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The Responses of LTI Systems to
Complex Exponential Signals

Complex exponentials of the type cz" and Ae®™ remain
basically invariant under the action of time shifts and
derivatives.

The response of an LTI system to a complex exponential input
IS the same complex exponential with only a change In
(complex) amplitude:

Continuous-time LTI system: &" — H(s)e”
Discrete-time LTI system: Z' — H(z)z"

where the complex amplitude factors H(s), H(z) are functions
of the complex variable s or z.
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Eigenfunctions of LTI Systems

_ASt
Input signals like XLN] = 2" and X(t) =e¢
are called eigenfunctions of LTI systems.

Fact: the response of an LTI system to such a signal is
the input signal multiplied by a complex constant.

The complex gains are the system's eigenvalues
corresponding to the eigenfunctions.
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Eigenfunctions of CT LTI systems

et the impulse response of an continuous-time LTI
system be h(t). Then the response of the system to et Is:

y(t) = j: h(z)x(t-7)dr = f; h(r)e*"dr
_s _“; h(r)e*"dz = H(s)e®

The system's response has the form y(t) =H(s)est

Thus est is an eigenfunction of an LTI system.

H. Deng 4
L10_ECSE306



Eigenfunctions of DT LTI systems

Let h[n] be the impulse response of a discrete-time LTI systems. Its
response to a complex exponential z" is:

y[n] = f h[K]X[N — k] = f h[k]z"™

K=—0o0 k=—o0

=7" i h[k]z™

k=—o0

The system's response has the form y[n] = H(z)z", where

H(z) = ih[k]z‘k.

k=—o0

Thus, z"is an eigenfunction of DT LTI systems.
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Harmonically-Related Complex Exponentials

Recall: periodic signals satisfy x(t)=x(t+T), - <t <+
for some positive value of T. The smallest such T Is
called the fundamental period of the signal, and its

fundamental frequency Is defined as a)ozzT—”

(radians/s).

Note: the signal x(t) Is entirely determined by its values
over one fundamental period T.

Also recall: harmonically-related complex exponentials
have frequencies that are multiples of @,:

P (1) = ghoot Kk =0+1+2...
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The orthogonal property of harmonics

Recall: Harmonically related signals are orthogonal over
the fundamental period:

27 *

| 8, (0) 4, ()t = [0 Mo Mt = S 27
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Example of harmonics

Each one of these periodic signals has a fundamental frequency that is a
multiple of o, .

Let's have a look at the imaginary part of ¢, (t) for k =0,1,2 and T =1
second.

Im{g,(1)}=0 t Im{g, (1)} =sin(4xt) Im{g,(1)} = sin(2xt)

A
ENNYRTNVARR
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A linear combination of harmonics

A linear combination of the complex exponentials #x (1) is
also periodic with fundamental period T:

K(—)t
J(T)

+00 )
X(t)= > ae’™ = > ae
k=—c0 k

=—00

The two terms with k= =1 in this series are collectively called
the fundamental components or the first harmonic components
of the signal.

The two terms with K = =2 are referred to as the second
harmonic components (with fundamental frequency 2®,), and
more generally the components for k =+N are called the N™
harmonic components.
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Example 4.1: Consider the periodic signal with
fundamental frequency w, = z/2 rad/s

made up of the sum of five harmonic components:

5 jkZt
X(t)=> ae 2,
k=-5

a, =0, a,, =-0.2026, a,, =0,
a,, =-0.0225, a,, =0, a,, =-0.0081
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Collecting the harmonic components together, we obtain

o,

. TT _'Z 3_72_ 5_7[
X(t) =-0.2026(e'2 +e '2)—~0.0225(' 2 +& ' 2 )—0.0081(e 2"

=—-0.4052 cos(%t) —0.0450 cos(%zt) —0.0162 cos(%rt)

H. Deng
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Representing periodic signals using
Fouriler series
Most engineering periodic signals can be represented using

a linear combination of harmonically related complex
exponentials:

. 2T
yo act k(Z )t 4.7
K= aek = Sa e @0
k=—00 K=—00
1 o1 | 1 T - k(ZEt
her i ~Jkapt gy~ T 4.8
where  a, = [ x(tye *dt = [ xte T dt (4.8)
T2
Wy

(4.7) 1s referred to as the Fourier representation of periodic signals, and
as the synthesis equation. (4.8) is referred to as the analysis equation.
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The Coefficients of Fourier Series for a
Continuous Time Periodic Signal

The coefficient of the Fourier Series Is obtained by

considering the orthogonality of harmonics.
T T

j x(t)e "'dt = j i a e le " gt
0 0 k=-

+00 T
=) a Ie‘k“’ote“”%tdt =Ta,
k=—00 0

Therefore, the nt" coefficient of the Fourier series is:

1 Cinotae LT -t
2, == jo (e " dt = jo x(t)e
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Representing a signal In the time-domain
and the frequency domain

The Fourier series (4.7) gives us a time-domain
representation of the signal as a sum of periodic complex
exponential signals.

The Fourier series coefficients a, (4.8) give us a frequency-
domain representation or the spectral coefficients of the
signal. Each of these complex coefficients measures how
much the corresponding harmonic component of a given
frequency contributes to the signal x(t).

The coefficient a, Is the dc component of the signal.
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Properties of Continuous-Time
Fourler Series

The set of spectral coefficients {a },~ = determines X(t) completely. The
duality between the signal and its spectral representation is denoted as

FS
X(t)<—>ak. The following properties of the Fourier series are easy to show
(do it as an exercise.)

Linearity

The operation of calculating the Fourier series of a periodic signal is linear.

FS FS
For X(t)«<>a, Yy(t)<>b, if we form the linear combination
2(t) = Ax(t) + By(t), then we have

FS
2(t) <> Aa, + Bb, .
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Time Shifting

Time shifting leads to a multiplication by a complex exponential. For
X(t) <F—S> a,,
FS et
X(t—t,)«<>e "a

Remark: The magnitudes of the Fourier series coefficients are not
changed, only their phases.
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Time Reversal

Time reversal leads to a "sequence reversal' of the
corresponding sequence of Fourier series coefficients:

FS
X(—t)<>a_,.

Interesting consequences:

e For X(t) even, the sequence of coefficients is also even
(a, =4a,)

e For X(t) odd, the sequence of coefficients is also odd

(a_k — _ak)

H. Deng 18
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Time Scaling

Time scaling applied on a periodic signal changes the fundamental
frequency of the signal (but it remains periodic "with the same
shape".) For example x(at) has fundamental frequency aw, and

.l . : .
fundamental period —. The Fourier series coefficients do not change:
o

FS
X(at) > a,,

but the Fourier series (the synthesis equation) itself has changed as the
harmonic  components are now at the  frequencies
taw,, t2aw,, t3aw,,...
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Multiplication of Two Signals

Suppose that X(t) and Yy(t) are both periodic with period T .

FS FS
For x(t)<>a,, y(t)<>Db, , we have

KOV Y ab, .

l.e., a convolution of the two sequences of spectral
coefficients!
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Conjugation and Conjugate Symmetry

Taking the conjugate of a periodic signal has the effect of
conjugation and time reversal on the spectral coefficients.

X (1)«>a —«

Interesting consequences:

e For X(1) real, the sequence of coefficients is conjugate
symmetric (a_, = a@'«). This implies
\a_k\ = \ak\, phase(a_, ) = —phase(a, ), a, € R,

Re{a_ }=Re{a }, Im{a_ }=-Im{a }
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The Fourier series of a real signal

For a real signal X(t), we have @, =a,". Let 8 = Ae'*, A 4, eR.
Then we have a real form of the Fourier series:

X(t) = Zakejkcoot =a, +Zake ket a,’ o koot
k=—c0 k=1
=8+ 2Refae’"}
k=1

=a,+2> A coskat+6,)
k=1

H. Deng 22
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The Fourier series of real even/odd signals

e For X(t) real and even, the sequence of coefficients is also
realand even (a_, =a, € R)

e For X(t) real and odd, the sequence of coefficients is also
real odd (a_, = —a’"« purely imaginary )

e For even-odd decomposition of the signal
FS FS
X(t) — Xe (t) T Xo (t)’ Xe (t) <~ Re{ak}’ Xo (t) <~ J Im{ak}
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Graph of the Fourier Series Coefficients:
The Line Spectrum

The set of complex Fourier series coefficients {a },~ of a

signal can be plotted with separate graphs for their magnitude
and phase.

The combination of both plots is called the line spectrum of the
signal.

H. Deng 24
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Example

Periodic “sawtooth” signal.

The fundamental period is T =1s; hence
w, = 27 rad/s. First, the average over one period
(the DC value of the signal) is 0, so a, =0.

A

x(1)
\ : \ R ;"
_1/2\_1 1/2\]1 ~,
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1

_ l — jk 27t
a, = ?jx(t)e dt

0
1

j (1- 2t)e 2 gt

0

1 1
= 1-2t)e 2™ | — —— | e *?"'dt (integration by parts
szﬂ[< ye ket ] mj (integ Y parts)
~0
1 1 1
jk2z k27 jkx
_ -l
K
H. Deng
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Consider the Fourier series coefficients of the
sawtooth signal.

Their magnitudes are given by |a,| =ﬁ,
7T
k=0, and |a,|=0, and their phases are given
—Z, k>0
by La, =+ 2 and Za, =0

H. Deng
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Periodic even rectangular wave

Consider the following periodic rectangular wave of
27

fundamental period T and fundamental frequency @, = =

s x()
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FS coefficients of an even rectangular wave

DC value: a, =%.

T
== j x(t)e Fetdt == j g et gt
T 3, —tO
_ 1 |:e—jka)ot:|t0 _ 1 (e—jka)oto _ejka)oto)
JKaw, T b JKaw, T
_ 2 (el e ) 2sin(kagt,)
Ko, T 2] Kaw, T
sm(nkZTt j
= k=0
7K

The FS coefficients of even and real rectangular

wave signals are also real and even.
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The sinc function: sinc(x)=sin(zx)/ zx

The real continuous "sinc' function is defined as
Sin zx

sinc(X):=

Sinc function 1s one at x=0, and IS zero at x= +1, +2, +3,

sinc(X) N
1
~—723 _2\/_1 1\/2 3I—"
X
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The duty cycle of a rectangular wave

The duty cycle of the rectangular wave is defined as

2t

77-2?.

The spectral coefficients of an even rectangular wave are
then

Sin(ﬂthoj
2t, T 2t sinc(k_lz_toj

W=7 Tk2t,
T
= nsinc(k7)
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Fora 50% duty cycle, thatis, n = L:

y 2
sin(—x)
a, =nsinc(kn) :%sinc(g) :% kz

— T

_;é__i7-.6-g-21|-.2-1 15|E5I6"§_’k
What does a negative frequency mean?
For a 60Hz square wave, the 60 Hz component is:
ae’™ +a e ' =2a, cos(at)

The power of other harmonic components? --- Assignment 4
H. Deng, L11 _ECSE306



The harmonic components of a periodic
rectangular wave and its duty cycle

The shorter the duty cycle is, the wider are the lobes of the
spectral coefficients, the more coefficients we get in each
lobe—> the more harmonic components In a bandwidth.

a (1=

0.125

E.g., a periodic rectangular wave has a fundamental frequency f,=100
Hz, and a duty cycle n=0.01. Then, there are O, 1st .., 99t harmonic
components in the bandwidth 0-100 f, Hz.

H. Deng, L11_ECSE306 7



Approximating a periodic signal using
finite sum of harmonic exponentials

Let us approximate a periodic signal with a finite sum of
exponentials (a truncated version of the infinite sum).

+N
Xy(t):= D ae’
k=—N

What coefficients can make the "best" approximation?

