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Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

Tutorial 6

Monday, March 15 and Tuesday, March 16, 2004

Announcements

• Problem set 5 is due this Friday.

• Spring break is next week.

Today’s Agenda

• DT Fourier Transform and Inverse Fourier Transform

• Summary of the Four Fourier Series and Transforms

– All Fourier stuff in one table

– Basis signals

– Fourier transform of periodic signals

– Discreteness-periodicity duality

– What’s up with the 2π factors?

• Partial-Fraction Expansion

– Top-heavy rationals

– Repeated roots in the denominator

– Canonical expansions

• Inverse CT Fourier Transform of Rational Functions of jω

– How far do we need to go?

– Summary of finding the inverse Fourier transform

• Inverse DT Fourier Transform of Rational Functions of ejω

• Fourier Transforms and LTI Systems

– Differential and difference equations

• Time-Frequency Uncertainty Principle (Optional)
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1 DT Fourier Transform and Inverse Fourier Transform

Like continuous time signals, we can also write discrete time signals as the superposition of exponentials
of a continuum of frequencies. One major difference between the CT and DT synthesis-analysis equations is
that the transform X(ejω) is periodic with period 2π, so the integral in the synthesis is carried out for any
interval of length 2π:

The Discrete-Time Fourier Transform:

x[n] =
1
2π

∫
2π

X(ejω)ejωn dω (Synthesis, inverse DTFT)

X(ejω) =
+∞∑

n=−∞
x[n]e−jωn (Analysis, DTFT)

The convolution-multiplication properties are:

• DT convolution property

y[n] = h[n] ∗ x[n] F←→ Y (ejω) = H(ejω)X(ejω)

• DT multiplication property

r[n] = s[n]p[n] F←→ R(jω) =
1
2π

∫
2π

S(ejθ)P (ej(ω−θ))dθ

Note that since the DTFT is periodic, we only convolve over a period of 2π, a process called periodic
convolution.
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Problem 6.1

Compute the Fourier transform of the following signals:

(a) xa[n] = 2n sin(π
4n)u[−n].

(b) xb[n] = ( sin(πn/5)
πn ) cos( 7π

2 n).

(Work space)
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Problem 6.2

Find x[n] for the following DTFTs:

(a) Xa(ejω) = cos 2ω + sin2 ω.

(b) Xb(ejω) =
1

5
4 + cosω

.

(Work space)
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2 Summary of the Four Fourier Series and Transforms

We’ve seen four types of Fourier analysis: CT Fourier series, DT Fourier series, CT Fourier transform and
the DT Fourier transform. Here they are:

2.1 All Fourier stuff in one table

The Continuous-Time Fourier Series:

x(t) =
+∞∑

k=−∞
akejkω0t (Synthesis equation)

ak =
1
T

∫
T

x(t)e−jkω0t dt (Analysis equation)

The Discrete-Time Fourier Series:

x[n] =
∑

k=〈N〉
akejkω0n (Synthesis equation)

ak =
1
N

∑
n=〈N〉

x[n]e−jkω0n (Analysis equation.

The Continuous-Time Fourier Transform:

x(t) =
1
2π

∫ +∞

−∞
X(jω)ejωt dω (Synthesis, inverse CTFT)

X(jω) =
∫ +∞

−∞
x(t)e−jωt dt (Analysis, CTFT)

The Discrete-Time Fourier Transform:

x[n] =
1
2π

∫
2π

X(ejω)ejωn dω (Synthesis, inverse DTFT)

X(ejω) =
+∞∑

n=−∞
x[n]e−jωn (Analysis, DTFT)

Why have all these series and transforms? It’s so confusing! Let’s take a step back and think about every-
thing again. Since complex exponentials are the eigenfunctions of LTI systems, we are strongly motivated
to express signals as superpositions of these exponentials. In other words, we wanted to change basis.
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2.2 Basis signals

In Tutorial 3, we found that by setting the basis signals to be harmonically related exponentials (all with
period T = 2π/ω0, or N = 2π/ω0) indexed by the discrete variable k:

φk(t) = ejkω0t,

φk[n] = ejkω0n,

we could represent periodic signals as scaled superpositions of these basis signals:

x(t) =
+∞∑

k=−∞
akφk(t),

x[n] =
∑

k=〈N〉
akφk[n].

