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Problem 11.1

(a)

Vo(s) = A[V+(s)− V−(s)]

V+(s) =
1/(sC)

R + 1/(sC)
Vi(s)

V−(s) =
1
2
[Vi(s) + Vo(s)]

(b)

G1(s) =
1/(sC)

R + 1/(sC)
G2(s) = A

G3(s) =
1
2

(c) To get G1(s) into the form of Black’s formula H(s)
1+G(s)H(s) , we divide the numerator and denominator by

R to get:

G1(s) =
1/(sRC)

1 + 1/(sRC)
.

We see that the forward path system function is 1/(sRC), and the feedback path system function is 1
(unity feedback). 1/(sRC) is the cascade of an integrator 1/s and a gain 1/(RC), so we get the following
block diagram for G1(s):

✲

✻

�+
+

−
✲ 1

RC
✲ 1

s
✲

x(t) y(t)

G1(s)

257



(d) We plug the second two equations from part (a) for V+(s) and V−(s) into the first equation for Vo(s),
and solve for H(s). We then take the limit as A → ∞. There is a pole at −1

RC and a zero at 1
RC . The

pole-zero diagram is shown below:
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(e)

|H(jω)| =
∣
∣
∣
∣−

jω − 1
RC

jω + 1
RC
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∣
∣
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∣
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∣
∣
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(− 1
RC
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ω2 +
(

1
RC

)2

−→ |H(jω)| = 1, for all ω.

Problem 11.2

(a) Hp(s) has two poles at ±j. The pole-zero diagram and step response are shown below. Since the real
part of j is not negative, Hp(s) is unstable. This is an undamped second-order system, so its step
response is a right-sided everlasting sinusoid:
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(b) (i) The closed-loop transfer function is:

Q(s) =
Hc(s)Hp(s)

1 + Hc(s)Hp(s)
=

K

s2 + K + 1
.

(ii) The poles are at ±j
√

K + 1. If K ≥ −1, both poles are purely imaginary and lie on the jω axis,
and the system is unstable. If K ≤ −1, both poles are real, but one is positive and the other
is negative, so the system is unstable. Thus, we cannot stabilize the system with a proportional
controller.

(c) (i) The closed-loop transfer function is:

Q(s) =
Hc(s)Hp(s)

1 + Hc(s)Hp(s)
=

As + B

s2 + As + (B + 1)
.

(ii) According to Routh and Hurwitz, we need A > 0 and B+1 > 0. Thus, we need A > 0 and B > −1.

(iii) The transfer function from the input x(t) to the error e(t) is:

E

X
(s) =

1
1 + Hc(s)Hp(s)

=
s2 + 1

s2 + As + (B + 1)
.

The steady-state error is:

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
sX(s)

E

X
(s) = lim

s→0
s · 1

s
· s2 + 1
s2 + As + (B + 1)

=
1

B + 1
.

(d) (i) The closed-loop transfer function is:

Q(s) =
Hc(s)Hp(s)

1 + Hc(s)Hp(s)
=

As2 + Bs + C

s3 + As2 + (B + 1)s + C
.

(ii) According to Routh and Hurwitz, we need A > 0, B + 1 > 0, C > 0 and A(B + 1) > C. Thus, we
need A > 0, B > −1, C > 0 and A(B + 1) > C.
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(iii) The transfer function from the input x(t) to the error e(t) is:

E

X
(s) =

1
1 + Hc(s)Hp(s)

=
s(s2 + 1)

s3 + As2 + (B + 1)s + C
.

The steady-state error is:

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
sX(s)

E

X
(s) = lim

s→0
s · 1

s
· s(s2 + 1)
s3 + As2 + (B + 1)s + C

= 0.

A PID controller enables us to stabilize the system and have steady-state error.

Problem 11.3

(a) Open-loop pole: 1. Open-loop zero: one at infinity. Characteristic equation: 0 = 1+KL0(s) = 1+ K
s−1 =

s − (1 − K). Thus, the single closed-loop pole is at 1 − K. We need K > 1 to make the closed-loop
system stable. The root locus plot is shown below:
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(b) Open-loop poles: two at the origin. Open-loop zeros: one at -1, one at infinity. Characteristic equation:
0 = 1 + KL0(s) = 1 + K(s+1)

s2 = s2 + Ks + K. Thus, the closed-loop poles are at:

p± =
−K ±√

K2 − 4K
2

.

When 0 < K < 4, p± are both complex. When K = 4, p+ = p− = −2 (both poles meet at -2). When
K > 4, p+ → −1 and p− → −∞ (both real). When K < 0, p+ → +∞ and p− → −1 (both real).
According to Routh and Hurwitz, we need K > 0 to make the closed-loop system stable. The root locus
plot is shown below:
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(c) Open-loop poles: -2, -3. Open-loop zeros: two at infinity. Characteristic equation: 0 = 1 + KL0(s) =
1 + K

(s+2)(s+3) = s2 + 5s + (6 + K). Thus, the closed-loop poles are at:

p± =
−5±√

1− 4K
2

.

When 0 < K < 1
4 , p± are beteen -3 and -2. When K = 1

4 , p+ = p− = −2.5 (both poles meet at -2.5).
When K > 1

4 , both poles are complex and have -2.5 as their real part; the imaginary parts go to ±∞.
When K < 0, both closed-loop poles are real and grow further apart. According to Routh and Hurwitz,
we need K > −6 to make the closed-loop system stable. The root locus plot is shown below:
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(d) Open-loop poles: -2, -3. Open-loop zeros: -1, 2. Each open-loop pole is paired up with an explicit open-
loop zero, so there are no open-loop zeros or poles at infinity. Characteristic equation: 0 = 1+KL0(s) =
1 + K(s+1)(s−2)

(s+2)(s+3) = (K + 1)s2 + (5− K)s + (6− 2K). Thus, the closed-loop poles are at:

p± =
K − 5±√

9K2 − 26K + 1
2(K + 1)

.
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When K > 0, the closed-loop poles move toward each other. When K ≈ 0.3899, the poles meet at
around -2.387 (on the real axis). As K is increased further, the poles become complex and move in a
curved manner back toward the real axis. When K ≈ 2.8499, they meet on the real axis again at around
-0.279. As K is increased, they move apart toward the open-loop zeros. When K = 3, one of the poles
hits the jω-axis. When K < 0, both closed-loop poles are real. One moves from -2 (open-loop pole) to
-1 (open-loop zero). The other one starts at -3 and heads towards negative infinity. When K = −1, it
hits infinity and starts coming back (“wrap around”) on the positive real axis toward 2 (open-loop zero).
Overall, the closed-loop system is stable when −1 < K < 3. The root locus plot is shown below:
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The wrap around effect for p− is interesting, and it can be verified that it actually happens. The following
shows the location of p− as a function of K. We see that as K goes from 0 to -1, p− goes from -3 down
to negative infinity. As K goes from -1 down to negative infinity, p− goes from positive infinity down to
2.
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