ROC is the whole complex s-plane. There is 
no pole at s=0. 

Time-Shifting
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then 

0
0 0( ) ( ), ROC+Re{s }s te x t X s s s↔ − ∈

L

 

where the new ROC is the original one shifted by Re{ }s0 , to 
the right if this number is positive, to the left otherwise. 

Shifting in the s-Domain

ROC ROC 
+Re{s0}

ROC 
+Re{s0}

Re{s0}>0 Re{s0}<0

Case 1: ROC is right half s-plane
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then  
1( ) ( ), ROCs

ax at X s a
a

↔ ∈
L

 

where the aROC is expanded or contracted original ROC.  
If a<0, ROC flips around the imaginary axis. 

Time-Scaling
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Example:    

 ( 2 ) 0.5 ( 0.5 ), 2ROCx t X s s− ↔ − ∈−
L

  

 

 

 

 

 

 

 

 

Re{s} 
 
 

1 

 
 

Im{s} 
 
 ROC 

 
 -2 

 
 

Re{s}
 
 

4 

 
 

Im{s} 
 
 -2ROC 
 
 -2 
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then  

( ) ( ), ROCx t X s s∗ ∗ ∗↔ ∈
L

, 

Therefore, for x t( )  real, X s X s( ) ( )= ∗ ∗
.  

Important consequence: If x(t) is real and if X(s) has a 

pole (or zero) at s s= 0 , then X s( )  has also a pole (or 

zero) at the complex conjugate point s s= ∗
0 . Thus, the 

complex poles or zeros of the Laplace transform of a 
real signal are conjugate pairs. 

Conjugation



H. Deng, L18_ECSE306 24

If 1 1 1( ) ( ), ROCx t X s s↔ ∈
L

 and 2 2 2( ) ( ), ROCx t X s s↔ ∈
L

, then 

     1 2 1 2 1 2( ) ( ) ( ) ( ), ROC ROC ROCx t x t X s X s s∗ ↔ ∈ ⊇ ∩
L

. 
 

Note: the new ROC contains the intersection of the two
original ROC's, and may be larger, e.g., when a pole-zero 
cancellation occurs. 

Convolution
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Example: The response of the LTI system with h t e e u tt t( ) ( )= +− −2

to the input  x t e u t tt( ) ( ) ( )= − +−2 δ  is given by the inverse Laplace
transform of Y s( ) :

2 3( ) ( ) , Re{ } 1
( 2)( 1)

1 1( ) ( ) 1 , Re{ } 2
2 2

sh t H s s
s s

sx t X s s
s s

+
↔ = > −

+ +
− +

↔ = + = > −
+ +

L

L
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2

(2 3) ( 1)( ) ( ) ( ) ,
( 2)( 1) ( 2)

{ : Re{ } 2} { : Re{ } 1} Re{ } 1
(2 3) , Re{ } 2
( 2)

s sY s H s X s
s s s

s s s s s
s s

s

+ +
= =

+ + +
> − ∩ > − = > −

+
= > −

+

Expanding this transform into partial fractions, we get

Y s s
s

A
s

B
s

s( ) ( )
( ) ( ) ( )

, Re{ }=
+

+
=

+
+

+
> −

2 3
2 2 2

22 2 .
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We find the factor B first, 

( )2 3
1

1
2

s B
s

+
= − =

=−

,  

and factor A is given by 

2 3
2

2s
s

A
s

+
+

= =
=+∞

. 

Therefore, using Table D.4 of Laplace transform pairs in the 
textbook, we obtain  

y t e te u tt t( ) ( )= −− −2 2 2  
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then  

1
( ) ( ), ROC ROCdx t sX s s

dt
↔ ∈ ⊇
L

, 

ROC1 may be larger than the ROC when there is a 
pole-zero cancellation at s = 0 . 

Differentiation in the time domain
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then  

( )( ) , ROCdX stx t s
ds

− ↔ ∈
L

, 

This property is useful to obtain the Laplace transform of 
signals of the form x t te u tat( ) ( )= − . 