Note that for CT, we need to use a countably infinite number of such basis signals (k takes values at all
integers), whereas for DT, we only need to use N of them.

In Tutorial 4 and earlier in this tutorial, we found that by setting the basis signals to be exponentials
indexed by the continuous variable ω:

φω(t) = ejωt,

φω[n] = ejωn,

we could represent aperiodic signals as scaled superpositions of these basis signals. Since there the basis
index is a continuous variable, we use integrals instead of sums:

x(t) =
1
2π

∫ +∞

−∞
X(jω)φω(t) dω,

x[n] =
1
2π

∫
2π

X(ejω)φω[n] dω.

In both CT and DT, we use an uncountably infinite number of such basis signals. However, in CT we use
the entire real number line as frequencies (ω spans the space of all real numbers), whereas for DT, we only
need to use a segment of length 2π.

To extract the unique Fourier series coefficients ak and the Fourier transform X(jω) and X(ejω), we use
the following orthogonality relationships:
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1
T

∫
T

φ∗m(t)φk(t) dt =
1
T

∫
T

ej(k−m)ω0t dt = δ[m− k],
1
N

∑
n=〈N〉

φ∗m[n]φk[n] =
1
N

∑
n=〈N〉

ej(k−m)ω0n = δ[m− k],

1
2π

∫ +∞

−∞
φ∗ω′(t)φω(t) dt =

1
2π

∫ +∞

−∞
ej(ω−ω′)t dt = δ(ω′ − ω),

1
2π

+∞∑
n=∞

φ∗ω′ [n]φω[n] =
1
2π

+∞∑
n=∞

ej(ω−ω′)n = δ(ω′ − ω).

The first two are quite straightforward to show; we are integrating or summing over a finite interval, and
they result in the DT delta function. However, the second two are mysterious: we are integrating or summing
over an infinitely long interval, so the ω′ = ω case would result in infinity. How do we know its exactly the
Dirac delta function? And what’s up with the 2π factor? The answer to these questions are beyond the
scope of 6.003, and we will simply accept them as true.

2.3 Fourier transform of periodic signals

The Fourier series representation can only be used for periodic signals, but Fourier transform analysis
can be applied to a broader set of signals, including aperiodic signals. We saw that periodic signals contain
only harmonically related frequencies, namely those separated by increments of the fundamental frequency
ω0. Aperiodic signals, on the other hand, generally require a continuum of frequencies to be adequately
represented.

So, what happens if we take the Fourier transform of a periodic signal? And what’s its relationship to
the Fourier series? Since only discrete frequencies are needed, we would expect delta functions to pop up at
those frequencies (we need delta functions to keep the integral of the transform non-zero). First, let’s write
a CT periodic signal in terms of its Fourier series coefficients:

x(t) =
∞∑

k=−∞
akejkω0t

From the Fourier transform analysis equation, we have:

X(jω) =
∫ +∞

−∞
x(t)e−jωt dt.

When we plug in expression for x(t) into the above equation, we get:

X(jω) =
∫ +∞

−∞

[
+∞∑

k=−∞
akejkω0t

]
e−jωt dt

=
+∞∑

k=−∞
ak

[∫ +∞

−∞
ejkω0te−jωt dt

]

=
+∞∑

k=−∞
ak2π

[
1
2π

∫ +∞

−∞
ej(kω0−ω)t dt

]
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By orthogonality, the term in the brackets is the Dirac delta function δ(ω − kω0). So:

X(jω) =
+∞∑

k=−∞
ak2πδ(ω − kω0).

