MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science
6.003: Signals and Systems - Spring 2004

Tutorial 1 Solutions
Monday and Tuesday, February 9 and 10, 2004

Problem 1.1

(a) Rectangular: $\frac{1+j}{\sqrt{3}+j}=\frac{1+j}{\sqrt{3}+j} \cdot \frac{\sqrt{3}-j}{\sqrt{3}-j}=\frac{\sqrt{3}+1+j(\sqrt{3}-1)}{3+1}=\frac{(\sqrt{3}+1)+j(\sqrt{3}-1)}{4}$.

Polar: $\frac{1+j}{\sqrt{3}+j}=\frac{\sqrt{2} \mathrm{e}^{j \pi / 4}}{2 \mathrm{e}^{j \pi / 6}}=\frac{1}{\sqrt{2}} \mathrm{e}^{j \pi / 12}$.
You can verify that these are equivalent.
(b) $\mathrm{e}^{j}+\mathrm{e}^{3 j}=\mathrm{e}^{2 j}\left(\mathrm{e}^{-j}+\mathrm{e}^{j}\right)=\mathrm{e}^{2 j}(2 \cos 1)$. So, the magnitude is $2 \cos 1$ and the phase is 2 .
(c) $(\sqrt{3}-j)^{8}=\left(2 \mathrm{e}^{-j \pi / 6}\right)^{8}=2^{8} \mathrm{e}^{8(-j \pi / 6)}=256 \mathrm{e}^{-j 4 \pi / 3}=-128+j 128 \sqrt{3}$.
(d) $\int_{0}^{\infty} \mathrm{e}^{-2 t} \cos (\pi t) \mathrm{d} t=\int_{0}^{\infty} \mathrm{e}^{-2 t} 2\left(\mathrm{e}^{j \pi t}+\mathrm{e}^{-j \pi t}\right) \mathrm{d} t=2\left(\int_{0}^{\infty} \mathrm{e}^{(-2+j \pi) t} \mathrm{~d} t+\int_{0}^{\infty} \mathrm{e}^{(-2-j \pi) t} \mathrm{~d} t\right)$ $=2\left(\left.\frac{1}{-2+j \pi} \mathrm{e}^{(-2+j \pi) t}\right|_{0} ^{\infty}+\left.\frac{1}{-2-j \pi} \mathrm{e}^{(-2-j \pi) t}\right|_{0} ^{\infty}\right)=\frac{2}{4+\pi^{2}}$.
(e) Let r be the magnitude of z and θ be the phase of z. Then, $\frac{1-z^{n}}{1-z}=\sum_{k=0}^{n-1} z^{k}=\sum_{k=0}^{n-1}\left(r \mathrm{e}^{j \theta}\right)^{k}=$ $\sum_{k=0}^{n-1} r^{k} \mathrm{e}^{j k \theta}$. So, $R e\left\{\frac{1-z^{n}}{1-z}\right\}=\operatorname{Re}\left\{\sum_{k=0}^{n-1} r^{k} \mathrm{e}^{j k \theta}\right\}=\sum_{k=0}^{n-1} r^{k} R e\left\{\mathrm{e}^{j k \theta}\right\}=\sum_{k=0}^{n-1} r^{k} \cos (k \theta)$.
(f) There are often several ways of manipulating complex numbers, even for the simplest cases. Knowing which method solves a particular problem is easiest or most insightful is a skill that would be useful to acquire in the course of learning 6.003.

Example 1.2

All three methods produce the same result:

Problem 1.3

(a) Periodic. The period is $\frac{2 \pi}{3 \pi / 2}=\frac{4}{3}$.
(b) Periodic. We have $2 \pi(3)=\frac{3 \pi}{2}(4)$, and 3 and 4 share no common factors, so the period is 4 .
(c) Periodic. The period is $\operatorname{LCM}(4 / 3,6)=12$.
(d) Periodic. The period is $\operatorname{LCM}(4,6)=12$.
(e) Not periodic. $4 / 3$ and 2π are incommensurate numbers, i.e. their ratio is irrational.
(f) Not periodic. There exist no integers m and N such that $3 N=2 \pi m$.
(g) Periodic. Even though each signal has fundamental period 2, the fundamental period of $x_{g}(t)$ is 1 .

Problem 1.4

(a) $x[n]=-\delta[n+1]+2 \delta[n-1]-\delta[n-2]$.
(b) $x[n]=-u[n+1]+u[n]+2 u[n-1]-3 u[n-2]+u[n-3]$.

Problem 1.5

System	Stable	Causal	Linear	Time-Invariant
a	No	Yes	Yes	Yes
b	No	No	Yes	No
c	Yes	No	Yes	No
d	Yes	Yes	No	Yes
e	Yes	Yes	No	Yes

Problem 1.6

(a) True.
(b) True.
(c) True.
(d) False. Let system 1 do $x(t) \rightarrow y(t)$ and system 2 do $y(t) \rightarrow z(t)$. If $y(t)=\mathrm{e}^{j \pi t} x(t)$ and $z(t)=\mathrm{e}^{-j \pi t} y(t)$, we see that each system is time-varying, but the overall system is $z(t)=x(t)$, which is time-invariant.