Differentiation in the Frequency Domain
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If ( ) ( ), ROCx t X s s↔ ∈
L

, then  

{ }1
1( ) ( ), ROC ROC :Re{ }>0

t
x d X s s s s

s
τ τ

−∞
↔ ∈ ⊇ ∩∫
L

Integration in the Time Domain

Prove by yourself: view the running integral as u(t)*x(t) and then apply the 
convolution property of LT.
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The Laplace transform of the output of an LTI system with impulse
response h(t) is  

Y s H s X s( ) ( ) ( ),= ⊇ ∩ROC ROC ROCY H X  
The Laplace transform of the impulse response of an LTI system is 
called the system function or transfer function.  

∫
∞

∞−

−= dtethsH st)()(  
Note:    

1. H(s) can also be obtained from the ratio of the LT of the 
output signal y(t) and the LT of the input signal x(t): 

)(
)()(

sX
sYsH =  

2. The frequency response of the system can be obtained from 

the H(s):    H j H s s j( ) ( )ω ω=
= . 

The transfer function of an LTI system
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The ROC associated with the transfer function of a causal 
system is a right half-plane. 
Because: for h(t)e-st to be integrable, Re{st}>σ must be satisfied. 
As h(t) exists only for t>=0 for a causal system, then Re{st}>σ  
means Re{s}>σ, which defines a right half-plane. 
Note: 

1. A right half-plane ROC may not imply a causal system. For 
example, a signal starting at t= -10 also leads to a ROC that is
a right half-plane. 

2. If the transfer function is a rational function, and if the ROC 
is the right half-plane to the right of the rightmost pole in the
s-plane, then the (impulse response of the) system is causal,
as given by the partial fraction method of inverse LT.  

Causality and ROC
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H s
s

s( ) , Re{ }=
+

> −
1

1
1 corresponds to a causal system e-t u(t).  

H s e
s

s
s

1 1
1( ) , Re{ }=

+
> −  is noncausal e-(t+1) u(t+1). 

H s e
s

s
s

2 1
1( ) , Re{ }=

+
> −

−

 is causal e-(t-1) u(t-1). 

Examples of ROC and causality
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Recall: The sufficient and necessary condition for a
continuous-time LTI system to be BIBO stable: its impulse
response is absolutely integrable, which means its Fourier
transform exists.  
This condition means the following: 
An LTI system is stable if and only if the ROC of its transfer 
function H(s) contains the jω-axis. 

Stability and ROC 
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Consider an LTI system with a proper rational transfer
function: 

( 1)( )
( 2)( 1)

s sH s
s s

+
=

+ − . 
 
The transfer function can be expanded as 

( 1) 2 1 2 1( ) 1
( 2)( 1) 3 1 3 2

s sH s
s s s s

+
= = + −

+ − − + . 
 
3 possible ROCs could be associated with this transfer 
function. Only one ROC leads to a stable system. 

Example of ROC and stability
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ROC h t( )  Causal Stable 

 

 

 

 

 

 

22 2( ) ( ) ( )
3 3

t th t e e u t tδ−⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

YES. 

ROC is a right 
half-plane 

NO. 

 

 

 

 

 

 

22 2( ) ( ) ( )
3 3

( )

t th t e u t e u t

tδ

−= − − −

+
 

NO. YES. 

The jω -axis 
lies in the ROC 

 

 

 

 

 

 

22 2( ) ( )
3 3

( )

t th t e e u t

tδ

−⎡ ⎤= − + −⎢ ⎥⎣ ⎦
+

 

NO. NO. 
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The one-sided or unilateral Laplace transform of x(t) is 
defined as follows: 

  ∫
∞ −
−

=:�
0

)()( dtetxs stX
 

 
This transform considers only signals from t>=0-.  
The notation for the unilateral Laplace transform: 

x t s x t( ) ( ) { ( )}↔
UL

X UL=  

Unilateral Laplace transform
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Note 
•  Two signals that are different for t<0 but equal for t≥0 have 

the same unilateral Laplace transform.  
• The unilateral Laplace transform of x(t) is identical to the 