So just showed the following:

Fourier Transform of Periodic Signals:

Periodic signals with Fourier series coefficients ak, period T (N in DT), and
fundamental frequency w0 have the following Fourier transforms:

X(jω) =
+∞∑

k=−∞
2πakδ(ω − kω0)

X(ejω) =
+∞∑

k=−∞
2πakδ(ω − kω0).

In other words, the Fourier transform of a periodic signal is a train of impulses placed at the discrete
harmonic frequencies where the area of the impulse for the frequency kω0 is 2π times the corresponding
Fourier series cofficient ak. We can now write the Fourier transforms of common periodic signals.

Let’s derive the result a different way that may be more intuitive. First, note that the Fourier transform
of pure exponentials are:

ejω0t F←→ 2πδ(ω − ω0)

ejω0n F←→
+∞∑

l=−∞
2πδ(ω − ω0 − 2πl).

Now, for periodic signals with Fourier series coefficients ak, period T (N in DT), and fundamental
frequency w0, we can write the signals as:

x(t) =
+∞∑

k=−∞
akejkω0t,

x[n] =
∑

k=〈N〉
akejkω0n.

If we take the Fourier transform of both equations, we get the same result.
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2.4 Discreteness-periodicity duality

So far, we have discussed Fourier series and Fourier transforms of CT and DT signals. There were major
differences between these four transformations, such as periodicity and discreteness. But how are we supposed
to remember which ones are periodic, which ones are discrete, etc., without looking at tables or formulae?
We saw that periodic signals can be represented by a set of discrete frequencies (Fourier series sum), and that
aperiodic signals require a set of continuous frequencies (Fourier transform integral). Likewise, continuous
time signals have aperiodic representations in the frequency domain, and discrete time signals have periodic
representations in the frequency domain, regardless of whether we use Fourier series or transform. These
observations lead to the following pair of mnemonics:

Discreteness-Periodicity Duality:

If a signal is discrete in one domain, then it is periodic in the other domain.
Similarly, if a signal is continuous in one domain, then it is aperiodic in the
other domain.

If you ever find yourself lost in dealing with all sorts of time-frequency relationships, just keep this in
mind. There is a table on page 396 of the textbook that summarizes this concept. Section 5.7 of the
textbook discusses duality, or the existence of symmetries between the time and frequency representation of
signals. Dualities between two (not necessarily distinct) transformations only exist when swapping time and
frequency leads to the discreteness-periodicity properties of the other.

2.5 What’s up with the 2π factors?

We’ve seen 2π and 1/2π factors appear all over the place in Fourier transform formulae and got headaches
trying to remember them. They all stem from the fact that we use angular frequency ω instead of cyclic
frequency f , where ω = 2πf . We view angular frequency as being more “natural,” but many practical
problems use cyclic frequency, so we need to remember when to add in factors of 2π. With this convention,
we saw that the synthesis and analysis equations for the CT and DT Fourier transforms become:

x(t) =
1
2π

∫ +∞

−∞
X(jω)ejωt dω (CT synthesis, inverse CTFT)

X(jω) =
∫ +∞

−∞
x(t)e−jωt dt (CT analysis, CTFT)

x[n] =
1
2π

∫
2π

X(ejω)ejωn dω (DT synthesis, inverse DTFT)

X(ejω) =
+∞∑

n=−∞
x[n]e−jωn (DT analysis, DTFT)

We also noted that the synthesis-analysis pair becomes symmetric (no 2π factor out in front for the
synthesis equation) when we used cyclic frequency f :
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x(t) =
∫ +∞

−∞
X(f)ej2πft df (CT cyclic synthesis, inverse CTFT)

X(f) =
∫ +∞

−∞
x(t)e−j2πft dt (CT cyclic analysis, CTFT)

x[n] =
∫

2π

X(ej2πf )ej2πft df (DT cyclic synthesis, inverse DTFT)

X(ej2πf ) =
+∞∑

n=−∞
x[n]e−j2πfn (DT analysis, DTFT)