Examine the approximation error:

ey (1):= x(t) — x (t) = x(t) - % akejkcoot

H. Deng, L11 _ECSE306



The energy of the approximation error In
one period

+N
(x(t)— Z ake‘k“’Otj[x* VEDS ak*e‘k‘”‘)tjdt
k=—N
T/ +N _ +N _
x(t)x* (t)dt + _[ ( > ake‘k“’otj[ > an*e‘”“’("jdt
0 \k=—N n=—N
T +N _ T +N _
- j X(t) Z ae k' dt - j X" (t) Z a, e’ dt

)
= [|x)[" dt + Z Z aa, j gkt it Z a, j x(t)e K dt
0

k=—N n=
)
- Z a, j X" (t)e ! dt
T ’ +N T _ +N T _
= [|x@[ dt+T Z aa’ - Y a [xedt- Y a [x (t)e’dt
0 k=—N 0 k=—N 0
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The energy of the approximation error In
one period

Denote the coefficients in rectangular form:

a, =a,+ b
Then the error energy Is

+N

By =[O dt+T S @ + 82~ 3 (@~ i8] xe e

+N T _
- 2 (@ + iB)] X (e dt
k=—N 0

+N +N T
X dt+T > (@2 + B -2 «, Re{jx(t)ejk%tdt}
k=—N k=—N

0

~2 % B, Im{jf x(t)ejk“’Otdt}

0

H. Deng, L11 _ECSE306 10



The optimal coefficients of the finite sum
of harmonic exponentials

The coefficients minimizing the error energy can be obtained
by taking partial derivatives of the error energy and setting
them to zero:

OE,,
oq,

N N |
=2T Yo, -2 R{ jOT x(t)e kgt = 0
k=—N k=—N

The coefficient satisfying the above equation is then:

a, = Re{ jOT x(t)e kgt

H. Deng, L11_ECSE306 11



The FS coefficients minimize the
approximation error energy

Similarly, minimizing the approximation error energy with
respect to B, yields

f=Im{[ x(t)e " dt}

Thus, the complex coefficients minimizing the approximation
error energy Is just the FS:

T ]
a, = jo x(t)e gt

H. Deng, L11_ECSE306 12



The difference between a signal and its FS

representation

Now If the signal x(t) has a Fourier series representation,
then the approximation error energy is zero as N tends to
Infinity.

lim{] () —x, (©) " dt} =0

The Fourier series of a signal converge in the sense that the power in the
difference between the signal and its Fourier series representation
approaches zero.

H. Deng, L11 _ECSE306 13



Existence of a Fourler Series Representation

What classes of periodic signals have Fourier series
representation (i.e., the FS coefficients a, are finite)?

One that does is the class of periodic signals with finite
energy over one period , I.e., signals satisfy

[ 1% dt <oo

H. Deng, L11_ECSE306 14



Another broad class of signals that have Fourier series
representation are signals that satisfy the Dirichlet
conditions.

Such a signal equals i1ts Fourier series representation,
except at iIsolated values of t where x(t) I1s discontinuous
(e.g. finite jJumps). At these t values, the Fourier series
converges to the average of the values on either side of
the discontinuity.

If a signal Is continuous very where, then its FS converges
and equals the original signal at any value of time t.

H. Deng, L11 _ECSE306 15



Dirichlet Conditions

Condition 1: Over any period, must be absolutely integrable, I.e.,
T
jo | x(t)dt < oo

Condition 2: In any finite interval of time, x(t) must be of bounded
variations. This means that must have a finite number of maxima and
minima during any single period. A signal not satisfying this
condition Is: )

X(t) = sin(T”)

Condition 3: In any finite interval of time, x(t) has a finite number of
discontinuities. Furthermore, each of these discontinuities is finite.

Note: Engineering signals generally satisfy Dirichlet conditions and the convergence
of FS can be guaranteed.

H. Deng, L11 _ECSE306 16



Gibbs Phenomenon: a discontinuous
periodic signals Is different from its FS

let us compare a discontinuous periodic signal with its
truncated Fourier series.

This Is easy to do using Matlab:

Compute the spectral coefficients up to K==x7 (N=7),
and plot the real approximation to the rectangular wave

signal

+N _ 7
Xy ()= > ae’™ =a,+2) a, cos(ke,t)
k=—N k=1 ]

H. Deng, L11_ECSE306 17



The ripples In the FS representation of a
discontinuous signal

The graph over one period looks like this:
t X, ()

\/-:T1 T:l\/ ~ >
There are ripples in the truncated FS, especialfy close to the
discontinuities in the signal. The maximum peaks of these
ripples don't diminish even if we add more terms in the
truncated Fourier series! This phenomenon is called the
Gibbs phenomenon after a mathematical physicist who first
provided an explanation of this phenomenon.

H. Deng, L11 _ECSE306 18



The energy of the approximation error
For example, for N=19, the approximation gets closer to a
square wave but we can still see rather large ripples around
the discontinuities.

X3(1)

Since the signal x(t) satisfies Dirichlet conditions, x,(t) should be the
average value at either side of the discontinuous points for any large N
values.

H. Deng, L11 _ECSE306 19



The energy of the approximation error

As N grows larger, the peak amplitude doesn't diminish and
the first overshoot on both sides of the discontinuity remains
at 9% of the height of the discontinuity

However, as N approaches infinite, the energy In these
ripples vanishes because the area of the ripples approaches
zero. Also for any fixed time (not at the discontinuity), the

approximation tends to the signal value *n (&) = X(4) (this

Is called pointwise convergence). At the discontinuity for
time T, the approximation converges to half of the jJump.

H. Deng, L11 _ECSE306 20



ECSE 306 - Fall 2008

“ crical & Fundamentals of Signals and Systems
Aprter
Pheenng McGill University

Department of Electrical and Computer Engineering

Lecture 12
October 1, 2008

Hui Qun Deng, PhD

1. Impulse Train and its Applications

2. Parseval Theorem

3. Power Spectrum

4. Response of LTI Systems to Periodic Input Signals

L12 ECSE306



Periodic Impulse Train

It would be useful to have a Fourier series representation of an
Impulse train.

v(t) = i&(t —nT) |

N=—00

v(t)

H. Deng, 2
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Fourier Series of a Periodic of Impulse Train

_1 T/2 ket _]_
ak_?j_ma(t)e dt =
ak
A
1T
(I -
K

The spectrum of an impulse train is a real constant sequence.

H. Deng, 3
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Periodic signals as convolutions of the
Impulse train and time-limited signals

A periodic signal x(t) can be described as a convolution of a
single period of the signal with a train of impulses. Let

X(t), 0<t<T
X (1) =
1) {O, other

Then
X(t)

S St-nT) *x (1 :T S S(c—nT)x (t—7)dr

—o0 N=—o0

+00

i T&(r—nT)xT (t-r)dr =Y x (t—nT)

N=—00

H. Deng, 4
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h(t) = X, (t)

H. Deng,
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Application of the impulse train In
sampling

Sampling: The operation of periodically sampling a continuous-time
signal can also be conveniently represented by a multiplication of
an impulse train with the signal (more on this later.)

v(t) = i o(t—nT)

A X 4 y(t)
/\\ A 1((0)

o L4
\_/\/ t> o \‘\‘* ¢ ¢ *’ :
X(T)~e == 7

X(2T) x(3T)

H. Deng, 6
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Parseval Theorem

It can be shown that the total average power of a periodic
signal x(t) Is

©0)

SJIxOFdt=Yla,F

k=—o0

The average power in the k" harmonic component of x(t) is:
_ 1 JKagt 12 . 1 2 . 2
Po= [ lae™ [ dt=—[la [ dta|

Parseval Theorem: the total average power of a periodic signal
equals the sum of the average powers in all of its harmonic

components.

Note: P =P_ , and the total average power of the k™"
harmonic component of the signal is 2P,.

H. Deng,
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Example

Compute the total average power of the unit-amplitude square
wave with period T and 50% duty cycle.
We have already computed its spectral coefficients:

1 (k\
ak:§smc —

2 )
According to Paseval’s theorem, the total average power Is
P = i a |2 = i isinc£2 1 Zi 1sinc—2
S EL2 2] 4 4 2
2 sin kx|
1 1 . 1 1 o
= —+ — sinc—| = —+ —
4 2 kzgg, 4 2,155 | kx
2
1 1 2 1 1 1 2 |7
= —+ 2 = —+ 2[1+—+—+ }=—+ 2{
4 r 9 25 4 8

H. Deng,
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Now, we computer the total average power of the periodic
rectangular wave in the time-domain:

T/4
oot | ra-t(T.I)1
T 4 4) 2

—T /4

H. Deng, 9
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Power Spectrum

The power spectrum of a signal is the sequence of |ay|%,
l.e., the average powers of harmonic components.

For real periodic signals, the power spectrum is a real even
sequence as

‘a—k‘z =

2
%k
a \

2
= ‘ak :
Example: Power spectrum of the rectangular wave.

n=1/8

..... T
HDeng, -16 -8 8 16
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Physical meaning of negative frequency

Example X(t) = Asin(w,t)
x(t) = Asin(w,t) = Z—A_(ei”ot — gl
J

. A A
SO alz—jE, a_1=j5, a =0, k=+1

| >

-1 1 k
Negative frequency Is caused by the use of complex exponentials to
represent sin(ka,t) and cos(ka,t) signals. The actual component at ke, IS

2
a
|k|

0.25A2

Jka)ot — Jka)ot

ae " +a_e
H. Deng, 11
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Total Harmonic Distortion
x(1)

Assume that a signal of a pure sine A
wave is distorted. /\
How to measure the degree of ‘ T T v
distortion? \/ \/
| —A

Total harmonic distortion (THD):

400 5

2 la]

THD :=1004 | “2—— %
| el

THD means the RMS (root mean square) of all the harmonics
that “should not be there” divided by the RMS of the
fundamental component.

H. Deng, 12
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The Frequency Response of an LTI System

The response of an LTI system with impulse response h(t) to
a complex exponential signal e is

y(t) =ht)*e" = [ h(z)e"dz =e’|[ h(r)e~dr
=e*H(s)

For s=jew, the output is Y(t) = H(jo)e"

H(s) Is called the transfer function (or system function).
H(jw) 1s called the system's frequency response.

H. Deng, 14
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Remarks:

e “steady-state” means the system has been subjected to
the same input from time T = —o0_

e Thus there Is no transient response from initial
conditions in the output signal.

e Also If the system Is unstable, then the output would
tend to Infinity, so we assume that the system Is stable.

H. Deng, 15
L12 ECSE306



FS of the response of a LTI system to a
periodic signal

A periodic signal can be represented by a Fourier series
X(t) = iake"k“")t
By superpositio;:,_the response of an LTI system to x(t) Is:
y(t) = f:al<H(jk6c)())e)""“’ot
— .

Thus, the Fourier series coefficients of the periodic output
y(t) are given by
b, =a H(Jka,)

H. Deng, 16
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Example: A periodic rectangular wave is the input of an LTI
system

K

H(Jka,)

X(t) y(t)

H. Deng, 17
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Filtering

The responses of a system to different components
of a signhal are different. some components can be
amplified while some can be suppressed.

Filtering signals with an LTIl system involves the
design of a filter with a desirable frequency spectrum

H(jkwoo) that retains certain frequency components
and cuts off others.

H. Deng, 18
L12 ECSE306



Example:

Consider a filter with impulse response h(t) =e"'u(t) (a
simple RC circuit with RC=1). The frequency response of
this filter is:

1
1+ jo

H(jo)=[ e u(r)e " dr =

We can see that as the frequency Increase, the magnitude
of the frequency response of the filter decreases. In fact,
this filter is a low-pass filter (LPF).

H. Deng, 19
L12 ECSE306



Filtering a rectangular wave

The Input signal to the LPF is the rectangular wave, then

the output signal will have its Fourier series coefficients b,
given by

sin(ka,t,)
kz(l+ jkay,)’

b, =a H(jkay,)= k0

2t
by = 2,H (0) = =~
The reduced power at high frequencies produces an output

signal that's "smoother" than the input signal (remember
that discontinuities produce high frequencies).

H. Deng, 20
L12 ECSE306



y(t)

A

21
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Aperiodic wave as the limit of the periodic wave

F(0)
The periodic signal:

| } >
-1 —1, l, T 4

Now define a signal x(t) equal to the periodic signal over

one period and zero elsewnhere. o

The “single-period” signal: !

_to to

This aperiodic signal can be thought of being periodic with an
Infinite fundamental period T — +o0.
H. Deng, L13_ECSE306 2



The envelop of FS coefficients

The FS coefficients & of the periodic signal X(t) can be
obtained from the “single-period” signal X(t):

1 (rr2 ke 1 e ke
a, == j_me(t)e et = = [ x(tye et
Define:
X (jo) = f x(t)e Idt

Then, @ can be viewed as samples of X(j®) :

1 .
A = ? X(Jka,)

and X(Jw) can be viewed as the envelop of the a, sequence,
ey, dhe spestiad envelope of the periodic signal. 3



Periodic signal In term of its spectral
envelop

Now the periodic signal X (t) has the Fourier series
representation

R(t)=Y %x< koo, ekt

K=—c0

2T

Or, equivalently, since @, = ?