(two-sided) Laplace transform of x(t)u(t). 
• The ROC of a unilateral Laplace transform is always an 

open RHP, or the entire s-plane. 
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Compare unilateral LT and bilateral LT
Consider the signal  x t e u ta t( ) ( )( )= +− +1 1  

 
 
 
 
Its bilateral Laplace transform is   

X s e
s a

s a
s

( ) , Re{ }=
+

> −  
In contrast, its unilateral Laplace transform is 

 X( ) , Re{ }s e
s a

s a
a

=
+

> −
−

. 

x t a( ), > 0

-1 t 
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Linearity 
The unilateral Laplace transform is linear. If 

x t s s1 1( ) ( ),↔ ∈
UL

X ROC1  and x t s s2 2( ) ( ),↔ ∈
UL

X ROC2 ,  
then  

ax t bx t a s b s s1 2 1 2( ) ( ) ( ) ( ),+ ↔ + ∈ ⊇ ∩
UL

X X ROC ROC ROC1 2  

Properties of the unilateral Laplace 
Transform 
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x(t) is causal, if x(t)=0 for t<0. 

For causal x(t), if x t s s( ) ( ),↔ ∈
UL

X ROC , then for a time 
delay of t0>0  

x t t e s s tst( ) ( ),− ↔ ∈ >−
0 0

0 0
UL

X ROC,  
Note:  
In the following cases, the resulting and the original 
unilateral transforms can’t have the above relationship. 
1. x(t) is nonzero at negative times: a time delay can make a 
"previously unknown" part of the signal "appear" at positive 
times.  
2. Part of x(t) is shifted to negative times for time advance. 

Time Delay 
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If x t s s( ) ( ),↔ ∈
UL

X ROC , then  

e x t s s ss t0
0( ) ( ), }↔ − ∈

UL

X ROC + Re{s0 , 

 

where the new ROC is the original one shifted by Re{ }s0 , 
to the right if this number is positive, to the left otherwise. 

Shifting in the s-domain
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If x t s s( ) ( ),↔ ∈
UL

X ROC , then for 0α >   
 

1( ) ( ), ROCsx t sαα α
α

↔ ∈X
UL

          (6.64) 

Time-Scaling 
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If x t s s( ) ( ),↔ ∈
UL

X ROC , then x t s s∗ ∗ ∗↔ ∈( ) ( ),
UL

X ROC . 
 

Note: 

1. If x(t) is real, then X X( ) ( )s s= ∗ ∗  
2.  If x(t) is real,  then the complex poles and zeros of its 
unilateral Laplace transform are conjugate pairs. 

Proof : Let s1 be a complex zero of X(s).  

0)(,0)(

)()(,0)(
*

1

*

1

*

1

*

1

*

1

=∴=∴

==

sXsX

sXsXandsX QQ

 

Similar proof holds for complex poles. 

Conjugation  
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Assume that x t x t t1 2 0 0( ) ( )= = < for . If 
x t s s1 1( ) ( ),↔ ∈

UL

X ROC1  and x t s s2 2( ) ( ),↔ ∈
UL

X ROC2 , then 

x t x t s s s1 2 1 2( ) ( ) ( ) ( ),∗ ↔ ∈ ⊇ ∩
UL

X X ROC ROC ROC1 2  
 
This is an extremely useful property for causal LTI system 
analysis with signals that are zero for negative times.  

Convolution Property 
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If x t s s( ) ( ),↔ ∈
UL

X ROC , then  
dx t

dt
s s x s( ) ( ) ( ),↔ − ∈ ⊇−

UL

X 0 ROC ROC1  
Proof:  

Note: 
1. This property is different from that of bilateral LT in Eq. (6.57). 
2. x(0-)  =0, if x(t)=0 for t<0. 
3. x(0-) ≠0, if x(t) extends to negative times.  
4. x(0-) can be used to set a non-zero initial condition for the output 

of a causal differential system. 