The 2π factor is manifested in the following FT pairs and properties:

• Value of a signal at zero time

x(0) =
1
2π

∫ +∞

−∞
X(jω) dω

x[0] =
1
2π

∫
2π

X(ejω) dω

• Constant signal

x(t) = 1 F←→ X(jω) = 2πδ(ω)

x[n] = 1 F←→ X(ejω) = 2π
+∞∑

l=−∞
δ(ω − 2πl)

• Complex exponentials

x(t) = ejω0t F←→ X(jω) = 2πδ(ω − ω0)

x[n] = ejω0n F←→ X(ejω) = 2π
+∞∑

l=−∞
δ(ω − ω0 − 2πl)

• Multiplication property

r(t) = s(t)p(t) F←→ R(jω) =
1
2π

∫ +∞

−∞
S(jθ)P (j(ω − θ)) dθ = 1

2π
{S(jθ) ∗ P (jθ)}

r[n] = s[n]p[n] F←→ R(jω) =
1
2π

∫
2π

S(ejθ)P (ej(ω−θ)) dθ =
1
2π

{
S(ejθ) � P (ejθ)

}

Since the cyclic frequency representation is free of 2π’s in the first place, we know that:

If we wrote all the above formulae using cyclic frequency f instead of angular
frequency ω, then all the 2π factors would disappear.
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In the cyclic frequency domain, the multiplication property would have an integral over cyclic frequency
df without a 2π. But because 2πf = ω so that df = dω/2π, a factor of 1/2π appears in the angular
frequency domain. This leads to the following rule:

Whenever we integrate over angular frequency, we need to divide by 2π.

We sometimes forget to do this when we use the shorthand notation of convolution because we don’t see
an integral. But the definition of convolution of a continuous variable contains an integral, so:

Convolution over a continuous variable is an implicit integration.

Now what about the 2π factors in front of the impulses? Keep in mind that:

Dirac delta functions (CT impulses) are always intended for use under an in-
tegral.

This statement is supposed to remind us that integrals can be (and should be) used to examine properties
of impulses. Say we were looking at the FT of a constant CT signal x(t) = 1, which is an impulse. From the
“value of a CT signal at zero time” formula, we know that 1 equals the integral of the impulse, and since we
are integrating over angular frequency, we need to divide by 2π. To compensate for this, the impulse must
have a multiplicative factor of 2π. So:

Canonical impulses in the frequency domain have a 2π factor.

“Canonical” here refers to the Fourier transform of the complex exponential and other “standard” signals.
Thus, we can extend this principle to sines and cosines, which have factors of π in their transforms.

3 Partial-Fraction Expansion

Before we jump into the inverse Fourier transform, let’s discuss partial-fraction expansion, which is useful
for rational Fourier transforms. Suppose F (x) is a rational function of x with the degree of the numerator
strictly less than the degree of the denominator. That is:

F (x) =
(x− z1)(x− z2) · · · (x− zm)
(x− p1)(x− p2) · · · (x− pn)

,

where m < n and zi, pj complex. If pi 	= pj for all i, j, then F (x) may be written as:

F (x) =
A1

x− p1 +
A2

x− p2 + · · ·+ An

x− pn
.

This is known as partial-fraction expansion, or partial-fraction decomposition. One way of finding the
coefficients Ak is by multiplying through and matching terms. For instance, suppose:

F (x) =
2x+ 1

(x+ 3)(x+ 2)
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Then,

2x+ 1
(x+ 3)(x+ 2)

=
A1

x+ 3
+

A2

x+ 2
2x+ 1 = A1(x+ 2) +A2(x+ 3)

= (A1 +A2)x+ (2A1 + 3A2)

Matching the two coefficients gives:

A1 +A2 = 2
2A1 + 3A2 = 1

Solving these two equations produces the coefficients:

A1 = 5, A2 = −3

However, solving systems of equations, even linear ones, can get rather tedious. A much faster method of
finding the coefficients is a follows:

