

ECSE 306 - Fall 2008 Fundamentals of Signals and Systems

McGill University Department of Electrical and Computer Engineering

Lecture 34

November 26, 28, 2008

Hui Qun Deng, PhD

Sampling

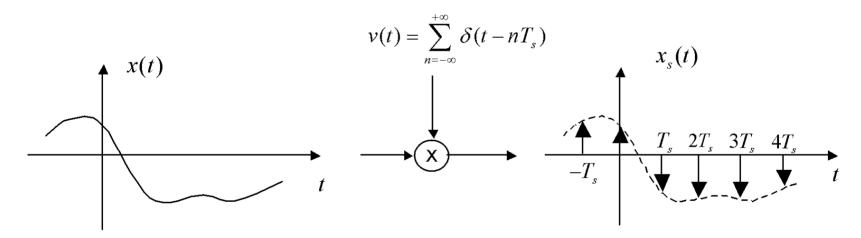
Sampling theorem

Signal Reconstruction

Aliasing and anti-aliasing

Sampling of a continuous signal

The sampling operation can be seen as the multiplication of a continuous-time signal with a periodic impulse train of period $T_{\scriptscriptstyle S}$.



Recall the property of FT:

Multiplication in the time domain \rightarrow convolution in the frequency domain, multiplied by $1/2\pi$.

Discrete-time signals as sampled continuous-time signals

Then, the sampled signal in the time-domain can be represented by:

$$x_s(t) = \sum_{n=-\infty}^{+\infty} x(nT_s)\delta(t - nT_s)$$

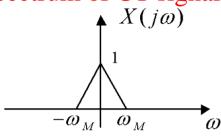
where the impulse at time $t = nT_s$ has a strength (area) equal to the signal sample at that time. T_s is called sampling period.

Recall: sampling property of $\delta(t)$:

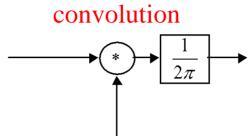
H. Deng, L34 ECSE306
$$x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$$

The spectrum of sampled signals

Spectrum of CT signal

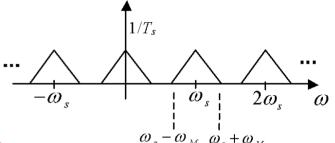


Spectral convolutio



Spectrum of sampled signal

$$X_{s}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$



Spectrum of impulse train

$$V(j\omega) = \frac{2\pi}{T_s} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s)$$

$$-2\omega_s - \omega_s$$

$$2\pi/T_s$$

$$\omega_s - \omega_s$$

$$\omega_{\rm S} = 2\pi/T_{\rm S}$$

The relationship between the spectrum of $x_s(t)$ and the spectrum of x(t)

The spectrum of the sampled signal can be obtained from the multiplication property of FT:

$$X_{s}(j\omega) = \frac{1}{T_{s}} \int_{-\infty}^{+\infty} X(j\upsilon) \sum_{k=-\infty}^{+\infty} \delta(\omega - \upsilon - k\omega_{s}) d\upsilon$$

$$= \frac{1}{T_{s}} \int_{-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s})) \delta(\omega - \upsilon - k\omega_{s}) d\upsilon$$

$$= \frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$

Thus, the spectrum of the sampled signal is a superposition of replicas of the original signal spectrum, shifted by integer multiples of the sampling frequency ω_s and scaled by $1/T_s$.

The Sampling Theorem (Nyquist theorem, or Shannon theorem)

Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then, x(t) is uniquely determined by its samples $x(nT_s)$, $-\infty < n < +\infty$ if

$$\omega_s > 2\omega_M$$

where

$$\omega_{s} = \frac{2\pi}{T_{s}}$$

is the sampling frequency, T_s is the sampling period.