)0()(
0

)()('
00

−∞ −
−

−∞ − −=+
∞

= ∫∫ −−
xssdtetxsetxdtetx ststst )X(

Differentiation in the Time Domain 
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Calculate the output of the following homogeneous causal LTI 
differential system with initial condition y( )0− . 

τ 0 0dy t
dt

y t( ) ( )+ =   

Let's take the unilateral Laplace transform on both sides: 

τ 0 0 0s s y sY Y( ) ( ) ( )− + =− .  

Example
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Solving for Y( )s , we obtain 

Y( ) ( ) , Re{ }s y
s

s=
+

> −
−0 1
1

00τ τ   

which corresponds to the time-domain output signal (Table D.4) 

y t y e u t
t

( ) ( ) ( )= −
−

0 0τ .  
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d x t

dt
s s s x s d x

dt
d x

dt
s

n

n
n n

n

n

n

n

( ) ( ) ( ) ( ) ( ) ,↔ − − − −

∈ ⊇

− −
− −

−

− −

−

UL

X 1
2

2

1

10 0 0
K

ROC ROC1
  

 
This can be derived by successive applications of the 
differentiation property. 

ULT of Nth-order derivative in the time 
domain
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Differentiation in the Frequency Domain 

− ↔ ∈tx t d s
ds

s( ) ( ) ,
UL X ROC
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Integration in the Time Domain 

}0}Re{:{,)(1)( 10
>∩⊇∈↔∫ ssROCROCss

s
dx

t
X

UL

ττ

This can be proved by using u(t)*x(t) and the convolution property.
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The initial-value theorem: 

x s s
s

( ) lim ( )0+

→+∞
= X

 
 
The final-value theorem: 

lim ( ) lim ( )
s s

x t s s
→+∞ →

=
0
X .  

 
The above are the properties of unilateral Laplace transform,
as they are applicable only to signals that are 0 for t<0. 

The Initial and Final Value Theorems 
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Proofs of initial and final value theorems

theoremvalueFinaltxss

xtxdtetx

theoremvalueinitialxss

dtetxdtetx

dtetxxss

dtetxxx

dtetxdtetxdtetxxss

ts

t

st

s

s

st

s

st

s

st

st

ststst

)(lim)}({lim

)0()(lim})('{lim

)0()}({lim

0]lim)[('})('{lim

)(')0()(

)(')0()0(

)(')(')(')0()(

0

00

00

0

0

0

0

00

∞→→

+

∞→

∞ −

→

+

∞→

∞ −

∞→

∞ −

∞→

∞ −+

∞ −−+

∞ −−∞ −−

=∴

−=

=∴

==

+=∴

+−=

+==−

∫

∫∫
∫

∫
∫∫∫

+

++

+

+

+

+

−−

X

X

X

X

Q

Q

According to the property of differentiation in the time domain:
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Find the initial value x( )0+
of the signal whose unilateral 

Laplace transform is  

X( ) , Re{ }s
s

s=
−

>
10

3
3

. 
 
Answer: 

x s s s
ss s

( ) lim ( ) lim0 10
3

10+

→+∞ →+∞
= =

−
=X   

Example
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Lecture 20

Analysis of  LTI Differential Systems Using Laplace Transform 
• Transfer functions of differential systems
• Causality and stability of differential systems
• The response of differential system with non-zero initial 

conditions
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Recall: the transfer function of an LTI system is the Laplace 
transform of its impulse response. 

Given a differential LTI system a d y t
dt

b d x t
dtk

k

k
k

N

k

k

k
k

M( ) ( )
= =

∑ ∑=
0 0

, 

we apply the differentiation and linearity properties of the
Laplace transform to the LHS and RHS of the above Eq.:  

a s Y s b s X sk
k

k

N

k
k

k

M

( ) ( )
= =

∑ ∑=
0 0

  
and obtain the transfer function   

 
H s Y s

X s

b s

a s

k
k

k

M

k
k

k

N( ) ( )
( )

= = =

=

∑

∑
0

0  
 

Transform Transfer Function of an LTI 
Differential System
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• The poles of H(s) are the N zeros of the characteristic 
polynomial, i.e., the denominator polynomial. 