Formula for the ith Expansion Coefficient:

The coefficient Ai in Eq. 3 can be determined by:

Ai = [(x− pi)F (x)]|x=pi

Let’s apply this analysis to our example and see why it works:

A1 = [(x− p1)F (x)] |x=p1

=
[
(x+ 3)

2x+ 1
(x+ 3)(x+ 2)

]∣∣∣∣
x=−3

=
2x+ 1
x+ 2

∣∣∣∣
x=−3

=⇒ A1 = 5

We can proceed likewise for A2. Note that the factors in the numerator and denominator cancel before
evaluation, which would have made that factor zero. Why does it work? Let’s multiply both sides of Eq. 6.1
by (x+ 3):

2x+ 1
(x+ 3)(x+ 2)

(x+ 3) =
A1

x+ 3
(x+ 3) +

A2

x+ 2
(x+ 3)

2x+ 1
x+ 2

= A1 +
A2

x+ 2
(x+ 3)
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Now, we set (x + 3) to zero, so that all terms except the one we want become zero. Then, we have the
value of A1. This is the algebra behind this trick. When we do it mechanically, it is known affectionately as
“the cover up method.” This is because we tend to use our fingers to “cover up” the terms that disappear.

3.1 Top-heavy rationals

What do we do if the rational has a numerator whose order is equal to or higher than that of the
denominator? We can use long division! For instance, suppose:

F (x) =
x2 + 4x+ 3
x2 + 4x− 5

Then,

F (x) =
(x2 + 4x− 5) + 8
x2 + 4x− 5

= 1 +
8

x2 + 4x− 5

We can do a PFE on the right part of the sum:

F (x) = 1 +
8

x2 + 4x− 5

= 1− 4/3
x+ 5

+
4/3
x− 1

3.2 Repeated roots in the denominator

Sure, but what if we have repeated roots in the denominator? Specifically:

F (x) =
(x− z1)(x− z2) · · · (x− zm)

(x− p1)k1(x− p2)k2 · · · (x− pn)kn
,

where m <
∑n

i=1 ki and zi, pj complex. Then, F (x) may be written as:

F (x) =
A10

(x− p1)k1
+

A11

(x− p1)k1−1
+ · · ·+ A1i

(x− p1)k1−i
+ · · ·+ A1k1−1

x− p1)
+

A20

(x− p2)k2
+

A21

(x− p2)k2−1
+ · · ·+ A2j

(x− p2)k2−j
+ · · ·+ A2k2−1

x− p2)
+ · · ·
+

An0

(x− pn)kn
+

An1

(x− pn)kn−1
+ · · ·+ Anl

(x− pn)kn−l
+ · · ·+ Ankn−1

x− pn)

The cofficients are:
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Formula for the Expansion Coefficient of the mth Factor and the
(km − n)th Power:

The coefficient Amn in Eq. 6.1 can be determined by:

Amn =
1
n!

[
dn

dxn
(x− pm)kmF (x)

]∣∣∣∣
x=pi

We’ll look at some examples of this later.

3.3 Canonical expansions

Particular partial fraction expansions come up so often that we should write them down once and for all
and not have to resort to the cover up method each time. You may find the following expansions useful to
put on an quiz sheet:

Canonical Partial Fraction Expansions:

1
(x+ a)(x+ b)

=
1

b−a

x+ a
+

1
a−b

x+ b

x

(x+ a)(x+ b)
=

a
a−b

x+ a
+

b
b−a

x+ b

cx+ d
(x+ a)(x+ b)

=
ac−d
a−b

x+ a
+

bc−d
b−a

x+ b

Since this is a linear procedure, scaling the expressions on the left-hand side would also scale the expansions
on the right-hand side by the same factor. Also, beware of the signs of a and b! You may want to jot down
your own versions using −a and −b.