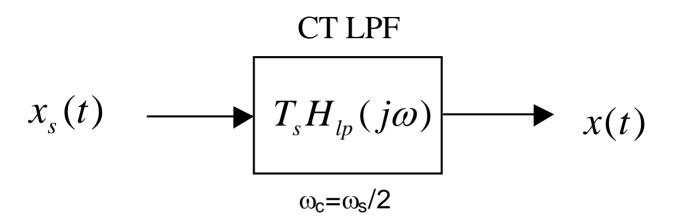
Signal Reconstruction

Assume that we have sampled a band-limited signal x(t) at a sampling frequency $\omega_s = \frac{2\pi}{T_s}$ that satisfies the condition of the sampling theorem.

What we have is a discrete-time signal $x[n] = x(nT_s)$.

Ideally, to reconstruct the signal x(t), we need to construct a train of impulses $x_s(t)$ from x[n], and then to filter $x_s(t)$ with an ideal low-pass filter.

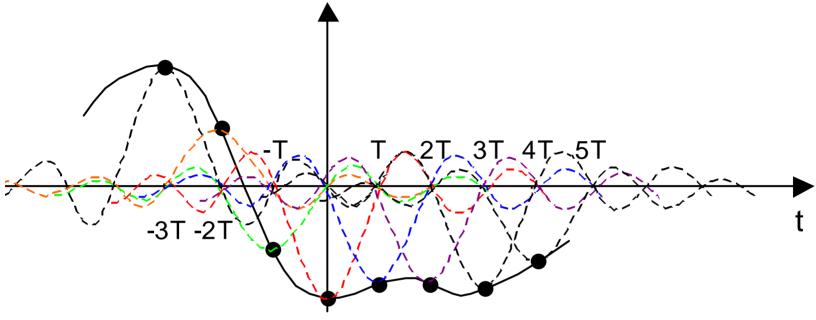
Recover x(t) from its samples



Filtering the sample impulses using LPF with a cutoff frequency $\omega_c = \omega_s/2$ is equivalent to interpolating the samples using time-shifted *sinc* functions with zeros at nT_s , as the impulse response of an LPF is a sinc function:

$$\frac{\omega_c}{\pi} \mathrm{sinc}(\frac{\omega_c}{\pi}t) = \frac{1}{T_s} \mathrm{sinc}(\frac{t}{T_s}) = \frac{\sin(t\pi/T_s)}{t\pi}$$
 H. Deng, L34_ECSE306

Perfect signal interpolation using sinc functions in the time domain



$$x(t) = \sum_{n=-\infty}^{\infty} x[nT] \operatorname{sinc}(\frac{t - nT}{T})$$

x(t) is a superposition of weighted and shifted sinc functions.

For example, the signal at t=T/3 is

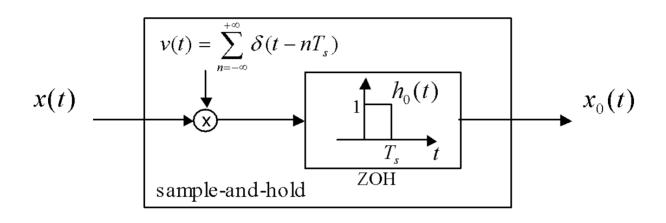
$$x(t = T/3) = \sum_{n=1}^{\infty} x[nT] \operatorname{sinc}(\frac{T/3 - nT}{T})$$

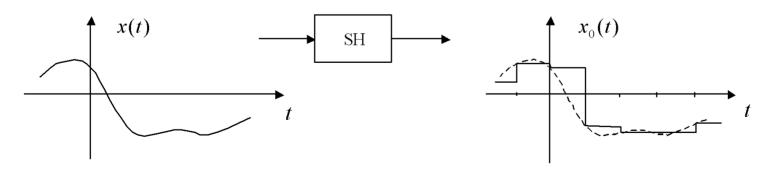
Obtaining sample impulses from x(t) and then filtering them using an ideal LPF is clearly unfeasible, at least an ideal LPF can't work in real time.

However, there is a number of ways to implement the sampling and reconstruction of the CT signal x(t).

