
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

Tutorial 9

Monday, April 12 and Tuesday, April 13, 2004

Announcements

• There is no problem set due this week.

• Quiz 2 will be held on Thursday, April 15, 7:30–9:30 p.m. in Walker Memorial. The quiz will
cover material in Chapters 1–7 of O&W through Section 7.4, Lectures and Recitations through April
2, Problem Sets #1–6, and that part of Problem Set #7 involving problems from Chapter 7.

• The TAs will jointly hold office hours from 2–8 p.m. on Wednesday, April 14 and again from 10 a.m.–3
p.m. on Thursday, April 15. A schedule is posted on the 6.003 web site.

• A quiz review package is available on the 6.003 web site. TAs will hold two identical optional quiz
review sessions on Monday, April 12 and Tuesday, April 13, 7:30–9:30 p.m. in 34-101.

• Because of the Patriot’s Day holiday next week, there will be no tutorials next Monday and Tuesday,
and no lecture on Tuesday.

Today’s Agenda

• Fourier Transform Pitfalls

– 2π factors

• Sampling Pitfalls

– Impulses in the frequency domain

– Do we really have to sample at the Nyquist rate?
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1 Fourier Transform Pitfalls

1.1 2π factors

We’ve seen 2π and 1/2π factors appear all over the place in Fourier transform formulae and got headaches
trying to remember them. They all stem from the fact that we use angular frequency ω instead of cyclic
frequency, f , where ω = 2πf . We view angular frequency as being more “natural,” but many practical
problems use cyclic frequency, so we need to remember when to add in factors of 2π. With this convention,
we saw that the synthesis and analysis equations for the CT and DT Fourier transforms become:

x(t) =
1
2π

∫ +∞

−∞
X(jω)ejωt dω (CT synthesis, inverse CTFT)

X(jω) =
∫ +∞

−∞
x(t)e−jωt dt (CT analysis, CTFT)

x[n] =
1
2π

∫
2π

X(ejω)ejωn dω (DT synthesis, inverse DTFT)

X(ejω) =
+∞∑

n=−∞
x[n]e−jωn (DT analysis, DTFT)

The 2π factor is manifested in the following FT pairs and properties:

• Value of a signal at zero time

x(0) =
1
2π

∫ +∞

−∞
X(jω) dω

x[0] =
1
2π

∫
2π

X(ejω) dω

• Constant signal

x(t) = 1 F←→ X(jω) = 2πδ(ω)

x[n] = 1 F←→ X(ejω) = 2π
+∞∑

l=−∞
δ(ω − 2πl)

• Complex exponentials

x(t) = ejω0t F←→ X(jω) = 2πδ(ω − ω0)

x[n] = ejω0n F←→ X(ejω) = 2π
+∞∑

l=−∞
δ(ω − ω0 − 2πl)

• Multiplication property

r(t) = s(t)p(t) F←→ R(jω) =
1
2π

∫ +∞

−∞
S(jθ)P (j(ω − θ)) dθ =

1
2π

{S(jθ) ∗ P (jθ)}

r[n] = s[n]p[n] F←→ R(jω) =
1
2π

∫
2π

S(ejθ)P (ej(ω−θ)) dθ =
1
2π

{
S(ejθ) � P (ejθ)

}
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2 Sampling Pitfalls

2.1 Impulses in the frequency domain

We need to be careful when there are impulses in the frequency domain. Let’s consider the simplest case
where Xc(jω) = Aδ(ω) (so xc(t) = A/(2π)) and we sample xc(t) with period T . Recall that we label impulses
by the area obtained when they are integrated. I shall follow the convention of surrounding that value with
a pair of parentheses to remind us of this. To aid us in the process, let’s consider the impulse Aδ(ω) to be
the limit as ∆ → 0 of a rectangular pulse with width ∆ and height A/∆. For our purposes here, it does not
matter how this pulse is centered:

Xc(jω)

ω
∆
2−∆

2

A
∆

0

lim∆→0 Xc(jω)

ω

(A)

0

Thus, Xp(jω) has the height A/(T∆), retains the width ∆, and is replicated; the area is now A/(T∆)·∆ =
A/T :

Xp(jω)

ω
∆
2−∆

2

A
T∆

0 2π
T− 2π

T

. . .. . .

lim∆→0 Xp(jω)

ω

(
A
T

)

0 2π
T− 2π

T

. . .. . .

Finally, Xd(ejΩ) retains the height A/(T∆), but its width is T∆; the area is now A/(T∆) · T∆ = A:
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Xd

(
ejΩ

)

Ω
T∆
2−T∆

2

A
T∆

0 2π−2π

. . .. . .

lim∆→0 Xd

(
ejΩ

)

Ω

(A)

0 2π−2π

. . .. . .

But wait a minute... didn’t we say earlier that C/D conversion scaled down the FT by T? The impulse
apparently breaks our rules. But it actually follows them, because we label a impulse by its area, NOT by
its height, which is infinite. Since C/D conversion preserves the Fourier area:

Area-Invariance of Impulses in the Frequency Domain:

The labeling of an impulse in the frequency domain does not change when a
CT signal is converted into a DT sample sequence.
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2.2 Do we really have to sample at the Nyquist rate?