• The zeros of H(s) are the M roots of numerator polynomial 
• If M>N, then lim ( )

s
H s

→∞
= ∞  and the transfer function is 

sometimes said to have M-N poles at ∞ .  
• If M<N, then lim ( ) 0

s
H s

→∞
=  and the transfer function is 

sometimes said to have N M−  zeros at ∞ .  
•  If M=N? 

Poles and zeros of H(s)

H s Y s
X s

b s

a s

k
k

k

M

k
k

k

N( ) ( )
( )

= = =

=

∑

∑
0

0
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H s Y s
X s

b s

a s

k
k

k

M

k
k

k

N( ) ( )
( )

= = =

=

∑

∑
0

0

. 

• If the ROC is unknown, then there may be many different
impulse responses h(t) for the differential equation. 

• If the differential system is causal, i.e., h(t) is causal, then 
the ROC is the right half-plane to the right of the rightmost
pole in the s-plane.  

ROC of H(s) and h(t)
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For a rational LT, its inverse LT is causal if and only if
its ROC is a right half-plane (recall inverse LT using
partial fractions). 
 
Differential LTI systems have rational transfer
functions. Thus, an LTI differential system is causal if
and only if the ROC of its transfer function is an open
right half-plane located to the right of the rightmost
pole.  

The causality and the ROC of an LTI 
differential system
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• Recall that an LTI system (including a differential LTI 
system) is stable if and only if the ROC of its transfer
function includes the jω-axis.  

 
Thus, a causal LTI differential system is stable if and only
if all the poles of its transfer function lie in the left side of
the  jω-axis. 

The stability of and LTI differential system
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For the case where a zero of the input cancels out an unstable
pole (call it p0, Re(p0)>0) in the transfer function, the
corresponding differential LTI system is still considered to
be unstable.  
 
 
• The reason is that any nonzero initial condition would

cause the output to either grow unbounded (if Re{p0}>0), 
oscillate forever (if p0 is pure imaginary), or settle down to
a nonzero value (if p0=0). 

If a zero cancels out a pole

s+p0 1/(s+p0)X(S) Y(s)
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Given that the input of a differential LTI system is
( ) 2 ( )tx t e u t−= , and that the output was measured to be

2( ) sin(2 ) ( ) ( )t ty t e t u t te u t− −= − .  
 
Find the transfer function H(s) of the system and its ROC,
and determine whether the system is causal and stable,  
 
This is a system identification problem, studied here in its 
simplest, noise-free form. 

Example 1: System Identification 
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2( ) , Re{ } 1
1

X s s
s

= > −
+

 

 

2 2 2

Re{ } 2 Re{ } 1

2 2

2 2

2

2 2

2 1( )
( 2) 2 ( 1)

(2 4 2) ( 4 8) , Re{ } 1
( 4 8)( 1)

6 , Re{ } 1
( 4 8)( 1)

s s

Y s
s s

s s s s s
s s s

s s
s s s

>− >−

= −
+ + +

+ + − + +
= > −

+ + +

−
= > −

+ + +

1442443 14243

 

The LTs of input and output signals



H. Deng, 
L20_ECSE306

10

Then, the transfer function is simply 
2

2 2

2

6
( ) ( 6)( 6)( 4 8)( 1)( )

2( ) 2( 4 8)( 1)
( 1)

s
Y s s ss s sH s
X s s s s

s

−
− ++ + +

= = =
+ + +

+

 

 
To determine the ROC, first note that the ROC of Y s( )  should 
contain the intersection of the ROCs of H s( )  and X s( ) . 

The transfer function of the LTI system
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The ROC of H(s)

ROCx

ROC2

R
O
C3

ROC1
-2 -1 Re{s}

Im{s}

There are 3 possible ROCs for H(s):

ROC1: an open left half-plane to the left of Re(s)=-2;

ROC2: an open right half-plane to the right of Re(s)=-1;

ROC3: a vertical strip between Re(s)= -2 and Re(s)=-1.

