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Problem 1.1
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You can verify that these are equivalent.

(b) ej + e3j = e2j
(

e−j + ej
)

= e2j (2 cos 1). So, the magnitude is 2 cos 1 and the phase is 2.
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(e) Let r be the magnitude of z and θ be the phase of z. Then, 1−zn
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(f) There are often several ways of manipulating complex numbers, even for the simplest cases. Knowing
which method solves a particular problem is easiest or most insightful is a skill that would be useful to
acquire in the course of learning 6.003.

Example 1.2

All three methods produce the same result:
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Problem 1.3

(a) Periodic. The period is 2π
3π/2 = 4

3 .

(b) Periodic. We have 2π(3) = 3π
2 (4), and 3 and 4 share no common factors, so the period is 4.

(c) Periodic. The period is LCM(4/3, 6) = 12.
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(d) Periodic. The period is LCM(4, 6) = 12.

(e) Not periodic. 4/3 and 2π are incommensurate numbers, i.e. their ratio is irrational.

(f) Not periodic. There exist no integers m and N such that 3N = 2πm.

(g) Periodic. Even though each signal has fundamental period 2, the fundamental period of xg(t) is 1.

Problem 1.4

(a) x[n] = −δ[n + 1] + 2δ[n − 1] − δ[n − 2].

(b) x[n] = −u[n + 1] + u[n] + 2u[n − 1] − 3u[n − 2] + u[n − 3].

Problem 1.5

System Stable Causal Linear Time-Invariant

a No Yes Yes Yes
b No No Yes No
c Yes No Yes No
d Yes Yes No Yes
e Yes Yes No Yes

Problem 1.6

(a) True.

(b) True.

(c) True.

(d) False. Let system 1 do x(t) → y(t) and system 2 do y(t) → z(t). If y(t) = ejπtx(t) and z(t) = e−jπty(t),
we see that each system is time-varying, but the overall system is z(t) = x(t), which is time-invariant.
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