7(t) = Zi S X (jkap)e" o,
T K=

H. Deng, L13_ECSE306



Aperiodic signal in term of the spectral

envelop of its periodic signal
The periodic signal as a function of frequency:

X)) === 3 X (jkoy)e" " o,
7Z—k——oo
A_ST — +00  we get

o W, > dw

o K, > @
e the summation tends to an integral
o X(1) = X(t)

- 1 +00 - -,
x(t)—g_LX(Ja))e dw

H. Deng, L13_ECSE306



Fourier Transform pair

These two equations are called the Fourier transform pair.

Inverse Fourier transform of x(t):
X(t) = 1 X (jow)e' dw
27

—00

Fourier transform of x(t)

X (jo) = +fx(t)ej‘”tdt

—00

H. Deng, L13_ECSE306 6



Example: the Fourier series of a periodic
rectangular wave as T2

Consider the Fourier series representation of a periodic
rectangular signal X (t)

H. Deng, L13_ECSE306 7



The FS of the periodic rectangular wave

Multiplying the spectral coefficients of X(t) by T, and assuming that
to 1s fixed, we get

k2t
Ta, =Trnsinc(kn) = 2tosinc( . L j

A

Ta, n=0.5

—
4
7

y

/

7
-~ _—Tay 60)0 /T\\l 3, ‘J /‘ I
w,

-.-I«- _Sa)o \\J' T —a)o
—4a, AiRAd

\ .I\ 6@)0 7@0 _,
7; /4(00 Sa) ""I"Sa)
t,

>

\

Ly

e Note that the spectra is plotted against the frequency variable ka)0

. _ T
e The first zeros on each side of the main lobe are at frequencies @ = +—

t
0
H. Deng, L13_ECSE306



The effect of the period T on the FS of
periodic wave

As the period T increases, the frequency interval (o)

between adjacent harmonics degreases. As T—> oo, the
harmonics become continuous.

H. Deng, L13_ECSE306



Properties of the Fourier Transform:
Linearity

We denote the relationship between a signal and its
59

Fourier transform as X(t) <> X (Jw). Try to derive the
following properties as an exercise.

Linearity

The Fourier transform is a linear operation:

g

ax(t) + by(t) <> aX ( j) + bY (jw)

H. Deng, L13_ECSE306 10



Time Shifting

Time Shifting

A time shift results in a phase shift in the Fourier transform:

X(t—t,) e X (jo)

H. Deng, L13 ECSE306 11



Time/Frequency Scaling

Scaling the time variable either expands or contracts the
Fourier transform.

X(ozt)<—>i X(Jola)
]
For o >1, the signal X(at) is sped up (or compressed in

time), so its spectrum (Fourier transform) expands to higher
frequencies.

On the other hand, when the signal is slowed down (a <1),
the Fourier transform gets compressed to lower frequencies.

H. Deng, L13_ECSE306 12



Conjugation and Conjugate Symmetry

In general the signal Is complex, you can prove the FT of its

s X ()X (- jo)
If the signal is real, X"(t) = X(t) then
e the Fourier transform has conjugate symmetry:
X (Jo)=X(-]o)
o Re{X(Jw)}=Re{X(-]J®)}, an even function of @
o IM{X(J)}=-IM{X(-]J®)} anodd function of @
o | X(Jo)|=|X(—J®)| an even function of @
o ZX(Jw)=-2X(-]®) an odd function of @

H. Deng, L13_ECSE306 13



Even/odd signals and their spectra

If X(t) Is real and even, then you can show that
X(Jjo)=X(-]jo)=X"(jo),

l.e., the spectrum is even and real.

If X(t) is real and odd, we have
X(jo)=-X(-jo)=-X"(jo)
l.e., the spectrum is odd and purely imaginary.

H. Deng, L13_ECSE306
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Differentiation 1n the time domain

Differentiating a signal results in a multiplication of the
Fourier transform by Jo .

%x(t)ii joX (jo)

H. Deng, L13_ECSE306
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Integration in the time domain

Integrating a signal results in a division of the Fourier
transform by Jw . However, to account for the

possibility that X(t) has a nonzero average value, i.e.,

+00

X(jO):JX(t)dt;éO, we must add the term

—00

X (0)o(w) to the Fourier transform. That is, a finite

energy concentrated at @ =0 is represented as an
Impulse at that frequency.
t 55 1 _
jx(f)dr<—>j—X(Ja))+7zX(O)5(a))
0,

—00

H. Deng, L13_ECSE306 16



Convolution In the time domain&<—->
multiplication in the frequency domain

The convolution of two signals results in the multiplication of
their Fourier transforms in the frequency domain.

X() * y(1) <> X (jo)Y (jo)

A direct application is the calculation of the response of an LTI
system to an arbitrary input signal:

Y(Jo) =H(jo)X(]o)
The output signal in the time-domain is obtained by taking the

Inverse Fourier transform of its spectrum.

H. Deng, L13 ECSE306 17



Multiplication in time domain €< -
convolution in the frequency domain

This property is the dual of the convolution property.
The multiplication of two signals in the time domain
results in the convolution of their spectra.

XY & — X (jo) *Y (jo)

27T

Modulation is based on this property.

H. Deng, L13_ECSE306 18



Example: Signal Modulation

Consider the modulation system described by
y(t) = cos(aw,t)x(t).

We'll see later that the Fourier transform of C(t):=coS(m,t) is

composed of two impulses of area 7, one at —@, and the other at @,.
Suppose that the spectrum of X(t) looks like this

v (o) s C(ow)
/\A\ Tﬂ' Tﬂ
> >
—, o, ) —), @, w

H. Deng, L13_ECSE306 19



Then the Fourier transform of the output signal looks like this

Y(jo) = %{ C(jo)* X (jo)

Hence multiplication of a signal by a sinusoid shifts its spectrum to
another frequency band (it also creates a mirror image in the negative
frequencies) for easier transmission over a communication channel. For
example, music (bandwidth less than 20kHz) transmitted over typical
AM radio has modulation frequencies in the range 500kHz to 1500 kHz.

H. Deng, L13_ECSE306 20



The energy-density spectrum

The energy-density spectrum of an aperiodic signal X(t) is defined as

‘X (Ja))‘2 . We can find the energy of a signal in a given frequency band by
integrating:
1 “F .2
E ——j\X(Jw)\ dw
T

[a)a ’a)b] o
Wy

H. Deng, L13_ECSE306 21



Note that for real signals, it is customary to include the negative
frequency band as well.

For example, if we wanted to compute the energy contained in a real
signal between, say, 5kHz and 10kHz, we would compute

1 [ 200007 o ~100007 -
E1100007,2000071 = o J ‘X (Jw)‘ deo + j ‘X (Ja))‘ do
| 100007 200007 _
1 200007 ,
S j X (jo)| de

4 10000

H. Deng, L13_ECSE306 22



Parseval's Relation

The total energy In an aperiodic signal is equal to the total
energy In Its spectrum.

o0 1 o0 .
| Ix@F de=—=[ [X(jo)[ do

H. Deng, L13_ECSE306 23



ECSE 306 - Fall 2008

“ ctrical & Fundamentals of Signals and Systems
\ Aprter
BROCITE McGill University

Department of Electrical and Computer Engineering

Lecture 14

Hui Qun Deng, PhD
October 6, 2008

1. Parseval’s relation
2. Examples of FT
3. Some notes on the midterm 1

H. Deng,

L14 ECSE306



Parseval's Relation
00 1 0 _
I_wl X(t) |2 dt = E-“_wl X (JC{)) |2 dw (5.21)

Note |X(jw)|? is the energy density spectrum of x(t).

Eg. (5.21) means the total energy in the time domain= the total
energy in the frequency domain.

Prove: [ |x P dt= [ xyx@dt =" ><(t)[2i [ X(jo)e daldt

=[x ()| x(e “dtlde

:Z._

_ L P X(jw)X (jo)de
27 I

- [ IX(jo) do
H. Deng, T 2
L14 ECSE306




The FTs of o(t) and o'(t)

F{5(t)}= fwa(t)e—iwtdt — ji 5(t)e’dt =1

ds(t)
dt

Fi— 3= JoF{o(t)}= o

H. Deng, 3
L14 ECSE306



FT of a rectangular signal

E|tl<z/2
0 |tl>c/2

The FT of the rectangular signal is:

H. Deng,
L14 ECSE306



FT of single-sided e

—at >
f=1% 20 4s0
0 t<O0

The FT of f(t):
F(jo) =" (e dt=["ee "t

o0 . 1 . o0
_ e—(a+ja))tdt _ e (a+ja))td a + 1= e—(a+ja))t
IO —(a+ Ja))I [H@+jel]= —(a+ jo) 0
1
a+ jo

The magnitude spectrum |F(jw)| and phase spectrum ZF(jw)| (in class)

H. Deng, 5
L14 ECSE306



Midterm 1 problems and beyond
Properties of signals and systems

Calculation of convolutions

Use of unit step function u(t)

Initial value of ha(0*)

Application of superposition property

System inter connection

Mathematical skills:

— Implementation of Egs.: correct, effective, efficient
— A language of calculation: expressive, understandable
Application skills

— Applications of learned theories/knowledge (mathematics,
physics, electricity, computer, signals and systems,...)

H. Deng, 6
L14 ECSE306



Physical meanings of t and zin the convolution

Xt)*h(®) = x(@h(t-r)dr=[ x(t-r)h(r)dz

x[n]*hin] = > x[KIhIn —k] =" x[n—k]h[K]

 t (orn): the time when the input and output are observed
e 7(ork): how long prior to t (or n)

h(t-7)
x(7)

H. Deng, 7
L14 ECSE306




An implementation of the DT convolution

X(n)

X(n-1)

. x(n)h(0)

X(Nn-2)

x(n-K)

. x(n-1)h(1)
. x(n- 2)h(2)\

/ (n)
— X(N- k)h(k)

L14 ECSE306

—— x(n-N)h(N)
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Example of the duality of FT pairs

The Fourier transform and the inverse Fourier transform have a
symmetric relationship. This results in a duality between the time
domain representation and the frequency domain representation of a
signal, e.g., between a rectangular signal and its FT:

A A
1 X, (1) FS 2T, X,(jo)
X, (1) o X, (jo) /\
> N\ _ . N >
'Tl Tl t \/_Tl Tl\/ o
4 A X, (jo)

X, (1) X, (jo) |1

H. Deng, 2
L15 ECSE306



Duality of FT palrs
X(t) €2X( w)
X(t) €2 27X(-o)

Denote the FT of x(t) as X (@)= LO X(t)e '"dt

— 1 % jot
The inverse FT: X(t) = ELO X(w)e"da

Assume a signal y(t) =X(t), what is the FT of y(t)?
Y (@) = f; X (t)e 1 dt = 27 X(-w)

This is because: x(t):ijoo X (Q)e™dO
27 ¥

K(o) = X(Q)e dO = if; X (t)e "dt

27T 4
H. Deng,
L15 ECSE306
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FT of two-sided et

e ™ t>0
f(t)= a>0
L {em t<0

Recall the time/frequency scaling property of FT
x(at);iﬁ X (jo! )
o

Rewrite f(t) as: f(t) = f(t)+ f,(-t)

e™ t>0
where fl(t):{o o 250
Then the FT of (t) is
F(jo)=F (jo)+F(jo)=— 41 22

at]o a-jo al+o

H. Deng,
L15_ECSE306
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FT of sgn(t)

sqn( t) = 1, t>0

: -1, t<0

L et f(t):{e 20 s
—e® ., t<0

The FT of f(t) is:
F(jo) = f f(t)e " "dt :—joeate“'“"dt+joooe‘ate“'“’tdt
2w
a’+ o’

Then the FT of sgn(t) is:

SGN (je) = lim F (j) = lim s (R
a—>0 8% + @ jo

H. Deng,
L15 ECSE306



FT of u(t)

U (jo) = F{%%sgn(t)}: F{%}% F{sgn(t)}

= 725((0)4—_i
Jw

H. Deng,
L15 ECSE306



FT of a constant

Given a signal x(t): x(t) =E, —wo<t<ow

The FT of x(t) can be derived according to the duality of FT pairs.

