MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

TUTORIAL 12 SOLUTIONS

Tuesday, May 11, 2004

Problem 12.1

- (a) $X_a(z) = 3z^4 z^3 + 2z^2$ ROC: All z except ∞
- (b) $X_b(z) = 3z 1 + 2z^{-1}$ ROC: All z except 0 and ∞
- (c) $X_c(z) = 3z^{-1} z^{-2} + 2z^{-3}$ ROC: All z except 0
- (d) $X_d(z) = 3$ ROC: All z

Problem 12.2
$$X(z) = \frac{2+3z^{-1}-z^{-2}}{1-z^{-3}}$$

Problem 12.3

(a) (i)
$$x[n] = -3\left(\frac{1}{2}\right)^n u[-n-1] - \left(-\frac{1}{3}\right)^n u[-n-1]$$

(ii) $x[n] = -3\left(\frac{1}{2}\right)^n u[-n-1] + \left(-\frac{1}{3}\right)^n u[n]$
(iii) $x[n] = 3\left(\frac{1}{2}\right)^n u[n] + \left(-\frac{1}{3}\right)^n u[n]$
(b) $\frac{-(-1)^n}{n}u[n-1]$

Problem 12.4

(a)
$$x_a[n] = \delta[n] + 2\delta[n-2] - 5\delta[n-3]$$

(b) $x_b[n] = \delta[n+1] - \frac{1}{3!}\delta[n+3] + \frac{1}{5!}\delta[n+5] - \frac{1}{7!}\delta[n+7] + \frac{1}{9!}\delta[n+9] - \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{n!}\delta[n+2k+1]$

Problem 12.5 We are tempted to use the convolution property of z-transforms, *i.e.*, we multiply the z-transform X(z) of the input by the transfer function H(z) to obtain the z-transform Y(z) of the output, then we take the inverse z-transform of Y(z) to produce the output in time y[n]. The problem here is that x[n] does not have a z-transform, so we write x[n] in a more suggestive form:

$$x[n] = \left(\frac{1}{2}\right)^{n} \sin\left(\frac{\pi}{3}n\right)$$

= $\left(\frac{1}{2}\right)^{n} \frac{1}{2j} \left(e^{j\frac{\pi}{3}n} - e^{-j\frac{\pi}{3}n}\right)$
 $\implies x[n] = \frac{1}{2j} \left[\left(\frac{1}{2}e^{j\frac{\pi}{3}}\right)^{n} - \left(\frac{1}{2}e^{-j\frac{\pi}{3}}\right)^{n}\right].$

Note that x[n] is a linear combination of complex exponentials of the form z_0^n , where:

$$z_0 = \frac{1}{2} e^{\pm j \frac{\pi}{3}}$$

Thus, we can use the eigenfunction property of LTI systems. If the input is:

$$x_0[n] = z_0^n,$$

then the output is the input scaled by the transfer function evaluated at z_0 :

$$y_0[n] = H(z_0)z_0^n.$$

The output y[n] is therefore:

$$y[n] = \frac{1}{2j} \left[H\left(\frac{1}{2}e^{j\frac{\pi}{3}}\right) \left(\frac{1}{2}e^{j\frac{\pi}{3}}\right)^n - H\left(\frac{1}{2}e^{-j\frac{\pi}{3}}\right) \left(\frac{1}{2}e^{-j\frac{\pi}{3}}\right)^n \right].$$

So, we get:

$$\begin{split} H\left(\frac{1}{2}e^{\pm j\frac{\pi}{3}}\right) &= \frac{1}{z^3 + 2\sqrt{2}z^{3/2} + \frac{1}{8}} \left|_{z=\frac{1}{2}e^{\pm j\frac{\pi}{3}}} \right. \\ &= \frac{1}{\left(\frac{1}{2}e^{\pm j\frac{\pi}{3}}\right)^3 + 2\sqrt{2}\left(\frac{1}{2}e^{\pm j\frac{\pi}{3}}\right)^{3/2} + \frac{1}{8}} \\ &= \frac{1}{\frac{1}{\frac{1}{8}e^{\pm j\pi} + 2\sqrt{2}\left(\frac{1}{2\sqrt{2}}e^{\pm j\frac{\pi}{2}}\right) + \frac{1}{8}}} \\ &= \frac{1}{-\frac{1}{8}\pm j + \frac{1}{8}} \\ &\Longrightarrow \quad H\left(\frac{1}{2}e^{\pm j\frac{\pi}{3}}\right) = \mp j \end{split}$$

Therefore, the output y[n] is:

$$y[n] = \frac{1}{2j} \left[-j \left(\frac{1}{2} e^{j\frac{\pi}{3}} \right)^n - j \left(\frac{1}{2} e^{-j\frac{\pi}{3}} \right)^n \right]$$
$$= \left(\frac{1}{2} \right)^n \frac{-j}{2j} \left[\left(e^{j\frac{\pi}{3}} \right)^n + \left(e^{-j\frac{\pi}{3}} \right)^n \right]$$
$$\implies y[n] = -\left(\frac{1}{2} \right)^n \cos\left(\frac{\pi}{3} n \right).$$

Problem 12.6 h[n] = u[n+1]This is a right-sided signal, but since it becomes non-zero at time n=-1 it is non-causal.

Problem 12.7

- 1. $H(z) = \frac{1}{1 + \frac{5}{2}z^{-1} \frac{3}{2}z^{-2}}$
- 2. $H(z) = \frac{\frac{6}{7}}{1+3z^{-1}} + \frac{\frac{1}{7}}{1-\frac{1}{2}z^{-1}}$
- 3. Poles at -3 and $-\frac{1}{2}$.
- 4. If the system is causal, the ROC is |z| > 3. If the system is stable, the ROC is $3 > |z| > \frac{1}{2}$.
- 5. If the system is causal, then $h[n] = \left[\frac{6}{7}\left(-3\right)^n + \frac{1}{7}\left(\frac{1}{2}\right)^n\right]u[n]$. If the system is stable, then $h[n] = \left(-\frac{6}{7}\right)\left(-3\right)^n u[-n-1] + \left(\frac{1}{7}\right)\left(\frac{1}{2}\right)^n u[n]$.

Problem 12.8

Diagram	Impulse Response	$ H(e^{j\omega}) $
Ι	D	6
II	F	2
III	Ε	5
IV	В	4
V	C	1
VI	А	3