Sampling x(t) using a Sample-and-Hold

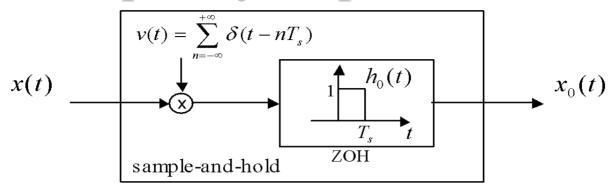
The sample-and-hold (SH) retains the value of the signal sample up until the following sampling instant.





Sample-and-hold (SH) produces a "staircase" signal from x(t).

The frequency response of ZOH



The zero-order-hold (ZOH) has an impulse response $h_0(t)$. The frequency response of ZOH is given by the FT of $h_0(t)$:

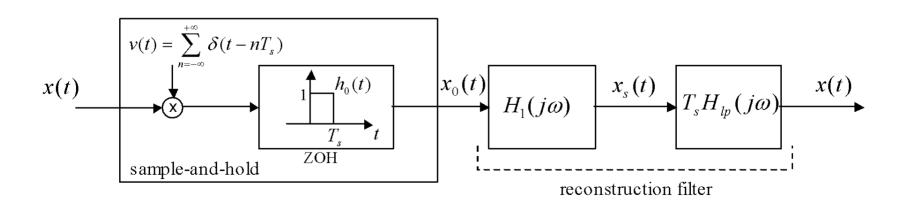
$$H_0(j\omega) = T_s e^{-j\omega \frac{T_s}{2}} \operatorname{sinc}\left(\frac{T_s}{2\pi}\omega\right) = 2e^{-j\omega \frac{T_s}{2}} \frac{\sin(\omega \frac{T_s}{2})}{\omega}$$

This is a sinc function, but multiplied by $e^{-j\omega\frac{T_s}{2}}$ because of the time delay of $T_s/2$ seconds.

The inverse system of ZOH

To compensate the distortion due to the "staircase" effect of the ZOH, we construct an inverse system of $H_0(j\omega)$:

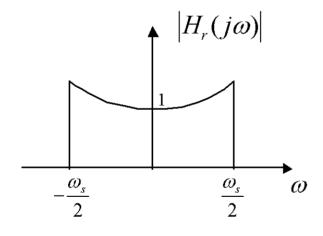
$$H_1(j\omega) = H_0^{-1}(j\omega) = \frac{1}{2}e^{j\omega\frac{T_s}{2}}\frac{\omega}{\sin(\omega\frac{T_s}{2})}$$

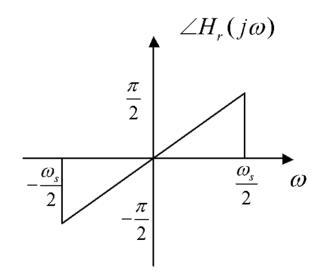


The *reconstruction filter* is the cascade of the inverse filter and the lowpass filter

$$H_r(j\omega) = T_s H_{lp}(j\omega) H_1(j\omega)$$

whose magnitude and phase plots are shown below.





... 20..9, 20._200200

- This frequency response cannot be realized exactly in practice, but it can be approximated with a causal filter.
- In fact, in many practical situations, it is often sufficient to use a simple (nonideal) lowpass filter with a relatively flat magnitude in the passband to recover a good approximation of the signal.

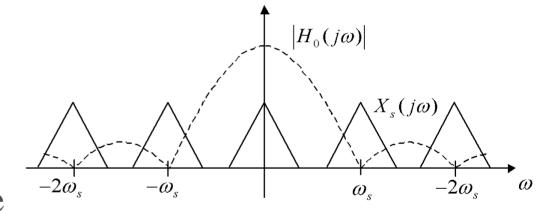
The spectrum of the ZOH output

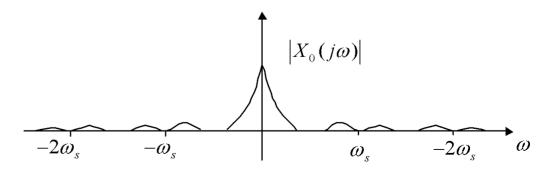
Consider the case if we don't use the inverse of ZOH. The frequency response of the ZOH is:

$$H_0(j\omega) = e^{-j\omega T_s/2} T_s \operatorname{sinc}(T_s\omega/2\pi)$$

Note: increasing the sampling frequency ω_s can reduce distortion due to the "staircase" effect, as did in some digital audio systems.