We know the FT of §(t) iIs a constant 1.

o(t) €21
Then according to the duality of FT pairs, we have
E <- 2E nd(w) see Appendix D

H. Deng, 7
L15 ECSE306



FT of the Complex Exponential

The Fourier transform of e u(t), a=a+ jB, a >0 is given by
(see Boulet’s book):

: 1
X(Jo)=-
jo+a
For the case a >0 real, the magnitude is
| X (jo) |=
j W+ a
' >
a a W

H. Deng, 8
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Case: a>0, real

The magnitude spectrum:

i 1
| X, (jo) I=‘ .
2 . jo+a

The phase spectrum:

H. Deng,
L15 ECSE306



Remarks

For the case where e ®u(t) is the impulse response h(t) of a first-
order differential LTI system:

e The system is a lowpass filter with DC gain of 1/a

e High frequencies in the input signal are attenuated

e The cutoff frequency of the filter is @, = a, where frequency
components of the input signal are attenuated by a factor

12

e The maximum phase added to the input signal is —7z/2 for
0 —> +00

H. Deng, 10
L15 ECSE306



Case: a Is complex

In the case a=a+ B, a>0,8>0, X,(Jw) can be obtained by
shifting the magnitude and phase of X,(jw):

1
(o+ f)+«a |

Note that this Is a shift to the left in the frequency domain, so the
magnitude and phase of X, (jw) are plotted as follows:

X,(Jo) = X, (J(@+ f)) =

1t X (jo)

H. Deng, 11
L15 ECSE306



Phase:

A mm n ——————————— ————————————————

H. Deng, 12
L15 ECSE306



FT of e@sin(wgt)
By the linearity and conjugation properties, we can write

X, (t) = & sin(w,t)u(t) = zi (e 10 (1) — gl i)ty (1))

39

&>
X. (jo) = 1 1 - 1
s\ _2j J(w-w)+a J(w+w,)+a

1 (j(a)+a)0)+a—[j(a)—a)o)+a]j

2J\ [J(@ =) +a]lJ(o+ o) +a]

W

B (jo+a)’ +a)§

H. Deng, 13
L15 ECSE306



Here the signal was real so we should get an even | X,(J®)| and an odd
X, (jw) .

H. Deng, 14
L15 ECSE306



o m mmm mm mm mm m— mn — — — ——————————

ZX4(Jo)

H. Deng,
L15 ECSE306
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Fourier Transform of a ""'Sawtooth"

Let's calculate the Fourier Transform of the sawtooth signal X(t)

‘Tl X(t)

\ ’
'Tl\ T1 I
_T1

H. Deng, 16
L15 ECSE306




X (jw) = f x(t)e It dt

—00

0 T
— j (=T, —t)e “'dt + j (T, —t)e J*dt
T, 0

_ j(Zsin(a)Tl) _2le

COZ 4,

H. Deng,
L15 ECSE306

17



The Inverse Fouriler Transform of an
Ideal low-pass filter

An ideal lowpass filter with cutoff frequency @ as given by its spectrum

_ 1, |k o,
H(ja)):{ .

0, |ol> o,

The corresponding impulse response is calculated:

0= [ Wioedo L | oo tsle T

c

: Sin(—ctﬂ)
SIN { i
— (@) _ Y 24 = % ginc| Let
it T ot T T

T
H. Deng, 18
L15 ECSE306



Thus the impulse response of an ideal lowpass filter is a (real) sinc function
extending from t = —c0 to t = 400

e
.
/A
\\_//‘\\\/ — >
T /A
o, o, t

H. Deng,
L15 ECSE306



Inverse Fourier transforms of rational functions

In the case when the Fourier transform is in the form of a rational
function of Jw (aratio of two polynomials).

e |t is much easier to perform a partial fraction expansion of the
Fourier transform, and then to identify each term in this
expansion using a table of Fourier transforms and their

corresponding time-domain signals.

e This method is usually preferred to obtain the output response
of a stable differential LTI system using the convolution

property.

H. Deng, 20
L15 ECSE306



Example: obtaining the response of a system
via Inverse FT

Consider the response of an LTI system with impulse response h(t) =e*'u(t),
(which meets the Dirichlet conditions) to the input X(t) = e"u(t).

Rather than computing their convolution, we will find the response by
multiplying the Fourier transforms of the input and the impulse response.

: 1 . 1
X(Jo)=- ,  H(lo)=-
Jo+3 Jo+ 2
. . : 1
Then, Y =X H = — _ .
(Jo) = X(Jo)H(]o) (013012
H. Deng, 21
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Inverse Fourier transform Step 1:
partial fraction expansion

The partial fraction expansion consists of expressing this transform
as a sum of simple first-order terms.

. 1 A B
Y(jo)=— _ = — + —
(Jo+2)(Jjo+3) (Jjo+2) (Jo+3)

The constants A, B can be determined by substituting values for

the frequency @ (e.g., 0) and to solve the resulting system of linear
equations.

H. Deng, 22
L15 ECSE306



Another easier technigue consists of applying the following procedure.

(1) Equate the transform with its sum of partial fractions, and let S= jo ;

1 __A B
(5+2)(s+3) (s+2) (s+3)

(2) To obtain A, multiply both sides of the equation by (S + 2) and
evaluate for S=—a.

1 AL (s+2)B
(s+3)|._, (s+3) |._,
= A= L =1
—2+3
H. Deng, 23
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Applying step (2) for the constant B, we obtain

1 _(s+3)A B
(s+2)._, (s+2)|__,
= B= L -1

—3+2:

H. Deng,
L15 ECSE306



Step 2: Inverse Fourier Transform of the
partial fraction expansion

Finally, the partial fraction expansion of the Fourier transform of
the output Is given by

11
(jo+2) (jo+3)

Using Table D.1 of basic Fourier transform pairs in the textbook,
we find that

y(t) =e'u(t) —eu(t).

Y(Jo) =

H. Deng, 25
L15 ECSE306
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Obtaining the responses of LTI systems
using FT

Obtaining the output of a stable LTI system with impulse
response h(t) and an input x(t):

e Method 1: convolution y(t)=x(t)*h(t)
e Method?2 : applying FT and the inverse FT
Y(Jo)=H(jo)X(]o)

_ L erviaein
y(O) =——[ Y(jo)e"do

—>

Y(jo)

X(jo) H(jw) |

H. Deng, L16_ECSE306



Frequency responses of connected LTI
systems

For a cascade of two stable LTI systems with impulse
responses h,(t), h,(t), we have

X (o) Y(jow)
> H,(Jo)r—» H,(Jo) >

Y(lo) =H,(Jo)H,(Jo) X(Jo)

H. Deng, L16_ECSE306



For a parallel connection of two stable LTI systems with
impulse responses h,(t), h,(t), we have

—1Hy(jo)
X(jo) L Yo

— >
+
—>

H,(jo)

Y(Jo)=[H,(Jo)+H,(jo)]X(]o)

H. Deng, L16_ECSE306



For a feedback interconnection of two stable LTI systems with
impulse responses h,(t), h,(t), we would have

Y(jo)
>

X(jo) + E(ja))>

H, ()
1+ H,(Jo)H,(jo)

H. Deng, L16_ECSE306
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The frequency response of an LTI
Differential System

Consider the stable LTI system defined by an N"-order linear constant-coefficient
differential equation initially at rest:

th MO d R x(t
;) Y()Z X()

k=

Assume that X (jw), Y(jw) denote the Fourier transforms of the input x(t) and
the output y(t) respectively. Taking FT on LHS and RHS of the Eg., and
applying the derivative property of FT, we have

Zak(jaJ)kY(J'w) = Zbk(jw)k X(Jo).

H. Deng, L16_ECSE306



The frequency response of a differential
system

The frequency response of the system Is given by:

H. Deng, L16_ECSE306



Example 1: Obtaining the step
response of a differential system

A second-order LTI differential system is defined by

d?y(t)  ,dy(t) _ax(t)
it +3T+2y(t)_ it X(t)

Suppose we want to obtain the step response of the system.

Step 1. Calculating the frequency response of this system by
taking FT on the two sides of the Eq.

[(jo)* +3jo+2]Y(jo)=(jo-D)X(jo)
Y(jw) jo-1
X(jo) (jo)*+3jo+2

H(jo) =

H. Deng, L16_ECSE306



Step 2: Obtain the FT of the step response

From Table D.1 and Lecture 15, we know the Fourier
transform of the step function is:

X(jw) :jiw+7z5(a))

From the convolution property of FT, the FT of the step
response Is:
jo—1 1

Y(Jo)=H(jo)X(jo)= (i) 13j0+2 o

)

- Josl 1)
[(jo) +3jo+2]jw 2

H. Deng, L16_ECSE306



Step 3: represent the FT of the response In
terms of partial fractions
Expanding the rational function on the right-hand side into
partial fractions.
Let s=jw, we get

s-1 s—1 _A+ B N C
[32+35+2]s (s+1)(s+2)s s s+1 s+2,

where the coefficients A, B and C are computed as follows:

. s-1 1 g Sl | _-2_, __s-1 _ 3
- (s+1)(s+2) S:O_ 2 - s(s+2) S:_l_ 1 s(s+1)|_, 2
: 1.1 2 3 1
Y =——|—+7mo(w)]|+ ——
Hence, (Je) 2[ja) (@)l Jo+l 2 jo+2

H. Deng, L16_ECSE306
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Step 4: Look up FT pair Table and obtain
the inverse FT of the partial fractions

2 3 1
jo+l 2 jo+2

Y(Jo) = —%[jiw+7z5(a))]+

In the TF pair Table (Appendix D), we find:

0(t) > =+ 75(0) e™u(t) <> ———, Re(a) <0
jo Jo—a

Then, the inverse FT of Y(jw) Is

1 —t 3 —2t
y(t)=[—§+2e —Ee Ju(t)

H. Deng, L16_ECSE306
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Remark: When M>N in differential equation, the

frequency response has a numerator polynomial with
higher order than the denominator polynomial.

ibmsm
N dn B N dm - H (S) _ mso
nz_(;an o V(O _r;)bm 7’0 > HGe) > Sas

H. Deng, L16_ECSE306
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Example 2

Consider the LTI differential system initially at rest described by

dy(t) d?x(t) dx(t)
: dt HyH = dt? dt

The frequency response of this system is given by
(jo)° —jo-2 _(jo-2)(jo+1) |
2(jw +05) 2(jw +05)

—2X(1).

H()o) =

H. Deng, L16_ECSE306
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Let S= jw and write H(S) as

2_ —_—
= 5" —5—2 = As+ B+ .
2(s+0.5) (s+0.5)

H(s)

Multiplying both sides by 2(s+ 0.5) , we can identify each coefficient.

s°—s—-2=2(s+05)(As+B)+2C=2As"+(A+2B)s+2C+B

s-s—2 1 3 5 1
Thus, H(s) = — 2522
2(s+05) 2 4 8(s+05)

H. Deng, L16_ECSE306
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Expanded frequency response:

.. 1. 35 1
H(Jo) =

o :
2 4 8(Jo+

Finally, the impulse response is

h(t) —%%5(t)——5(t)—§e

H. Deng, L16_ECSE306
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Example 3

Stable second-order LTI differential system, whose characteristic polynomial
has complex zeros:

d*y(t) | dy(t)
t) = x(t
i Tt +y(t) = x(t)
The frequency response of this system is given by:
: Y(jow) 1 1
H(|w) = = =
() X(jo) (jo) +jo+1 . 1 .43, 1 .43
(ja)+5—j7)(1a)+§+17)

H. Deng, L16_ECSE306
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Letting S= Jw , and expanding the right-hand side into partial fractions, we get

1 B 1 B A N B
s* +1s+1 1 .43, 1 .43 1 .43 (R
@+E+17TXS+§—17?) S+—+)]— S+ —]——

the coefficients are computed as follows:

1
T 151 73

S+—+ | —
2 2

H. Deng, L16_ECSE306
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1

(ja)+;+j\/2§)(ja)+;—j\/2§)

.1 1 1

"1 f 1 3

o4 O+=—j—
Jo+ 1 ) 1

H. Deng, L16_ECSE306
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Using Table D.1 of Fourier transform pairs in the book, we
find the output by inspection

i 1, 3 1, 3, ]

N BPAr R B
h(t) = ﬁe —ﬁe u(t)
2 L[ By
=——e 2 Re<e 2 2 tu(t)

J3
1
:%e 2 cos(?t——)u(t)
1
_%e 2 sm(?t)u(t)

H. Deng, L16_ECSE306



Fourier transform of ekt

Consider a signal x(t) with Fourier transform that is a single

Impulse of area 2w at frequency Kmy:

X(Jjw)=27m(w—-ko,) .

