MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

TUTORIAL 3 SOLUTIONS

Tuesday, February 23, 2004

Problem 3.1

(a) $a_1 = a_{-1}^* = \frac{1}{2j}$ $a_2 = a_{-2}^* = \frac{1}{2}$ (b) $a_1 = 1/2, a_{-1} = -1/2$ $a_2 = a_{-2}^* = -\pi/2$ (c) $a_1 = a_{-1}^* = \frac{1}{2}$ $a_2 = a_{-2}^* = \frac{1}{2j}$ $a_4 = a_{-4}^* = \frac{1}{2}$

(d)
$$a_0 = 1/2$$

 $a_1 = a_{-1}^* = 1/2 + j\sqrt{3}/4$

(e) $a_k = 1/5, k = 0$ $a_k = \frac{\sin(k\pi/5)}{k\pi}, k \neq 0$

Problem 3.2

- (a) $(-2+j)a_k$
- (b) $e^{-jk\omega_0}a_k$
- (c) $jk\omega_0 a_k$
- (d) $a_k + 1, k = 0$ $a_{-k}, k \neq 0$
- (e) $e^{-jk\omega_0}a_{-k}$
- (f) $a_k * a_k$

Problem 3.3 $x(t) = 2\cos(\frac{\pi}{4}t + \frac{\pi}{2}) + 4\cos(\frac{\pi}{2}t + \frac{\pi}{3}) - 6\cos(\frac{5\pi}{4}t)$

Problem 3.4

Problem 3.5

Problem 3.6

(a)
$$a_0 = 3$$

 $a_1 = a_{-1}^* = 1$
 $(T = 8)$
(b) $a_0 = 1$
 $a_1 = a_{-1}^* = \frac{1}{2j}$
 $a_5 = a_{-5}^* = 1$
 $(T = 10)$
(c) $a_0 = 1$
 $a_1 = 1$
 $a_2 = a_{-2} = -\frac{1}{2}$
 $(T = 2)$

Problem 3.7

A = 1/100 $T_0 = 10$