MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

TUTORIAL 7 SOLUTIONS

Tuesday, March 30, 2004

Problem 7.1

- (a) x(t-1), delay by 1.
- (b) x(t + 0.5), advance by 0.5.
- (c) $\cos(t+1.01) + \cos[2(t+1.04)]$, advance by 1 with a little distortion.
- (d) -x(t-1), negate and delay by 1.
- (e) $e^{j}x(t-1)$, scale by e^{j} and delay by 1 (note that h(t) is not real).
- (f) x(t-1), delay by 1 (note that in general the system will severely distort an input).

Problem 7.2

- (a) The envelope is a sinc, and 2000 periods of the sinusoid fit under the center lobe of the sinc.
- (b) x(t-1), the entire signal picks up a group delay of 1.
- (c) $v(t-\tau)\cos[1000t-\phi]$, the envelope picks up a group delay of τ , while the sinusoid picks up a phase delay of ϕ radians.

Problem 7.5

- (a) 1: H_4 ; 2: H_1 and H_2 ; 3: H_5 ; 4: H_3 . (b) See below.
- (c) Yes. $H_7(j\omega) = -H_1(j\omega)$ or $-H_2(j\omega)$ or $\frac{j\omega+100}{10(j\omega-10)}$ or $-\frac{j\omega+100}{10(j\omega-10)}$.
- (d) See below.