4 Inverse CT Fourier Transform of Rational Functions of jω

Ok, so now why did we take a detour and talk about partial-fraction expansion? Well, they are useful
for finding inverse Fourier transforms. We saw in Tutorial 4 that stable CT LTI systems described by linear
constant-coefficient differential equations have frequency responses that are rational functions of jω. Thus,
we want to be able to take the inverse Fourier transform of the frequency responses of such systems to get
the impulse response.

In the previous section, we used x as the generic variable name. Since we are now looking at rational
functions of jω, we replace x with jω. Keep in mind that this is only a bookkeeping step to make partial-
fraction expansion easier.
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4.1 How far do we need to go?

Decaying sinusoids occur in many systems that we study. Straightforward calculation shows that their
Fourier transforms are:

Fourier Transforms of Decaying Sinusoids:

For real and positive α, we have the following Fourier transform pairs:

[
e−αt cosω0t

]
u(t) F←→ jω + α

(jω + α)2 + ω2
0[

e−αt sinω0t
]
u(t) F←→ ω0

(jω + α)2 + ω2
0

Believe it or not, this pair of transforms will actually affect how far we carry out partial-fraction expansion.
Consider the following Fourier transform:

X(jω) =
(jω)2 + 4jω + 11

(jω + 3)((jω)2 + 2jω + 5)

Applying our usual partial fraction expansion produces:

X(jω) =
(jω)2 + 4jω + 11

(jω + 3)((jω)2 + 2jω + 5)
=

1
jω + 3

+
j/2

jω + (1 + 2j)
+

−j/2
jω + (1− 2j)

Calculating this was a little tedious, even using the cover-up method. Is it really necessary? Since the
Fourier transform techniques are normally applied to systems in the physical world, we will usually see only
rational Fourier transforms with real coefficients. We know we can factor a nth order polynomial into a
product of first-order polynomials each containing a root. Polynomials with real coefficients have complex
conjugate roots; those factors can be pairwise combined to form quadratic polynomials (second-order) with
real coefficients. So:

Factorization of Polynomials with Real Coefficients:

A polynomial with real coefficients can be factored into first- and second-
order polynomials with real coefficients.

Second-order polynomials are in the tables, so we don’t have to factor those into first-order polynomials.

Sufficiency of Factorization:

For the purposes of finding the inverse Fourier transform, it is sufficient to
factor the denominator of a rational Fourier transform, which is a polynomial
in s with real coefficients, into first- and second-order polynomials, which have
real coefficients.
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Thus, we can expand the Fourier transform to just two terms:

X(jω) =
(jω)2 + 4jω + 11

(jω + 3)((jω)2 + 2jω + 5)
=

1
jω + 3

+
2

(jω)2 + 2jω + 5

We can complete the square on the second term to get:

X(jω) =
(jω)2 + 4jω + 11

(jω + 3)((jω)2 + 2jω + 5)
=

1
jω + 3

+
2

(jω + 1)2 + 22

Ah ha! We know how to handle the second term; it’s just a decaying sinusoid. To, the corresponding
signal is:

x(t) = e−3tu(t) +
[
e−t sin(2t)

]
u(t).

We didn’t actually have to factor the denominator completely; having second-order polynomials (quadrat-
ics) was fine. These are in the square-completed form:

1
(jω + α)2 + ω2

0

.

Thus, we didn’t have to use the quadratic formula at all; completing the square is an easier and more
useful procedure.

4.2 Summary of finding the inverse Fourier transform

If we also take top-heavy and multiple roots into account, the partial faction decompostion process in the
context of Fourier transforms can be summarized:

Finding the Inverse Fourier Transform of Rational Transforms with
Real Coefficients:

1. If the order of the numerator is equal to or greater than that of the
denominator, use synthetic division to express the transform as a poly-
nomial plus a rational polynomial with the order of the numerator less
than that of the denominator.