Taking the inverse Fourier transform yields

X(t) = ijjo 272-5(0)_ ka)o)ejka)otda) _ ejka)ot
27 *—

Thus,

M €327 w - ka)

H. Deng, L16_ECSE306
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Fourier transform of general periodic Signals

A general periodic signal has the time-domain Fourier series

ORDY XS (5.70)

k=—00

Taking Fourier transform of the above LHS and RHS and
applying Egs. (5.67, 5.68), we get:

X(j0)= Y, 27,8(0—ka,) (5.69)

K=—00

Therefore, the Fourier transform of a periodic signal is a
train of impulses of area 27a,, occurring at the frequencies

Kooy , with a,’s being the FS coefficients of the signal.
H. Deng, L16_ECSE306
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Example

The Fourier transform of a sinusoidal signal of the form
X(t) = Asin(w,t) is

X(Jo)=JArdo(o+w,)— JAro(0 - o)

H. Deng, L16_ECSE306

22



FT of impulse train

Consider the impulse train signal
x(t) =Y S(t—kT).

A
x(t)

27T T

H. Deng, L16_ECSE306
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We know Eg. (5.69)
X(jo) = iZﬂakﬁ(a)— kaw,)

K=—c0

We know that the FS coefficients the impulse train are
& =T hence

X(jo) = Z 5(0 —kay)

H. Deng, L16_ECSE306
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We can also calculate the Fourier transform of the
Impulse train using the integral formula. This yields

X(jo)= 3 e
k=—00

H. Deng, L16_ECSE306
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X(jo)= Y e
k=—o0

This Fourier transform is actually a periodic train of impulses of
period @, = 27z/T (note that the period is a frequency here!) in the

frequency domain. That is, the above series converges to the
Impulse train shown below.

A -
X(jo)
21t/T
T T ! >
-20)0 Mo 20)() 3(DO

H. Deng, L16_ECSE306
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Convergence of the Fourier Transform

There are two important classes of signals for which the Fourier transform converges.

1.

2.

Signals of finite total enerqy, i.e. Jmo | X(t) |° dt < oo

Signals that satisfy the Dirichlet conditions:

(1) x(t) is absolutely integrable, i.e., f | x(t) | dt < o0,

(2) X(t) has a finite number of maxima and minima over any finite interval of
time,

(3) X(t) has a finite number of discontinuities over any finite interval of time.
Furthermore, each of these discontinuities must be finite.

H. Deng, L16_ECSE306
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Types of convergence

Signals of finite energy: there is no energy in the error
between a signal X(t) and its inverse Fourier transform

)~((t) 1 X(jow)e' dw .
27T

Signals satisfying the Dirichlet conditions: X (t) is equal to
X(t) ateverytime U (pointwise convergence), except at

discontinuities where X (t) will take on the average of the

values on either side of the discontinuity.
H. Deng, L16_ECSE306
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Frequency selective filter

Frequency-selective filters are filters that allow frequency
components over a given frequency band (the passband),
components to pass undistorted, while attenuate components

at other frequencies (the stopband).

n(t)
v

»O—»{H(jo)—> X(1)
X(t) T

filter

H. Deng, 2
L17 ECSE306



The frequency response of an ideal low-
pass filter

An ideal lowpass filter cuts off frequency components higher

than a cutoff frequency @c. The frequency response of this filter
IS given by:

(i) o 1, |oko,
Uo)=10 lop o,
Hlp(ja))
A 1
>
—Wc (V¢ 0,

H. Deng, 3
L17 ECSE306



The impulse response of an ideal LP

Recall Lecture 12: the frequency response of an LTI system

FT
and its impulse response constitute a FT pair: h(t)«<> H(j®)
Thus, the impulse response of the LPF can be derived via
Inverse FT of the frequency response H(jw) of the LPF:

ORI e
277 I 27t

hIp (t)

A

@, sin(ot) osinc(ot/ )

— @, pil T

N R

H. Deng, T
L17 ECSE306 T
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Although the above filter is termed "ideal™ in reference to
Its frequency response, It may not be so desirable in the
time-domain for some applications because of the ripples
In Its step response.

SIp (t)

/ﬁ/\/

~—

H. Deng, 5
L17 ECSE306



Butter-worth LPF

One approximation to the ideal lowpass filter is the Butterworth
filter. The magnitude of the frequency response of an N"-order
Butter-worth LPF Is given by:

H, (jo) l ——

[+ (E)ZN ]1/2
)

C

The magnitude of the frequency response of a 2"%-order

Butterworth filter with cutoff frequency @. is given by:

2
)

(jo)’ +a)cx/§ja)+a)c2

He(Jo) =

H. Deng, 6
L17 ECSE306



The transitional band of LPFs

The magnitude of the frequency response of a 2"-order
butter-worth LPF:

_ A
—c Wc
)

Around @cis the transition band, where the magnitude

"rolls off". The higher the order, the narrower the transition
band becomes.

H. Deng, 7
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Representing the LPF using a differential
equation

The second-order Butterworth filter is defined by its
characteristic polynomial

0(s)=*+ w25+’

Therefore the differential equation relating the input and output
signals of this filter must have the form

d*y(t) dy(t)
2
dt? M)C\/_ dt

+a;y(t) = o X(t)

H. Deng, 8
L17 ECSE306



The impulse response of a 2"%-order butter-worth filter is given
by (Assignment 6.1):

h, (t) =v2m e G sm(\/_t)u(t)

This impulse response does not oscillate much even though it is a
damped sinusoid. The decay rate Is fast enough to damp out the
oscillations.

The step response of this second-order Butterworth filter is:

Sg (1) »

H. Deng, 9
L17 ECSE306



High-Pass Filters

A High-pass filter cuts off frequency components lower than

Its cutoff frequency @.. The frequency response of an ideal
HPF is given by:

10, |ofwo,
P e o,
AH,(Jo)
_—_ 1
>
—c e 10,
H. Deng, 10
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Obtaining an HPF from an LPF

Notice that the frequency response of an ideal highpass filter can be written
as the difference between 1 and the frequency response of an ideal lowpass
filter.

H,(Jo)=1-H, (o)

The resulting impulse response is simply

o (1) = 5(6) =, (1)

This suggests one possible but naive approach to obtaining a realizable highpass
filter:

First, design a lowpass filter with cutoff frequency . and desirable characteristics

In the transition band and the stopband.
Second, form the frequency response of the highpass filter using above equation

H. Deng, 11
L17 ECSE306



Example

We can design an HPF using the second-order lowpass Butterworth
filter of the above example.
Hy,(Jo) =1-Hy(jo)

2
)

- (jo)? +a)cxc/§ja)+a)§
_(jo)’ +0 N2 jo+ 0! - o’
(jw)? +a)C\/§ja)+a)§
 (jo)+oN2je
(jo)? + o 2 jo+ o’

[Hyp i)

1

_a)C a)c

>
[0

H. Deng, 12
L17 ECSE306




The differential Eqg. for the HPF

The causal LTI differential equation corresponding to
the above H(jw) Is

d*y(t) dy(t)
2
dt? " wc\/_ dt

d2x(t) dx(t)
+w’y(t) = +w N2 —=
w, y(t) ez "

and the impulse response Is given by:

h,, (£) = S5(t) \/Ea)ce_%t sin(%t)u(t)

H. Deng, 13
L17 _ECSE306



Band-Pass Filters

An ideal bandpass filter cuts off frequencies lower than its
first cutoff frequency @. and higher than its second

cutoff frequency @...
The frequency response of such a filter is given by:

H = 1’ | Q8 |< @ |< e
"1 0. otherwise

H,, (Jo)

A

1

—Wc2 —Wc1 W1 W2 9]

H. Deng, 14
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Obtaining a BPF from a LPF and an HPF

One approach to design bandpass filters:

The frequency response of an ideal bandpass filter can be
written as the product of the frequency responses of ideal
overlapping lowpass and highpass filters.

H,, (Jo) = H,(Jo)H, (Jo)

The highpass filter should have a cutoff frequency of @c

and the lowpass filter @c2 .

An implementation of BPF:

X(t) —— hhp(t)

hlp(t)

— y(t)

H. Deng,
L17 ECSE306
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The Definition of Bilateral Laplace Transform
The bilateral Laplace transform of x(t) is defined as:

X () = fw x(t)e dt

where s is a complex variable. Notice that the Fourier

transform is given by the same equation, only S= J@ for
the Fourier transform.

Let the Laplace variable be writtenas S= 0 T J@

X(o+jw)=[ x(t)e ™ dt = [x(t)e™ Je " dt

Then the Laplace transform can be viewed as the Fourier

—ot
transform of the exponentially-weighted signal x(t)e .

H. Deng, 16
L17 _ECSE306



Motivations for Laplace transform

e | aplace transform can analyze unbounded signals or
unstable systems.

e The unilateral Laplace transform can be used to analyze
differential LTI systems with nonzero initial conditions.

In contrast, FT can only analyze bounded signals and zero-
Initial systems.

H. Deng, 17
L17 ECSE306



Example 1: LT of e@wu(t), a>0

Find the Laplace transform of x(t) =e *u(t), areal .

X ()= [ eu(t)edt - ﬁ Re{s}> -a

X(t), a>0
A()

N

Note: for a=0, we have the LT of u(t).

>

H. Deng,
L17 ECSE306

18



Region of convergence of the LT

This Laplace transform converges only for values of
S in the open half-plane to the right of S=—a..

This half plane is the region of convergence (ROC) of
the Laplace transform. It is represented as follows:

A Im{s}

ROC

Re{s}

o

H. Deng, 19
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Compare: ROC of FT and ROC of LT

Consider the signal X(t) =€ *u(t), aeR

Its Fourier transform of converges only for a>0 (decaying
exponential).

Whereas, its Laplace transform converges for any a (even
for growing exponentials!), as long as Re{s}>-a.

In other words, the Fourier transform of
x(t)e ™ = e @ y(t)

converges for the region where Re{s}=0>-a

H. Deng, 20
L17 _ECSE306



Example 2: LT of e®u(-t), a<0

Find the Laplace transform of X(t) = e "u(-t), areal

X(s) = [ e u(-t)edt (1), a <0
o
= [ et _/
- X
=———, Re{s}<-a

H. Deng, 21
L17 ECSE306



Region of Convergence of LT

The Laplace transform of the signal in example 2 converges
only in the ROC, which is the open half-plane to the left of
S=—a. A Imfs}

ROC

Re{s}

Important note: The ROC is an integral part of a Laplace
transform. It must be specified.

Without ROC, you can't tell what the corresponding time-
domain signal is!

H. Deng, 22
L17 ECSE306



Inverse Laplace Transform

The inverse Laplace transform is in general given by
._i o+ ) st
X(t) = 2 L_,-oo X (s)e>ds

This integral is rarely used because we are mostly dealing
with linear systems and standard signals whose Laplace
transforms are found in tables of Laplace transform pairs.

We will mainly use the partial fraction expansion technique
to find the continuous-time signal corresponding to a
Laplace transform.