Since the ROCs of X(s) and Y(s) are right half-planes, the only 
possible ROC for H(s) is ROC2. The system is stable and causal.
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Suppose we know that the input of a differential 
LTI system is  

x t e u tt( ) ( )= −3
, 

and the output is  
)()()( 2 tueety tt −− −=  

Example 2
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We can deduce the transfer function as follows. First take
the Laplace transforms of the input and output signals:

X s
s

s( ) , Re{ }=
+

> −
1

3
3

Y s
s s

s( )
( )( )

, Re{ }=
+ +

> −
1

1 2
1.



H. Deng, 
L20_ECSE306

14

Then, the transfer function is simply

H s Y s
X s

s s

s

s
s s

s
s s

( ) ( )
( )

( )( )
( )( )

= = + +

+

=
+

+ +
=

+
+ +

1
1 2

1
3

3
1 2

3
3 22

X s( )
H s( )

Y s( )
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To determine the ROC, first note that the ROC of Y(s) 
should contain the intersection of the ROC's of H(s) and 
X(s).  
There are three possible ROC's for H s( ) :  
(a) an open left half-plane to the left of s = −2 ,  
(b) a strip between s = −2  and s = −1 , and  
(c) an open right half-plane to the right of s = −1 .  
 
But since the ROC of Y(S) is an  open right half-planes, 
the only possible choice is (c).  
Hence, the ROC of H(s) is Re{s}>-1, and it follows that 
the LTI system is causal and stable. 
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Remark:  
It is customary to refer to the set { : Re{ } 0}s s ≥  as the right 
half-plane (or to { : Re{ } 0}s s >  as the open right half-plane) 
 
and to  
 
{ : Re{ } 0}s s ≤  as the left half-plane (or to { : Re{ } 0}s s <  as 
the open left half-plane.) 

In Boulet’s book, the “right half-plane” may contain {s: σ0< Re{s} <0}, 
and the “left half-plane” may contain {s: 0< Re{s}< σ0}.
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Recall the differentiation property of the unilateral 
Laplace transform:  

If x t s s( ) ( ),↔ ∈
UL

X ROC , then  
dx t

dt
s s x s( ) ( ) ( ),↔ − ∈ ⊇−

UL

X 0 ROC ROC1 .  

 
1

1

2

2
1 )0()0(...)0()()(

−

−−

−

−−
−− −−−−↔ n

n

n

n
nn

n

n

dt
xd

dt
xdsxsss

dt
txd

X

Analysis of  LTI Differential Systems With Non-zero Initial 
Conditions Using the Unilateral Laplace Transform 
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Consider the system described by 

  
d y t

dt
dy t

dt
y t dx t

dt
x t

2

2 3 2 3( ) ( ) ( ) ( ) ( )+ + = +  

and with initial conditions 
dy

dt
y( ) , ( )0 2 0 1

−
−= = . Suppose 

that this system is subjected to the input signal  

  x t e u tt( ) ( )= −5 . 

What is the output of the system? 

Example 3
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Take the unilateral Laplace transform 
2 (0 )( ) (0 ) 3 ( ) (0 ) 2 ( )

( ) (0 ) 3 ( )

dys s sy s s y s
dt

s s x s

−
− −

−

⎡ ⎤
⎡ ⎤− − + − +⎢ ⎥ ⎣ ⎦

⎣ ⎦
= − +

Y Y Y

X X
 

Note that x( )0 0− = , X ( ) , Re{ }s
s

s=
+

> −
1

5
5  , then 

( )( )

( )( )

22

2

2

109 1
3 62

3 5( ) , Re{ } 1
3 23 2 5

11 28 , Re{ } 1
3 2 5

1 2 5

s ss s
s ss s s

s s s
s s s

s s s

+ +
= + > −

+ ++ + +

+ +
= > −

+ + +

= − −
+ + +

Y
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Taking the inverse Laplace transform of each term, we 
obtain 
 

)(]
6
1

3
10

2
9[)( 52 tueeety ttt −−− −−=

  



Lecture 21

Applications of LT
1. Zero-input response
2. Zero-state response
3. Transient response
4. Steady-state response

ECSE 306 - Fall 2008
Fundamentals of Signals and Systems

McGill University
Department of Electrical and Computer Engineering

October 24, 2008

Hui Qun Deng, PhD



H. Deng, 
L21_ECSE306

2

Consider the system described by 

  
d y t

dt
dy t

dt
y t dx t

dt
x t

2

2 3 2 3( ) ( ) ( ) ( ) ( )+ + = +  

and with initial conditions 
dy

dt
y( ) , ( )0 2 0 1

−
−= = .  