2. Factor the denominator into first- and second-order polynomials.

3. Do partial fraction expansion (watch for multiple roots).

4. Complete the square for second-order polynomials.

5. Use the tables to find the inverse Fourier transform of each term.

5 Inverse DT Fourier Transform of Rational Functions of e−jω

Similarly to CT, stable DT LTI systems described by linear constant-coefficient difference equations have
frequency responses that are rational functions of e−jω. The standard form of the rational functions for DT
systems is different from that of CT systems, so partial-fraction expansion is a little different. Okay, now
here’s an interesting question: should we set the generic variable x to be ejω, or should it be e−jω? We can
actually use either! But, as we will see when we do z-transforms, the x = ejω convention is preferred.
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Problem 6.3

Find the inverse DT Fourier transform xi[n] for the following Fourier transform:

(a)

Xa(ejω) =
2

1− 3
4e

−jω + 1
8e

−2jω
.

(b)

Xb(ejω) =
1

(1− 1
2e

−jω)2(1− 3
4e

−jω)

Find the inverse CT Fourier transform xi(t) of the following Fourier transform:

(c)

Xc(jω) =
jω + 2

(jω)2 + 4jω + 3
.

(d)

Xd(jω) =
(jω)2 + 7

(jω + 3)(jω + 4)
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6 Fourier Transforms and LTI Systems

In Tutorials 3 and 4, we found that complex exponentials are the eigenfunctions of LTI systems, and
thus the Fourier series coefficients of the output signal of LTI systems is the Fourier series coeffficients of
the input signal each scaled by the frequency response of the system evaluated at that frequency. This
analysis is applicable only to periodic signals. By using the Fourier transform, however, we can extend this
to aperiodic signals as well. We saw that convolution in time corresponds to multiplication in frequency.
Thus, the Fourier transform of the output signal is the product of the Fourier transform of the input signal
and the frequency response of the system, which is the Fourier transform of the impulse response.1

So, for a CT LTI system, instead of doing convolution to calculate the output y(t) when the input is x(t)
and the impulse response is h(t):

y(t) = x(t) ∗ h(t),
the following analysis may be simplier or provide more insight. First, we take the Fourier transforms of

x(t) and h(t) to get:

X(jω) =
∫ +∞

−∞
x(t)e−jωt dt,

H(jω) =
∫ +∞

−∞
h(t)e−jωt dt.

Then, we multiply the two together to get the Fourier transform of the output:

H(jω) = X(jω)H(jω).

Finally, we take the inverse Fourier transform of this to get the output signal y(t):

y(t) =
1
2π

∫ +∞

−∞
Y (jω)ejωt dω.

Thus, we have two ways of looking at LTI systems: the time domain and the frequency domain.

✲

❄

✻

✲ ✲

❄

✻

❄

✻

✲

X(jω) H(jω) Y (jω) = X(jω)H(jω)Frequency Domain

Time Domain y(t) = x(t) ∗ h(t)h(t)x(t)

The DT case is analogous.
1N.B.: Only stable LTI systems have a frequency response.
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6.1 Differential and difference equations

In general, finding transforms is difficult. However, for LTI systems described by differential and difference
equations, Fourier analysis is very straightforward for many inputs. The following steps should be used to
find the output:

Computing the Output of a Stable System Described by a Diff Eq
from the Input:

1. First compute the frequency response of the system. You can either
take the Fourier transform of the impulse response or use the differen-
tial/difference equation via the method we used in Tutorial 4. Let this
be H(jω).

2. Take the Fourier transform of the input signal. You may have to use the
Fourier transform properties and tables to do this. Let this be X(jω).

3. Multiply X(jω) by H(jω). This will be the Fourier Transform of the
output, Y (jω).

4. Take the inverse transform of Y (jω) to find y(t). You may have to use
Fourier Transform properties, polynomial long division and partial frac-
tion expansion along with Fourier Transform tables.

(a) If the expression for Y (jω) has a higher order polynomial in the
denominator vs. numerator, use partial fraction expansion.

(b) If the expression for Y (jω) has a lower order polynomial in the
denominator vs. numerator, use long division and partial fraction
expansion.