H. Deng, 23
L17 _ECSE306



LT pairs

H. Deng,
L17 _ECSE306

TABLE D.4 Laplace Transform Pairs

e a a

Time demain (1) Laplace domain 7(s)
REOC
Jim « ROC " !
a{r) i s
— NP S —
wii) 1 Ref{s} =0
1 5 I
S -,--h—-.-h_—,-|,-— 1 ] -
eu(1) ' = | Re{s}=0
e —— S S— E1_ — —.i. —
uir) E=1,23,... _ Ty | Re{s}=>0
] [ S S
I
e“'ul) | aell _a E Refs} =»Rela)
&= |
—e™ui~1) | ael —— | Re{s} <Refa}
| F—=a
& sin( ity | i i, R Grarr arrﬂ Re{s} »—u
o R ot
e " ens,f ) X, 0, € Graf o Re{s} » -
sinde, £ o, e B F 1ol Re{s} =10
]
cos{ i Rt ) ay, € R ot m: Refsp=0
1, <, oot _ gt
4
{ﬂ. ESA o €8, >0 5 0
te™"uff) aeC - _Iﬂf Rels} > Refal
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Region of Convergence of the bilateral LT

Bilateral LT: X(s)= Lo X(t)e "t 6.1)
8., X(o+jw)=| x(t)e ™ dt=[" [x(t)e]e "dt (6.2)

Convergence of the Laplace integral depends on the value of o,
l.e. Re{s}, for which the Fourier transform of the exponentially-
weighted x(t) converge. In the s-plane, the region of convergence
of X(s) Is either:

e a left half-plane: <oy (If X(t) is left sided)

e a right half-plane: o>a, (if x(t) is right sided)

e a vertical strip: o,<c<oy (If X(t) Is two sided, for -co<t<oo )
e entire s-plane: If x(t) is finite duration

e nothing

H. Deng, L18 ECSE306 2



Laplace Transform and Rational Functions

Many LTs are rational functions (ratios of polynomials of s):
X(s)=P(s)/Q(s)
X(s) can be:
The LT of sum of complex or real exponential signals;
H(s), the LT of h(t), the impulse response of an LTI system.

The roots of P(s) are the zeros, and the roots of Q(s) are poles of X(s).

For differential LTI systems (see Eqg. 3.2), the zeros of the characteristic
polynomial are the poles of the H(s).

To find the inverse LT of X(s), we can express X(s) in terms of algebraic

expressions listed in Table D4, and then find x(t) .
H. Deng, L18 ECSE306 3



Case 1: rational X(s) has no multiple-order poles

Assume:

1. X(s) has no multiple-order poles in its set of poles 1P, }anl-

2. The order of the denominator polynomial is greater than the
order of the numerator polynomial.

Then, X(s) can be expanded as a sum of partial fractions:

X(5)=ZN:SLAVP __A + % +eeet A

. S—P S—P,  S—p

/

—~ — ~ ———
seROC seROC, seROC, seROC,,

From the ROC of X(s), the ROC; of each individual partial
fraction can be found, and then the inverse transform of each of

these terms can be determined using Table D4.
H. Deng, L18 ECSE306 4



The Inverse LT and ROC
X(s):ZN: A __A + % +oeet al

k1S— P S=P S=P, S— Pu
. ~ J/ [ ~~ » | . ~ J/ \ J
seROC seROC, seROC, seROC)

The ROC of X(s) must contain at least the intersection of all
the ROCs of the partial fractions RO€= (] ROC,

i=1,...,N

e Ifthe ROC; 1=1,...,N, are open right half-planes, then the ILT of X(s)
IS:

x(t) = Ae™u(t)+ AePu(t) +---+ A,e™'u(t)
e If the ROC; 1=1,...,N, are open left half-planes, then the ILT of X(s) Is:

X(t) =-Ae™u(-t)- AePu(-t)—...— A.e"™u(-t)

H. Deng, L18 ECSE306 5



The coefficients of partial fractions for case 1

A= X(s)(s-p,)

k=1, 2,...,N

H. Deng, L18 ECSE306 6



Example

Compute the inverse of the following Laplace transform:

S+3
X(s)= S5 D(s5_2)" 0<Re{s}<?2
A LA A

= 2 4+ = 4+
S+1 S S—2

—_— —_— —_—
seROC; seROC, seROC;

Im{s}

ROC

> Re{s}

In order to have ROCoROC, NROC,NROC,, the only possibility Is:

Koo A LA LA

s+1 S S—2

—_ — —_,
Re{s}>-1 Re{s}>0 Re{s}2

H. Deng, L18 ECSE306



The coefficients of partial fractions
For X(s)

S+3
= S6iD5-2) 0<Re{s}<2
A LA A

T s+41 s s-=2

| —— —— | —
seROC; seROC, seROC,

The values of A; are:

) (s+3) 2 __2
A =(s +1)(S(S +1)(s-2) 11

T (-)(-3) 3
A =s (s+3) 3 __§
s+ D(s-2) ), O(2) 2

(s+3) 5 _§
s(s+)(s-2))_,

—(5-2
A= )E 2@ 6.

H. Deng, L18 ECSE306



Hence, the Laplace transform can be expanded as
2 1 31 51

X(s)==— -2 = +=——
3 s+1 2 S 6s-2

—_— e —_

Re{s}>-1 Re{s}>0 Re{s}<2

and from Table D.4 of Laplace transform pairs:

X(t) = %etu(t) —gu(t) —%e”u(—t) .

H. Deng, L18 ECSE306



Case 2: X(s) has multiple-order poles

For multiple poles in X(s), the partial fraction expansion must
contain fractions with all the powers of the multiple poles up to

their multiplicity.
To illustrate this, consider X(s) with ROC Re{s}>Re{p,}

X (s) = n(s)
(5=p) (5= Prt)(S—Pn) (5= Ppyr) (5= Py)
X(S) _ A1 bt i 4+ An+1 2_|_.”_|_ An+r—lr
Re{s}>Re{p,..} S;ﬂ, S;,_pl“, KS B pm)J \<S_ pm)J
Re{s}>Re{p.} Re{s}>Re{pn}  Refs}>Re{p,} Re{s}>Re{p, }
s A A
S— pm+1 S— pN
%/_J %/_J
Re{s}>Re{ Py} Re{s}>Re{py}

H. Deng, L18 ECSE306 10



The coefficients of partial fractions for case 2

If p, IS a pole of multiplicity r, the coefficients
Ans--- Anirs are computed as follows:

1 di-t r .
Avict = D)1 g [(5=pp) X)), vi=1l...r

To compute the coefficient of the term with the highest
power of the repeated pole:

Anirs =] (5= Py) X(s) ]

S=pP, -

H. Deng, L18 ECSE306 11



1T X(s) has complex conjugate poles

If X(s) has a pair of complex conjugate poles, we can
Aw, +B(s+a)
Include a second-order term (s+q)’+,2 In the partial

fraction expansion.

The 1dea Is to use the damped or growing sinusoids In the
table of Laplace transforms, such as

ot L )
e sin(w,t) & (S+a)20+a) —, Re{s}>-a
0
L S+«

e " cos(w,t) <> —~, Re{s}>-a

2
(S+a) +w,

H. Deng, L18 ECSE306 12



Example

Compute the inverse of the following Laplace transform:
25° +35—2
(s +2s5+4)s

X(S) = , Re{s}>0

Note that s°+2s+4=(s+1)*+(~/3)*, so that the complex poles
are P,=-1+ V3 and p,=-1-j¥/3

H. Deng, L18 ECSE306 13



The transform X(s) can be expanded as follows:
28° +3s—2 _ A3 + B(s+1)+ C

X(s)=
) (SZ+ZS+4)S (s+1)2+3 S

- .
“  Re{s}>0

Re{s}>—1
Coefficient c Is obtained with the partial fraction technique:
c=-1/2.

31, 1, 3
Now, let s=-1to compute 3~ 5" 2~ "7 2

Then multiply both sides by s and let S — % and get B=5/2.

H. Deng, L18 ECSE306 14



Then we have the following expansion:

J3 5
7(\/§)+§(s+1) 12

> - L
(s+1)" +3 S
- ~ / Re{s}>0
Re{s}>-1

f (3) D6+ g

— —|— —_
(s+1)2+3 (s+1)2+3 S
N N J Re{s}>0

X(s)=

Re{s}>-1 Re{s}>-1

Taking the inverse Laplace transform using Table D.4

X(t) = £e sm(\/§t)+ e~ cos(~/3t) u(t)——u(t)

H. Deng, L18 ECSE306
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Example

Consider the signal x(t) =e™u(t)+e'u(-t) . Its Laplace transform
IS given by

X (s) = j e2u(t)e dt + j e'u(~t)e *dt

+00 0
— J‘ e—(S+2)t dt + J‘ e—(S—].)t dt
0 —0

= L 1 , Re{s}>-2and Re{s}<1 X(t)
s+2 s-1 A

-3

STt -2 <Re{s}<1 _/\

>

H. Deng, L18 ECSE306 16



The ROC is a vertical strip between the real parts -2
and 1.

H. Deng, L18 ECSE306
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Properties of the bilateral LT: Linearity

L L
Iif X (t) <> X,(s), s€ ROC, gnd %, (t) > X,(s), s€ROC,
then

L
ax, (t) +bx, (t) <> aX,(s) +bX,(s), se ROC o ROC, nROC,

H. Deng, L18 ECSE306 18



Time-Shifting

L
If X(t)<> X(s), se ROC
then

L
X(t—t,)<>e " X(s), se ROC
Example:

The impulse response of a zero-order hold iIs a unit
pulse of duration T: hy(t) =u(t)—u(t-T)  Its LT is:
1 1 1-¢*
S

Ho(s)==—-e" ==
S S

Note: the ROC is the whole complex s-plane. There is
no pole at s=0.

H. Deng, L18 ECSE306 19
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Shifting In the s-Domain

L
If X(t)<> X(s), se€ ROC, then
L
e X(t) <> X(s—5,), S ROC+Re{s,}

where the new ROC is the original one shifted by Re{s,}, to
the right if this number is positive, to the left otherwise.

Case 1. RPC IS right half s-plane ‘

ROC

H. Deng, L18 ECSE306

v
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Time-Scaling

L
If X(t)<>X(s), s€ROC then

x(at)<—> X(g), seaROC

where the aROC Is expanded or contracted original ROC.

If a<0, ROC flips around the imaginary axis.

H. Deng, L18 ECSE306
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Example:

L
X(—2t) «>0.5X(-0.5s), s -2ROC

22

H. Deng, L18 ECSE306



Conjugation
If x(t)i)X(s), s € ROC | then
x*(t)éx*(s*), se ROC,

Therefore, for X(t) real. X(s)= X"(s") .
Important consequence: If x(t) is real and if X(s) has a

nole (or zero) at = 0, then X(8) has also a pole (or

zero) at the complex conjugate point S =3y, Thus, the
complex poles or zeros of the Laplace transform of a
real signal are conjugate pairs.

H. Deng, L18 ECSE306 23



Convolution

L L
If Xl(t)(_)xl(s)’ se€ ROC, and X; (t)<_) X2(3)1 S € ROCZ : then

L
X, (t) * X, () <> X,(s) X,(s), se€ ROC o ROC, nROC,

Note: the new ROC contains the intersection of the two
original ROC's, and may be larger, e.g., when a pole-zero
cancellation occurs.

H. Deng, L18 ECSE306 24



Example: The response of the LTI system with h(t) = [e_zt + e_t]u(t)

to the input X(t) = —e *'u(t) + &(t) is given by the inverse Laplace
transform of Y (S) :

£ 25 +3
h(t) o> H(s) = 51206 Re{s}> -1
x(t)i)X(s) :_—1+1:S—+1, Re{s} > -2
S+ 2 S+ 2

H. Deng, L18 ECSE306 25



(2s+3) (s+1])
(5+2)(s+1D (5+2)

{s:Re{s}>-2}{s:Re{s}>—-1}=Re{s}> -1

Y(s)=H(s)X(s) =

2S+3
= ( 2) , Re{s}>-2
(s+2)
Expanding this transform into partial fractions, we get
(2s+3) A B

Y(s) Re{s}>-2.

T (512°  (5+2) (3+2)

H. Deng, L18 ECSE306

26



We find the factor B first,

(25+3) __1-B
1 S=-2
and factor A is given by
25+ 3 _o_ A
S+ 2 S=+00

Therefore, using Table D.4 of Laplace transform pairs in the
textbook, we obtain

y(t) =[2e” —te™ Ju(t)

H. Deng, L18 ECSE306 27



Differentiation in the time domain

L
If X(t)<> X (s), se ROC, then

L
dxf) &3sX(s), seROC, 5ROC
0

ROC; may be larger than the ROC when there is a
pole-zero cancellation at S=0.