It was said earlier that we must sample at strictly greater than twice the highest frequency present in a
signal to recover it. However, there exist signals where sampling at exactly twice that frequency is sufficient.
Let’s look at two related examples, which will not only illustrate this point, but will also highlight the fact
that we cannot ignore phase when we analyze signals. First, let’s try to sample xc(t) = sin(ω0t) at ωs = 2ω0.

xc(t)

t
0 T 2T−T−2T

1

xp(t)

t
0 T 2T−T−2T

xr(t)

t
0 T 2T−T−2T

Xc(jω)

ω

(
π
j

)

(
−π

j

)
ω0

−ω0

0

Xp(jω)

ω

(
π
jT

) (
π
jT

) (
π
jT

) (
π
jT

)

(
− π

jT

) (
− π

jT

) (
− π

jT

) (
− π

jT

)
ω0 3ω0−ω0−3ω0 0

. . .. . .

Xr(jω)

ω
ω0−ω0 0

As we can see in both the time and frequency domains, the interpolation is zero; the two impulses in the
sine have opposing signs and exactly cancel each other out by aliasing. Since we did not satisfy Nyquist, we
should not be surprised that this happened.

Now let’s consider xc(t) = cos(ω0t):

xc(t)

t
0 T 2T−T−2T

1

xp(t)

t
0 T 2T−T−2T

(1)

(−1)

(1)

(−1)

(1)
xr(t)

t
0 T 2T−T−2T

1

Xc(jω)

ω

(π)(π)

ω0−ω0 0

Xp(jω)

ω

(
2π
T

) (
2π
T

) (
2π
T

) (
2π
T

)

ω0 3ω0−ω0−3ω0 0

. . .. . .

Xr(jω)

ω

(π)(π)

ω0−ω0 0
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Something subtle happened here. As usual, we performed bandlimited interpolation by lowpass filtering
with cutoff frequency ωs/2, which is ω0 in this case. But what happens exactly at that frequency: do we
filter out the whole thing, or do with keep the whole impulse (area 2π)? Our figures for filters were always
ambiguous as to what the value of the filter was at the cutoff frequency. We never really cared about this
sort of boundary case before, but here it is important. The time domain picture resolves this issue: it shows
that we end up with the cosine again. Since the frequency domain and time domain pictures must agree and
produce the same result, this means that we compromise and keep half of each impulse on either side! This
example confirms that:

The Value of Signals at Discontinuities:

Whenever Fourier analysis is used, we should consider the value of a signal
at discontinuities (in both time and frequency) to be the mean of its limits
from both sides. However, we can usually ignore this fact.
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Problem 9.1

(From the 6.003 Fall 2002 Quiz 2)

Answer each of the following short answer questions. All parts of this problem are independent.

(a) Evaluate
∫ ∞
−∞

sin2(4πt)
π2t2 dt.

(b) Consider a discrete-time system with input x[n] and output y[n] which are related by the following
difference equation:

y[n] = 3x[n]− x[n − 1]− 1
2
x[n − 2].

What is the value of the frequency response at ω = 0?

(c) Suppose that two continuous-time signals x(t) and y(t) have Fourier transforms X(jω) and Y (jω) that
are bandlimited (i.e. X(jω) = Y (jω) = 0 for |ω| ≥ ωm where ωm is a given real number). Is x(t)y(t)
bandlimited?

(d) If h[n] is the impulse response of a lowpass filter, does h1[n] = (−1)nh[n] correspond to the impulse
response of a lowpass, highpass, or bandpass filter?

(e) Suppose that x[n] is a purely imaginary discrete-time signal with Fourier transform X(ejω). Is Re{X(ejω)}
an even function of ω, an odd function of ω, or neither?
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(Work space)
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Problem 9.2

You want to design a system whose impulse response has the form:

h(t) = u(t)− u(t − k).

Find one possible value of k > 0 such that the when we input x(t) = cos(πt), the output will be y(t) = 0.
Hint: Think about the zero crossings of a sinc function.

(Work space)

199



Problem 9.3 Sketch the Bode plot for the magnitude and phase of the following CT LTI system

H(jω) =

(
jω
102 − 1

) (
jω
103 − 1

)
jω

(
jω
10 + 1

) (− jω
104 + 1

)
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Problem 9.4

Consider a stable and causal CT LTI system whose input x(t) and output y(t) are related by the following
difference equation:

y(t)− 1
2
y(t − 1) = x(t).

The input x(t) is:

x(t) = sinc(t) =
sinπt

πt
.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(t) = sinc(t) = (sin (π t))/(π t)

t

(a) Sketch the output y(t).

(b) Determine an analytic expression for the output y(t).

Hint: It may be easier to think in terms of DT processing of CT signals by converting the CT input to
DT, performing some equivalent DT operation, then coverting the DT output to CT.

201



(Work space)
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Problem 9.5

Let’s look at how neat CT processing of DT signals is. Consider the following DT frequency response:

Hd(ejΩ) =
{

jΩ, |Ω| < π
periodic

It can be shown by taking the inverse Fourier transform of the frequency response (you should verify this
yourself; takes integration by parts) that the impulse response h[n] is:

h[n] =
(−1)n

n
.

Now, consider the following system:

D/C ✲ Hc(jω) ✲

✻

✲ C/D

✻

✲xc(t)

T

xd[n]

T

yc(t)
yd[n]

Let’s see how we can use this to find the DT impulse response h[n]. For the rest of the problem, let the
DT input be a unit sample:

xd[n] = δ[n].

(a) Find the frequency response of the embedded CT system Hc(jω) so that the overall DT system is
equivalent to the original DT system. What a common name for this system? Find a time-domain
equation that relates xc(t) and yc(t).

(b) Find the output of the D/C converter xc(t). Hint: With what do we replace DT impulses to get a CT
interpolation?

(c) Find the output of the CT system yc(t). Hint: This is most easily done with the time-domain equation
from the first part.

(d) Find the output of the C/D converter yd[n]. Check that this is the same as (−1)n

n .
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(Work space)
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