(c) If the expression for Y (jω) has a polynomial in the denominator
raised to a power greater than 1, use the differentiation property in
conjunction with one or more of the above steps.

Note that this assumes that the Fourier transforms for the signal and the
impulse response of the system exist.
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Problem 6.4

Consider a stable CT LTI system given by the following differential equation:

d2

dt2
y(t) + 4

d
dt
y(t) + 3y(t) =

d
dt
x(t) + 2x(t).

(a) Find the frequency response H(jω) of this system.

(b) Find the impulse response h(t) of this system by taking the inverse Fourier transform of H(jω). (See
Problem 6.3(c).)

(c) Find the output of this system if the input is x(t) = e−2tu(t).
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(Work space)
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Problem 6.5

When we learned about convolution, there was an issue we didn’t address. If y(t) = x(t) ∗ h(t), then is it
possible to find x(t) given y(t) and h(t)? Is this x(t) unique? In other words, is it possible to “deconvolve?”
A proper treatment of these questions requires other techniques (such as the Laplace transform), but in this
problem, we will answer it for signals with Fourier transforms.

Consider a causal stable CT LTI system with impulse response:

h(t) = e−3tu(t).

Let the output be:

y(t) = e−3tu(t)− e−4tu(t).

Find the the input signal x(t).
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Problem 6.6

Consider an LTI system S with impulse response

h(t) =
sin(4(t− 1))
π(t− 1)

.

Determine the output of S for each of the following inputs:

(a) x1(t) =
∑∞

k=0(
1
2 )

k sin(3kt)

(b) x2(t) = ( sin(2t)
πt )2

(Work space)
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7 Time-Frequency Uncertainty Principle (Optional)

Note that a “narrow” signal tends to have a “wide” Fourier transform and vice versa. The time-frequency
scaling property confirms this, namely that turning x(t) into x(at) corresponds to turning X(jω) into
1
|a|X

(
jω
a

)
. The impulse and the constant signal represent the extreme cases of this phenomenon. We

can quantify this concept by thinking in terms of probability. Let’s consider |x(t)|2 and |X(jω)|2 to be
probability density functions (PDFs), normalized by the total energy:2

||x||22 =
∫ +∞

−∞
|x(t)|2dt

||X||22 =
1
2π

∫ +∞

−∞
|X(jω)|2dω.

So, the first moments (or “mean”) of these PDFs are the expected values of t and ω:

t =
1

||x||22

∫ +∞

−∞
t|x(t)|2dt

ω =
1

||X||22

∫ +∞

−∞
ω|X(jω)|2 dω

2π
.

We can define the “standard deviation” of these PDFs as:

∆t =
1

||x||2

√∫ +∞

−∞
(t− t)2|x(t)|2dt

∆ω =
1

||X||2

√∫ +∞

−∞
(ω − ω)2|X(jω)|2 dω

2π
.

It can be shown that if x(t) falls off sufficiently quickly, specifically, if lim|t|→∞
√
tx(t) = 0, then:

∆t ·∆ω ≥ 1
2
.

This means that the product of the “spread” of the signal in the time and frequency domains is always
greater than or equal to one. This is known as the time-frequency uncertainty principle for Fourier transform
pairs. We saw in lecture that a Gaussian (or bell curve) has a Fourier transform that is also a Gaussian;
this signal is the only one that achieves equality in the above relation. Thus, the Gaussian is known as the
minimum uncertainty wave packet. In fact, we can use this theorem to prove the Heisenberg uncertainty
principle in quantum mechanics, for the corresponding wavefunctions are related through the Fourier trans-
form (with a factor of �). For instance, the wavefunction in momentum space is the Fourier transform of
that in position space. In this case, the Heisenberg uncertainty principle states that ∆x∆p ≥ �

2 , where ∆x
and ∆p are the uncertainties in position and momentum, respectively.

2The integral of a PDF is 1, so we need to divide by the total energy.
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