H. Deng, L18 ECSE306 28



Differentiation in the Frequency Domain

L
If X(t)<> X(s), se ROC, then

£-dX ()

—tX(1) & , S€ ROC,
ds

This property is useful to obtain the Laplace transform of
signals of the form X(t) = te *u(t).

H. Deng, L18 ECSE306 29



Integration in the Time Domain

£
If X(t)<> X(s), se€ ROC, then

I X(Z’)df(—)i- X(s), se ROC, o ROCn {S Re{s}>0}

Prove by yourself: view the running integral as u(t)*x(t) and then apply the
convolution property of LT.

H. Deng, L18 ECSE306 30



ECSE 306 - Fall 2008

o~ dArical & Fundamentals of Signals and Systems
\ Aputey
gadenng McGill University

Department of Electrical and Computer Engineering

Lecture 19

October 20, 2008
Hui Qun Deng, PhD
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2. Unilateral Laplace Transform
3. Initial and final value theorems



The transfer function of an LTI system

The Laplace transform of the output of an LTI system with impulse
response h(t) is

Y(s)=H(s)X(s), ROC, oROC, ROC,
The Laplace transform of the impulse response of an LTI system is
called the system function or transfer function.

H(s) = j_i h(t)e *dt

Note:

1. H(s) can also be obtained from the ratio of the LT of the
output signal y(t) and the LT of the input signal x(t):

Y (s)
H(s) =
(s) X(5)
2. The frequency response of the system can be obtained from
the H(S): H(Ja)) = H(S)‘S:ja) .

H. Deng, L19_ 2
ECSE306



Causality and ROC

The ROC associated with the transfer function of a causal
system is a right half-plane.

Because: for h(t)e™ to be integrable, Re{st}>c must be satisfied.
As h(t) exists only for t>=0 for a causal system, then Re{st}>c
means Re{s}>c, which defines a right half-plane.

Note:

1. A right half-plane ROC may not imply a causal system. For
example, a signal starting at t=-10 also leads to a ROC that is

ari

2. Ift
IS t
S-p

ght half-plane.

ne transfer function is a rational function, and if the ROC
ne right half-plane to the right of the rightmost pole in the

ane, then the (impulse response of the) system Is causal,

as given by the partial fraction method of inverse LT.

H. Deng, L19_ 3
ECSE306



Examples of ROC and causality

1
H(s) =<7 Retsk> L corresponds to a causal system e u(t).

S

e
H, (s) = s+ 1’ Re{s}>-1 is noncausal eV u(t+1).
H,(8) = = Refs} > -1
S =7 is causal e ™Y u(t-1).

H. Deng, L19 4
ECSE306



Stability and ROC

Recall: The sufficient and necessary condition for a
continuous-time LTI system to be BIBO stable: its impulse
response Is absolutely integrable, which means its Fourier

transform exists.
This condition means the following:

An LTI system is stable if and only if the ROC of its transfer
function H(s) contains the jo-axis.

H. Deng, L19_ 5
ECSE306



Example of ROC and stability

Consider an LTI system with a proper rational transfer
function:
H (s) = s(s+1)
(s+2)(s-1) -

The transfer function can be expanded as
- S6+D 21 2.1
(s+2)(s-1) 3s-1 3s+2-:

3 possible ROCs could be associated with this transfer
function. Only one ROC leads to a stable system.

H. Deng, L19_ 6
ECSE306



ECSE306

ROC h(t) Causal Stable
YES. NO.
Im{s}
h(t) = [ 2 }(t) 5(0) ROC is aright
/ e ——e™ |u(t)+ half-plane
e // 3
2 /// Refs}
NO. YES.
2 2 The jo -axis
h(t)=—§etu(—t)—§e u(t) lies in the ROC
+0(t)
NO. NO.
2 2
h(t) = ——e%—e”}u —t
(t) { 3¢ *3 (-t)
2 ! +5(t)
H. Deng, L19 /




Unilateral Laplace transform

The one-sided or unilateral Laplace transform of x(t) Is

defined as follows:

X(s)

= j;f x(t)e *dt

This transform considers only signals from t>=0.
The notation for the unilateral Laplace transform:

X(t) <> (s) = ULLX(1)}

H. Deng, L19_
ECSE306



Note

e Two signals that are different for t<0 but equal for t>0 have
the same unilateral Laplace transform.

e The unilateral Laplace transform of x(t) is identical to the
(two-sided) Laplace transform of x(t)u(t).

e The ROC of a unilateral Laplace transform is always an
open RHP, or the entire s-plane.

H. Deng, L19_ 9
ECSE306



Compare unilateral LT and bilateral LT

Consider the signal Xx(t) =e " u(t +1)

X(t), a>0
A

~—
-1 t
Its bilateral Laplace transform is

>

S

X (s) = —
S+a

In contrast, its unilateral Laplace transform is

, Re{s}>-a

—a

€

A(s) =
H. Deng, L19 S+a
ECSE306

Re{s}>-a |
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Properties of the unilateral Laplace
Transform

Linearity
The unilateral Laplace transform is linear. If

X (0) > ,(S), s €ROC, and %, (1) <> 4,(s), s €ROC,.
then

UL
ax, (t) +bx, (t) <> a& (s) +b&,(s), seROC o ROC, nROC,

H. Deng, L19_ 11
ECSE306



Time Delay

X(t) 1s causal, If x(t)=0 for t<0.

UL
For causal x(t), if X(t)«>Z(s), s €ROC  then for a time
delay of t,>0

UL
X(t—t,)<>e**%(s), seROC,t,>0
Note:

In the following cases, the resulting and the original
unilateral transforms can’t have the above relationship.

1. x(t) Is nonzero at negative times: a time delay can make a
"previously unknown" part of the signal "appear" at positive
times.

2. Part of x(t) Is shifted to negative times for time advance.

H. Deng, L19_ 12
ECSE306



Shifting in the s-domain

UL
If X(t) <> (s), s e€ROC, then

UL
e x(t) <> X(s—5,), s€ROC+Re{s,},

where the new ROC is the original one shifted by Re{s,},
to the right if this number is positive, to the left otherwise.

H. Deng, L19_ 13
ECSE306



Time-Scaling

if X(t) >(s), s €ROC then for @ > 0

UL 1
t — X (%), ROC
X(Ol )(—)a (a) Sex (664)

H. Deng, L19_
ECSE306
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Conjugation

UL
if X(1) > X(s), s €ROC then X' ()>X'(s'), s €ROC.

Note:

1. If x(t) is real, then X(s) =2 °(s")
2. 1T x(t) is real, then the complex poles and zeros of its
unilateral Laplace transform are conjugate pairs.

Proof : Let s; be a complex zero of X(s).
-+ X(s)=0, and " i(sl) = X(s,)
S X(s)=0, - X(s)=0

Similar proof holds for complex poles.

H. Deng, L19_ 15
ECSE306



Convolution Property

Assume that X (t) =X, (t)=0fort <0 ¢
%, (1) <> Z,(5), s €ROC, and %, (1) >%,(s), s €ROC,  then

X, ()X, (1) <> X, ()%, (), s € ROC o ROC, ~ROC,

This Is an extremely useful property for causal LTI system
analysis with signals that are zero for negative times.

H. Deng, L19_ 16
ECSE306



Differentiation in the Time Domalin

UL
If X(t) <> X(s), s €ROC then

dx(t) us _
it <> sq(s)—x(07), seROC, o ROC

Proof:

[, ¥ @ dt=x(e ™| o] x(0e "t =52(s) - x(0)

Note:

1.

This property is different from that of bilateral LT in Eq. (6.57).

2. x(0) =0, if x(t)=0 for t<0.
3.
4. X(07) can be used to set a non-zero initial condition for the output

X(0°) =0, If x(t) extends to negative times.

of a causal differential system.

H. Deng, L19_ 17
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Example

Calculate the output of the following homogeneous causal LTI
differential system with initial condition y(07).

dy(t)
dt

Let's take the unilateral Laplace transform on both sides:

o[ SY(S) — Y(0) |+ Y(s) = 0.

+y(t) =0

Ty

H. Deng, L19_ 18
ECSE306



Solving for Y(S), we obtain

Y(s) = y(O ) Re{s}>—i

(2

To

which corresponds to the time-domain output signal (Table D.4)

t

y(t) = y(0)e “u(t) .

H. Deng, L19_ 19
ECSE306



ULT of Nt-order derivative in the time
domain

d"x(t) ue - d”‘zx(O‘) d"*x(0)
S"A(s)—s"""x(07)—...— —
dt" &S s) - ()= dt" dt"
s eROC, o ROC

This can be derived by successive applications of the
differentiation property.

H. Deng, L19_ 20
ECSE306



Differentiation in the Frequency Domain

ue d9(s)

—tx(t) & , s ROC
ds

H. Deng, L19_ 21
ECSE306



Integration in the Time Domain

UL
J; X(r)dr<—>£%(s), s € ROC, 2 ROC n{s:Re{s}> 0}
S

This can be proved by using u(t)*x(t) and the convolution property.

H. Deng, L19_ 22
ECSE306



The Initial and Final Value Theorems

The initial-value theorem:

X(07) = lim s&(s)

S—>+00

The final-value theorem:
lim x(t) = lim sﬁt(s)

S—> 400 s—0

The above are the properties of unilateral Laplace transform,
as they are applicable only to signals that are 0 for t<0.

H. Deng, L19_ 23
ECSE306



Proofs of initial and final value theorems
According to the property of differentiation in the time domain:
s (s)—x(07) = jof X'(t)e *'dt = joo_+x' (t)e 'dt + jof X' (t)e *dt
=x(0")—x(07) + jof X' (t)e dt
- s%(s) = x(0") + jo"f X' (t)e *dt

- lim{ jof X' (t)edt} = jo"f X' @®)llime™]dt =0

s hms(s)}=x(07) initial value theorem

- limf jof X'(t)e "dt} = lim x(t) - (0")

Iirrol{sx(s)} = !im X(t) Final value theorem

H. Deng, L19_ 24
ECSE306



Example

Find the initial value X(0") of the signal whose unilateral
Laplace transform is

X(S) = 1—03 Re{s} > 3.

Answer:

X(07) = lim s&(s) = lim s£=1o

S—>+00 S—>+00 S —

H. Deng, L19_ 25
ECSE306
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Transform Transfer Function of an LTI
Differential System

Recall: the transfer function of an LTI system is the Laplace
transform of its iImpulse response.

Ndf y(t) Modf x(t)
Given a differential LTI system Z;) ‘ kzé)

we apply the differentiation and Ilnearlty propertles of the
Laplace transform to the LHS and RHS of the above Eq.:

N M
> a,sY(s) =D _b,s“X(s)
k=0 k=0

and obtain the transfer function

vy &
(S) = = N
X (s) Zaksk

H. Deng, k=0 2
L20_ECSE306



Poles and zeros of H(s)

e &
(S) = = N
X(s) Zaksk

e The poles of H(s) are the N zeros of the characteristic
polynomial, i.e., the denominator polynomial.

e The zeros of H(s) are the M roots of numerator polynomial

o If M>N, then IMH(S) =% 514 the transfer function is
sometimes said to have M-N poles at .

o If M<N, then IMH(S)=0 5n( the transfer function is
sometimes said to have N-M zeros at .
o |f M=N?

H. Deng,
L20 ECSE306



ROC of H(s) and h(t)

o If the ROC Is unknown, then there may be many different
Impulse responses h(t) for the differential equation.

e If the differential system is causal, 1.e., h(t) is causal, then
the ROC is the right half-plane to the right of the rightmost
pole in the s-plane.

H. Deng, 4
L20_ECSE306



The causality and the ROC of an LTI
differential system

For a rational LT, its inverse LT is causal if and only if
its ROC is a right half-plane (recall inverse LT using
partial fractions).

Differential LTI systems have rational transfer
functions. Thus, an LTI differential system is causal if
and only if the ROC of Its transfer function is an open
right half-plane located to the right of the rightmost
pole.

H. Deng, 5
L20 ECSE306



The stability of and LTI differential system

e Recall that an LTI system (including a differential LTI
system) Is stable If and only if the ROC of its transfer

function includes the jo-axis.

Thus, a causal LTI differential system is stable if and only
If all the poles of its transfer function lie in the left side of

the jw-axis.