H. Deng, L34_ECSE306





The spectrum of the ZOH output.

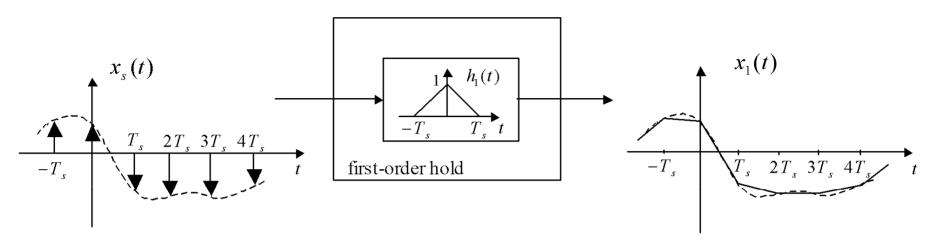
First-Order Hold (linear interpolation)

Instead of being a rectangular pulse, the first-order hold is a triangular impulse response $h_1(t)$, which can be viewed as the convolution of two u(t) signals.

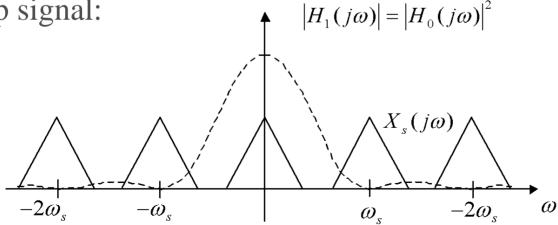
The interpolation using a first-order-hold is linear function of t between two adjacent samples. Linear interpolation is closer to the signal x(t) than a "staircase" signal given by a ZOH output.

In the frequency domain, the Fourier transform of a triangular impulse response $h_1(t)$ is also a better approximation to the ideal lowpass filter than $H_0(j\omega)$ is.

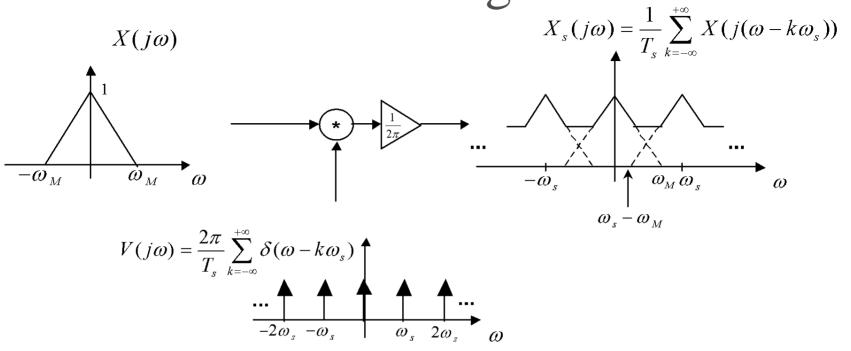
The output of the first-order-hold



 $x_1(t)$ is a piece-wise linear function of time t. $h_1(t)$ is the convolution of two unite step signals, and the spectrum of $h_1(t)$ is squared spectrum of the unite step signal: $|H_1(i\omega)| = |H_2(i\omega)|^2$



Aliasing



Aliasing occurs if $\omega_s < 2\omega_M$, where ω_M is the bandwidth of the signal, ω_s is the sampling frequency.