If the input signal is x t e u tt( ) ( )= −5
, then the Unilateral

LT of the output of the system is (see last lecture): 

( )
2 2

zero-state resp. zero-input resp.

(0 )(0 ) 3 (0 )3 ( )
( )

3 2 3 2

dysy ys s dts
s s s s

−
− −+ ++

= +
+ + + +

X
Y

14243 14444244443

Example 
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The response of a causal LTI differential system with non-zero 
initial conditions (i.e., y(n)(t=0-)≠0) and a non-zero input can be 
viewed as the sum (superposition) of a zero-state response and a
zero-input response.  
For the above example,  

( )
2 2

zero-state resp. zero-input resp.

(0 )(0 ) 3 (0 )3 ( )
( )

3 2 3 2

dysy ys s dts
s s s s

−
− −+ ++

= +
+ + + +

X
Y

14243 14444244443 y(t)=yzs(t)+yzi(t) 

Zero-Input Response and Zero-State Response 

1,...0,)0(,)(

1,...0,,)()(

1

1

−=
=

==

−==+=

−

=

=

∑

∑

Nn
dt
tydoffunctionCeCty

Nn
dt

offunctionBtDxeBty

n

n

i

N

i

ta
izi

ni
i

ta
izs

i

i
)0( = +tyd nN

yzs(t) is obtained under zero-initial conditions y(n) (t=0-)=0 using methods 
in Ch3.

ai is a root of the characteristic polynomial of  Eq. (3.31).



H. Deng, 
L21_ECSE306

4

Recall CH3: The complete solution of an LTI differential Eq. is 
y(t)=homogeneous solution ytr(t)+ particular solution yp(t) 

1,..0),0(,)( )(

1

−=== +

=
∑ NnyoffunctionAeAty n

i

N

i

ta
itr

i

 
ComplexKtKxyp ∈= ,)(  

The homogeneous response (natural response) of a causal, 
stable LTI differential system is called transient response. 
The particular solution corresponding to a constant or
periodic input is called steady-state response (or forced 
response).  
A stable system is said to be in steady-state if the transient component 
of the output has practically disappeared. 

Transient and Steady-State Responses of LTI 
Differential Systems 
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Relationship among transient, steady-state, 
zero-state, zero-input responses

Total response = transient response + steady-state response

Total response = Zero-input response + Zero-state response

Transient response 1 Transient response 2

+ Steady-state response

Transient response = Zero-input response + Zero-state response 

- Steady-state response
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For a causal, stable LTI system, a partial fraction 
expansion of the transfer function according poles allows 
us to determine  
• Transient response (the terms with the system poles) 
• Steady-state response (the terms with the input poles) 

Transient and Steady-State Analysis 
Using the Laplace Transform 
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For example, consider the step response  

s t u t e u tt( ) ( ) ( )= − −5 .  

The transient part of this response is the term e u tt−5 ( ) , and 
the steady-state part is u t( ) .  

Example 1: identify transient and steady-state 
responses
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Assume that a causal LTI differential system is subjected
to the input signal x t t u t( ) sin( ) ( )= ω 0 , and the resulting 
output is  

y t t u t e t u tt( ) sin( ) ( ) cos( ) ( )= − + +−2 20
2ω φ θ . 