H. Deng, 6
L20_ECSE306



If a zero cancels out a pole

For the case where a zero of the input cancels out an unstable
pole (call it po Re(po)>0) in the transfer function, the
corresponding differential LTI system is still considered to
be unstable.

X(S)—1 s+p, 1 1(s+py) — Y(S)

e The reason Is that any nonzero initial condition would
cause the output to either grow unbounded (if Re{py}>0),
oscillate forever (if pg IS pure Imaginary), or settle down to
a nonzero value (if p,=0).

H. Deng, 7
L20 ECSE306



Example 1: System Identification

x(1) y()
—» HG)  —>

Given that the Input of a differential LTI system is

X(t) =2e"'u(t) | and that the output was measured to be
y(t) = e ' sin(2t)u(t) —te"u(t)

Find the transfer function H(s) of the system and its ROC,
and determine whether the system is causal and stable,

This Is a system identification problem, studied here in Its
simplest, noise-free form.

H. Deng, 8
L20_ECSE306



The LTs of input and output signals

X(s) = ﬁ Re{s}> -1

2 1
Y(s) = 2 2 2
(s+2)°+2° (s+1)
Re{s}>—2 Re{s}>—1

~ (2s* +4s+2)—(5° +45+8)
 (s? +45+8)(s+1)?

~ s° —6

(s? +4s+8)(s+1)?

, Re{s}>-1

Re{s}> -1

H. Deng,
L20 ECSE306



The transfer function of the LTI system

Then, the transfer function is simply

s° — 6
H(s) - Y(s) (s®+4s+8)(s+1)?  (s—+/6)(s++/6)
COX(s) 2 - 2(s? + 45 +8)(s +1)
(s+1)

To determine the ROC, first note that the ROC of Y(s) should
contain the intersection of the ROCs of H(s) and X(s).

H. Deng, 10
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The ROC of H(s)

There are 3 possible ROCs for H(s):

ROC,: an open left half-plane to the left of Re(s)=-2;
ROC,: an open right half-plane to the right of Re(s)=-1;
ROC;: a vertical strip between Re(s)= -2 and Re(s)=-1.

Since the ROCs of X(s) and Y(s) are right half-planes, the only
possible ROC for H(s) is ROC,. The system is stable and causal.

Im{s}
R ROCX
2 c, 1 ROG; " Re{s}

H. Deng, 11
L20_ECSE306




Example 2

Suppose we know that the input of a differential
LTI system is

x(t) =eu(t)
and the output Is
y(t) = (6™ —e~u(t)

H. Deng,
L20 ECSE306
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We can deduce the transfer function as follows. First take
the Laplace transforms of the input and output signals:

X(s) = sTlS Re{s} > -3

B 1
C (s+D)(s+2)

Y(s) Re{s}>—1.

H. Deng,
L20 ECSE306
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Then, the transfer function is simply

1
o _Y(S)  (s+D(s+2)  s+3  s+3
(8) =~ v = - -
X () 1 (s+1)(s+2) S°+3s+2
S+3
X (s) Y (s)
—»  H(s) >

H. Deng, 14
L20 ECSE306



To determine the ROC, first note that the ROC of Y(s)
should contain the intersection of the ROC's of H(s) and
X(S).

There are three possible ROC's for H(s) :

(a) an open left half-plane to the left of S = -2

(b)a strip between S=—2 and S=-1, and

(c) an open right half-plane to the right of S=—1.

But since the ROC of Y(S) i1s an open right half-planes,
the only possible choice is (c).

Hence, the ROC of H(s) is Re{s}>-1, and it follows that
the LTI system Is causal and stable.

H. Deng, 15
L20_ECSE306



Remark:
t Is customary to refer to the set {s:Re{s}> 0} as the right

nalf-plane (or to {s: Re{s}> 0} as the open right half-plane)

and to

{s:Re{s} <0} as the left half-plane (or to {s:Re{s}< 0} as
the open left half-plane.)

In Boulet’s book, the “right half-plane” may contain {s: c,< Re{s} <0},
and the “left half-plane” may contain {s: 0< Re{s}< c}.

H. Deng, 16
L20_ECSE306



Analysis of LTI Differential Systems With Non-zero Initial
Conditions Using the Unilateral Laplace Transform

Recall the differentiation property of the unilateral
Laplace transform:

I X(t) <> X(s), s €ROC _ then

d);(tt)es%(s) x(0), s eROC, 2 ROC
d"xt) . L d”‘zx(O‘) d"*x(07)
SSA(S)—s X(07)—...— —
dt" (8)- ) dt" dt"?

H. Deng, 17
L20 ECSE306



Example 3

Consider the system described by

d?y(t) | ,dy(t) dx(t)
+3 +2y(t) = + 3X(t
dt’ dt ¥ dt 0
and with initial conditions ay(0’) =2, Yy(07)=1. Suppose

dt
that this system is subjected to the input signal

x(t) =e™u(t) .

What is the output of the system?

H. Deng, 18
L20_ECSE306



Take the unilateral Laplace transform
(07)
dt

{s@t(s) —sy(0) -2 } 3[sY(s) - y(0) ]+ 2 (s)

= s&(s)— x(07) +3X(s)

1
Note that x(07) =0, L(s) = S+5’ Re{s}> -5 , then
S+3 S+5
S) = + , Re{s}>-1
ve) (sz—+354—2)(s+—5) s +3s+2 )
_ s +11s+28 Re{s}> —1
(824—384—2)(84—5)’
9 10 1
2 3 6

s+1 s+2_s+5

H. Deng,
L20 ECSE306



Taking the inverse Laplace transform of each term, we
obtain

9 . 10 _ 1
y(t) Z[EG t—?e 3 —ge *u(t)

H. Deng, 20
L20_ECSE306
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Example
Consider the system described by

dy(t) . dy(t) _ ax(t)
i +3 it +2y(t) = it + 3X(t)
dy(0°)

and with initial conditions —g~ —% Y(0)=1

If the input signal is  X(t) =€~'U(t) . then the Unilateral
LT of the output of the system is (see last lecture):

dt

(s+3)x(s) O)+3y(0)+ dy(9”)
Y(s) = :

§°+3s+2 s° +3s+2

zero-state resp. zero-input resp.

H. Deng, 2
L21 ECSE306



Zero-Input Response and Zero-State Response

The response of a causal LTI differential system with non-zero
initial conditions (i.e., y™(t=0)=0) and a non-zero input can be

viewed as the sum (superposition) of a zero-state response and a
Zero-input response.

For the above example,
dy(0")

(s+ 3)5((3) sy(07) +3y(07) +
S +3s+ 2) ) s + 33 +2 & ey(t):yzs(t)+yzi(t)

zero-state resp. Zero- |nput resp.

y,«(t) is obtained under zero-initial conditions y™ (t=07)=0 using methods
In Ch3.

yzs(t)=ZBieait +Dx(t), B, = function of d y(dttnzo ),nzo,_,_N _1
i=1

N n — 0N
Y, (1) =ZC.eait, C, = function of d ygt_o ),n =0,.N -1
H. Deng,
L21 ECSE306 @, IS a root of the characteristic polynomial of Eq. (3 31).




Transient and Steady-State Responses of LTI

Differential Systems
Recall CH3: The complete solution of an LTI differential Eq. is

y(t)=homogeneous solution y(t)+ particular solution yy(t)

N
Yo (t) =D Ae*™, A= function of y"”(07),n=0,.N -1
i=1

y, = Kx(t), K eComplex

The homogeneous response (natural response) of a causal,
stable LTI differential system is called transient response.
The particular solution corresponding to a constant or
periodic Input Is called steady-state response (or forced
response).

A stable system is said to be in steady-state if the transient component

of the output has practically disappeared.

H. Deng, 4
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Relationship among transient, steady-state,
Zero-state, zero-Input responses

Total response = transient response + steady-state response

Total response = Zero-input response + Zero-state response
|l ]
Transient response 1 Translient response 2

+ Steady-state response

Transient response = Zero-input response + Zero-state response

- Steady-state response

H. Deng, 5
L21 ECSE306



Transient and Steady-State Analysis
Using the Laplace Transform

For a causal, stable LTI system, a partial fraction
expansion of the transfer function according poles allows
us to determine

e Transient response (the terms with the system poles)
e Steady-state response (the terms with the input poles)
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Example 1: identify transient and steady-state
responses

For example, consider the step response
s(t) = u(t) —eu(t).

The transient part of this response is the term e >'u(t) , and
the steady-state part is U(t) .

H. Deng, 7
L21 ECSE306



Example 2:

Assume that a causal LTI differential system is subjected

to the input signal X(t) =sin(@yt)u(t) = and the resulting
output is

y(t) = 2sin(w,t — g)u(t) + e~ cos(2t + Au(t)

Then, the transient response of the system to the input is:
e *' cos(2t + Q)u(t)

and the steady-state response Is
2sin(w,t — g)u(t)
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Example 3: the transient and steady-state
responses In the step response

Consider the step response
S+ 3

Y(s) = , Re{s}>0
(52 +33+2)s
A B C
= — 4+ — 4+ —
S+1 s4+2 S

— —_— -
Re{s}>-1 Re{s}>-2 Re{s}>0

The steady-state response corresponds to the last term %
which in the time-domain is Cu(t).

The other two terms correspond to the transient response
Ae~u(t) + Be*'u(t)
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Transfer functions and steady-state
responses

The transfer functions and frequency responses of LTI
systems are obtained with zero-initial conditions, and thus
give us the steady-state response.

Step response: We can apply the final value theorem to
determine the steady-state component of a step response. In

general, this component is a step function Au(t) . The "gain"
A Is given by:

A= IirrolsH(s)éz H(0)
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Response to a periodic exponential

For X(t) = Ae!”", the steady-state response is

Y () =H (ja)o)AejwOt = ‘H (Ja)o)‘ Ag J(@t+<H (joy))

H. Deng,
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Steady response to a sinusoidal input

If the input signal is pure sinusoidal X(t) = AsiN(@,t)  then
the steady-state response of the system can be obtained
from the frequency response H(jw) of the system:

A - jo, - —jo
Yss (t) :Z_j(H(JC‘)o)eJ 0! — H(_Ja)o)e J Ot)

_ ZA(‘H (ja)o)‘ej(onéH(jwo)) —‘H (_ja)o)‘e—J(wot—éH(—jwo)))
J
A - j(aot+2H (ja)) - —j(@t+2H (jar))
=5 (HU@g[e ™ 0 —H(jay e o 100)

= \H (ja)o)\ Asin(aw,t + ZH (jw,))
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Important application:

Steady-state analysis of circuits at a fixed frequency, e.g., 60
Hz.

For example, If a circuit Is described by its impedance Z(jo),
then Its steady-state response to a 60 Hz sinusoidal current is
characterized by the multiplication of the complex amplitude
of the current and the complex number Z(j2760)
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Response to periodic signals

Again, the frequency response of the system gives us the
steady state response to a periodic signal admitting a Fourier

+00
series representation. For X(t) = Z:ake’k”Ot , the steady-
k=—00

state response Is

Y (1) = Z I_I(jka)o)akejkwOt -

K=—00
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Example 4: application of unilateral
LT in Circuit Analysis

’) » V(1)

T C | Vel

When t<0, the switch 1s connected at 1, and the state of the
system Is steady. At t=0, the switch is turned on 2.

Derive v (t) and vy(t).
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Step 1: Write the equation about v (t)

dv, (1)
dt
Step 2: Identify the initial condition at t=0" v (t=0)=-E

RC +v, =Eu(t), t=0

Step 3: Apply unilateral LT on the above differential Eq.

RC[SV (5) ~V,(07)]+V,(s) :5

1
E(<—9)
S(S+—)

C
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Step 4 and 5: Do partial fraction expansion and

Inverse LT
Step 4: Partial fraction expansion
1
E(—-5)
V, (5)=—F¢
s(s+i)
RC
Vc (S) =E l_ :
S gy
RC
Step 5: Inverse LT Ly
v, (t) = E(1—2e R¢)u(t)
And 1

———t
— _ — RC
- ben, Vg (t) = Eu(t) —v, (t) = 2Ee R© u(t) -
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Example 5 (in class)

’) » V(1)
—Y“ JE—
R R

T C | Vel

When t<0, the switch 1s connected at 1, and the state of the
system Is steady. At t=0, the switch is turned on 2.

Derive v (t) and vy(t).
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