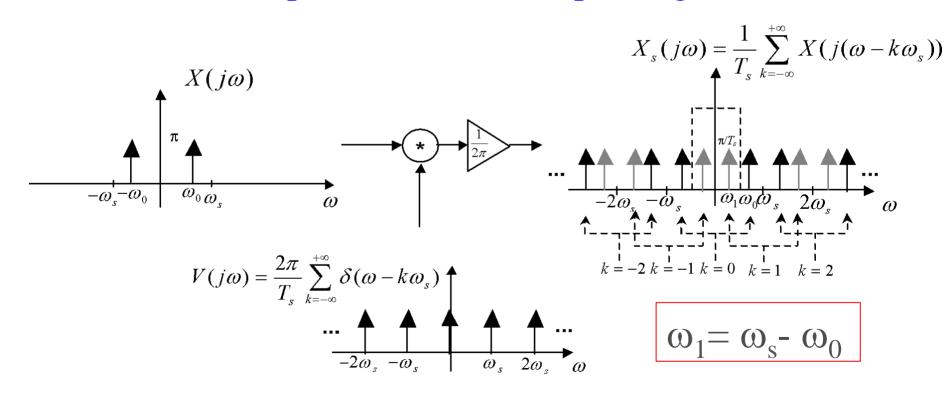
With aliasing, the original signal cannot be recovered by lowpass filtering.

Example: sampling a sinusoidal signal

A pure sinusoidal signal with frequency ω_0 is sampled at ω_{s}

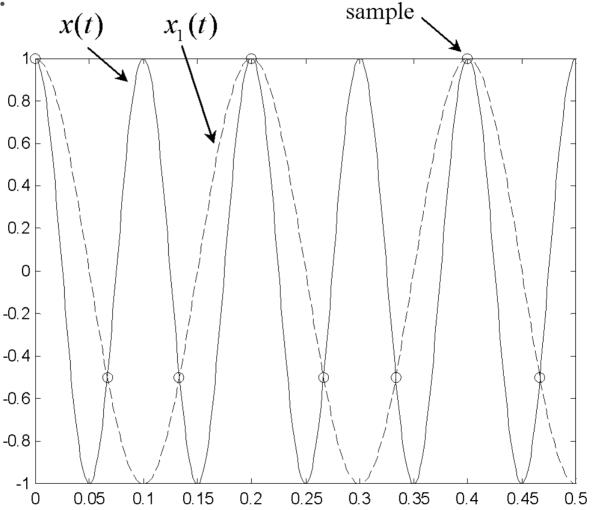
What is the spectrum of the signal?

What is the spectrum of the sampled signal?



At the output of the LPF with cutoff frequency $\omega_s/2$, we get a sinusoidal signal with a different frequency than the

original one.

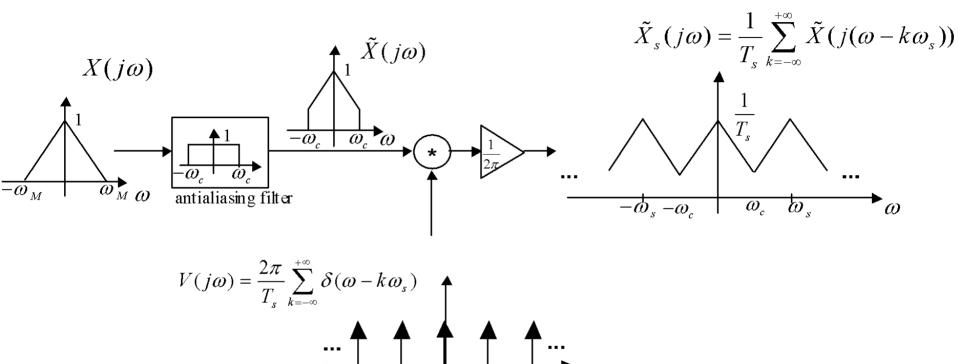


H. Den(

Anti-aliasing

To ensure that the sampled signal don't contain alias noise, use an anti-aliasing filter to limit the bandwidth of the signal to be sampled.

Anti-aliasing filter



To prevent aliasing noise, an anti-aliasing low-pass filter with a cutoff frequency $\omega_c \le \omega_s/2$ is desired.