MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science
6.003: Signals and Systems - Spring 2004

Tutorial 12 Solutions
Tuesday, May 11, 2004

Problem 12.1

(a) $X_{a}(z)=3 z^{4}-z^{3}+2 z^{2} \quad$ ROC: All z except ∞
(b) $X_{b}(z)=3 z-1+2 z^{-1} \quad$ ROC: All z except 0 and ∞
(c) $X_{c}(z)=3 z^{-1}-z^{-2}+2 z^{-3} \quad$ ROC: All z except 0
(d) $X_{d}(z)=3 \quad$ ROC: All z

Problem 12.2 $\quad X(z)=\frac{2+3 z^{-1}-z^{-2}}{1-z^{-3}}$

Problem 12.3

(a) (i) $x[n]=-3\left(\frac{1}{2}\right)^{n} u[-n-1]-\left(-\frac{1}{3}\right)^{n} u[-n-1]$
(ii) $x[n]=-3\left(\frac{1}{2}\right)^{n} u[-n-1]+\left(-\frac{1}{3}\right)^{n} u[n]$
(iii) $x[n]=3\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]$
(b) $\frac{-(-1)^{n}}{n} u[n-1]$

Problem 12.4

(a) $x_{a}[n]=\delta[n]+2 \delta[n-2]-5 \delta[n-3]$
(b) $x_{b}[n]=\delta[n+1]-\frac{1}{3!} \delta[n+3]+\frac{1}{5!} \delta[n+5]-\frac{1}{7!} \delta[n+7]+\frac{1}{9!} \delta[n+9]-\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{n!} \delta[n+2 k+1]$

Problem 12.5 We are tempted to use the convolution property of z-transforms, i.e., we multiply the z-transform $X(z)$ of the input by the transfer function $H(z)$ to obtain the z-transform $Y(z)$ of the output, then we take the inverse z-transform of $Y(z)$ to produce the output in time $y[n]$. The problem here is that $x[n]$ does not have a z-transform, so we write $x[n]$ in a more suggestive form:

$$
\begin{aligned}
x[n] & =\left(\frac{1}{2}\right)^{n} \sin \left(\frac{\pi}{3} n\right) \\
& =\left(\frac{1}{2}\right)^{n} \frac{1}{2 j}\left(e^{j \frac{\pi}{3} n}-e^{-j \frac{\pi}{3} n}\right) \\
\Longrightarrow x[n] & =\frac{1}{2 j}\left[\left(\frac{1}{2} e^{j \frac{\pi}{3}}\right)^{n}-\left(\frac{1}{2} e^{-j \frac{\pi}{3}}\right)^{n}\right] .
\end{aligned}
$$

Note that $x[n]$ is a linear combination of complex exponentials of the form z_{0}^{n}, where:

$$
z_{0}=\frac{1}{2} e^{ \pm j \frac{\pi}{3}}
$$

Thus, we can use the eigenfunction property of LTI systems. If the input is:

$$
x_{0}[n]=z_{0}^{n},
$$

then the output is the input scaled by the transfer function evaluated at z_{0} :

$$
y_{0}[n]=H\left(z_{0}\right) z_{0}^{n} .
$$

The output $y[n]$ is therefore:

$$
y[n]=\frac{1}{2 j}\left[H\left(\frac{1}{2} e^{j \frac{\pi}{3}}\right)\left(\frac{1}{2} e^{j \frac{\pi}{3}}\right)^{n}-H\left(\frac{1}{2} e^{-j \frac{\pi}{3}}\right)\left(\frac{1}{2} e^{-j \frac{\pi}{3}}\right)^{n}\right] .
$$

So, we get:

$$
\begin{aligned}
H\left(\frac{1}{2} e^{ \pm j \frac{\pi}{3}}\right) & =\left.\frac{1}{z^{3}+2 \sqrt{2} z^{3 / 2}+\frac{1}{8}}\right|_{z=\frac{1}{2} e^{ \pm j \frac{\pi}{3}}} \\
& =\frac{1}{\left(\frac{1}{2} e^{ \pm j \frac{\pi}{3}}\right)^{3}+2 \sqrt{2}\left(\frac{1}{2} e^{ \pm j \frac{\pi}{3}}\right)^{3 / 2}+\frac{1}{8}} \\
& =\frac{1}{\frac{1}{8} e^{ \pm j \pi}+2 \sqrt{2}\left(\frac{1}{2 \sqrt{2}} e^{ \pm j \frac{\pi}{2}}\right)+\frac{1}{8}} \\
& =\frac{1}{-\frac{1}{8} \pm j+\frac{1}{8}} \\
\Longrightarrow H\left(\frac{1}{2} e^{ \pm j \frac{\pi}{3}}\right) & =\mp j
\end{aligned}
$$

Therefore, the output $y[n]$ is:

$$
\begin{aligned}
y[n] & =\frac{1}{2 j}\left[-j\left(\frac{1}{2} e^{j \frac{\pi}{3}}\right)^{n}-j\left(\frac{1}{2} e^{-j \frac{\pi}{3}}\right)^{n}\right] \\
& =\left(\frac{1}{2}\right)^{n} \frac{-j}{2 j}\left[\left(e^{j \frac{\pi}{3}}\right)^{n}+\left(e^{-j \frac{\pi}{3}}\right)^{n}\right] \\
\Longrightarrow y[n] & =-\left(\frac{1}{2}\right)^{n} \cos \left(\frac{\pi}{3} n\right) .
\end{aligned}
$$

Problem $12.6 \quad h[n]=u[n+1]$
This is a right-sided signal, but since it becomes non-zero at time $\mathrm{n}=-1$ it is non-causal.

Problem 12.7

1. $H(z)=\frac{1}{1+\frac{5}{2} z^{-1}-\frac{3}{2} z^{-2}}$
2. $H(z)=\frac{\frac{6}{7}}{1+3 z^{-1}}+\frac{\frac{1}{7}}{1-\frac{1}{2} z^{-1}}$
3. Poles at -3 and $-\frac{1}{2}$.
4. If the system is causal, the ROC is $|z|>3$.

If the system is stable, the ROC is $3>|z|>\frac{1}{2}$.
5. If the system is causal, then $h[n]=\left[\frac{6}{7}(-3)^{n}+\frac{1}{7}\left(\frac{1}{2}\right)^{n}\right] u[n]$.

If the system is stable, then $h[n]=\left(-\frac{6}{7}\right)(-3)^{n} u[-n-1]+\left(\frac{1}{7}\right)\left(\frac{1}{2}\right)^{n} u[n]$.
Problem 12.8

Diagram	Impulse Response	$\left\|H\left(e^{j \omega}\right)\right\|$
I	D	6
II	F	2
III	E	5
IV	B	4
V	C	1
VI	A	3