 
Then, the transient response of the system to the input is: 

 e t u tt− +2 2cos( ) ( )θ   
and the steady-state response is 

 2 0sin( ) ( )ω φt u t−   
 

Example 2:
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Consider the step response 

( )

{ { {

2

Re{ } 1 Re{ } 2 Re{ } 0

3( ) , Re{ } 0
3 2

1 2
s s s

sY s s
s s s

A B C
s s s

>− >− >

+
= >

+ +

= + +
+ +   

The steady-state response corresponds to the last term  C
s , 

which in the time-domain is Cu(t).  
The other two terms correspond to the transient response 
Ae u t Be u tt t− −+( ) ( )2

. 

Example 3: the transient and steady-state 
responses in the step response
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The transfer functions and frequency responses of LTI
systems are obtained with zero-initial conditions, and thus 
give us the steady-state response. 
 
Step response: We can apply the final value theorem to 
determine the steady-state component of a step response. In 
general, this component is a step function Au t( ) . The "gain" 
A is given by: 

A sH s
s

H
s

= =
→

lim ( ) ( )
0

1 0  

Transfer functions and steady-state 
responses
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For x t Ae j t( ) = ω 0 , the steady-state response is 

( )0 00 ( )
0 0( ) ( ) ( ) j t H jj t

ssy t H j Ae H j Ae ω ωωω ω +∠= =  

Response to a periodic exponential 
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If the input signal is pure sinusoidal x t A t( ) sin( )= ω 0 , then 
the steady-state response of the system can be obtained 
from the frequency response H(jω) of the system: 

( )

0 0

0 0 0 0

0 0 0 0

0 0

( ( )) ( ( ))
0 0

( ( )) ( ( ))
0 0

0 0 0

( ) ( ( ) ( ) )
2

( ( ) ( ) )
2

( ( ) ( ) )
2

( ) sin ( )

j t j t
ss

j t H j j t H j

j t H j j t H j

Ay t H j e H j e
j

A H j e H j e
j

A H j e H j e
j

H j A t H j

ω ω

ω ω ω ω

ω ω ω ω

ω ω

ω ω

ω ω

ω ω ω

−

+∠ − −∠ −

+∠ − +∠

= − −

= − −

= −

= + ∠

Steady response to a sinusoidal input 
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Important application:  
Steady-state analysis of circuits at a fixed frequency, e.g., 60
Hz.  
 
For example, if a circuit is described by its impedance Z(jω), 
then its steady-state response to a 60 Hz sinusoidal current is 
characterized by the multiplication of the complex amplitude 
of the current and the complex number Z j( )2 60π . 
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Again, the frequency response of the system gives us the
steady state response to a periodic signal admitting a Fourier

series representation. For x t a ek
jk t

k

( ) =
=−∞

+∞

∑ ω 0 , the steady-

state response is 

y t H jk a ess k
jk t

k

( ) ( )=
=−∞

+∞

∑ ω ω
0

0 .  

Response to periodic signals
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Example 4: application of unilateral 
LT in Circuit Analysis

E
E C

R

2

1

vc(t)

When t<0, the switch is connected at 1, and the state of the 
system is steady. At t=0, the switch is turned on 2.  

Derive vc(t) and vR(t).

vR(t)
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Step 1: Write the equation about vc(t)

0,)()(
≥=+ ttEuv

dt
tdvRC c

c

Step 3: Apply unilateral LT on the above differential Eq.

Step 2: Identify the initial condition at t=0-:  vc(t=0-)=-E

)1(

)1(
)(

)()]0()([

RC
ss

s
RC

E
sV

s
EsVvssVRC

c

ccc

+

−
=

=+− −
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Step 4 and 5: Do partial fraction expansion and 
inverse LT

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
−=

+

−
=

RC
ss

EsV

RC
ss

s
RC

E
sV

c

c

1
21)(

)1(

)1(
)(

)()21()(
1

tueEtv
t

RC
c

−
−=

Step 5: Inverse LT

Step 4: Partial fraction expansion

)(2)()()(
1

tuEetvtEutv
t

RC
cR

−
=−=

And 
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Example 5 (in class)

E C

R

2

1

vc(t)

vR(t)

When t<0, the switch is connected at 1, and the state of the 
system is steady. At t=0, the switch is turned on 2.  

Derive vc(t) and vR(t).
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