6.003: Signals and Systems - Spring 2004

Tutorial 11 Solutions

Tuesday, May 4, 2004

Problem 11.1

(a)

$$
\begin{aligned}
V_{o}(s) & =A\left[V_{+}(s)-V_{-}(s)\right] \\
V_{+}(s) & =\frac{1 /(s C)}{R+1 /(s C)} V_{i}(s) \\
V_{-}(s) & =\frac{1}{2}\left[V_{i}(s)+V_{o}(s)\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
G_{1}(s) & =\frac{1 /(s C)}{R+1 /(s C)} \\
G_{2}(s) & =A \\
G_{3}(s) & =\frac{1}{2}
\end{aligned}
$$

(c) To get $G_{1}(s)$ into the form of Black's formula $\frac{H(s)}{1+G(s) H(s)}$, we divide the numerator and denominator by R to get:

$$
G_{1}(s)=\frac{1 /(s R C)}{1+1 /(s R C)}
$$

We see that the forward path system function is $1 /(s R C)$, and the feedback path system function is 1 (unity feedback). $1 /(s R C)$ is the cascade of an integrator $1 / s$ and a gain $1 /(R C)$, so we get the following block diagram for $G_{1}(s)$:

(d) We plug the second two equations from part (a) for $V_{+}(s)$ and $V_{-}(s)$ into the first equation for $V_{o}(s)$, and solve for $H(s)$. We then take the limit as $A \rightarrow \infty$. There is a pole at $\frac{-1}{R C}$ and a zero at $\frac{1}{R C}$. The pole-zero diagram is shown below:

(e)

$$
\begin{aligned}
|H(j \omega)| & =\left|-\frac{j \omega-\frac{1}{R C}}{j \omega+\frac{1}{R C}}\right| \\
& =\frac{\left|j \omega-\frac{1}{R C}\right|}{\left|j \omega+\frac{1}{R C}\right|} \\
& =\frac{\omega^{2}+\left(-\frac{1}{R C}\right)^{2}}{\omega^{2}+\left(\frac{1}{R C}\right)^{2}} \\
\longrightarrow|H(j \omega)| & =1, \text { for all } \omega .
\end{aligned}
$$

Problem 11.2

(a) $H_{p}(s)$ has two poles at $\pm j$. The pole-zero diagram and step response are shown below. Since the real part of j is not negative, $H_{p}(s)$ is unstable. This is an undamped second-order system, so its step response is a right-sided everlasting sinusoid:

(b) (i) The closed-loop transfer function is:

$$
Q(s)=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}=\frac{K}{s^{2}+K+1}
$$

(ii) The poles are at $\pm j \sqrt{K+1}$. If $K \geq-1$, both poles are purely imaginary and lie on the $j \omega$ axis, and the system is unstable. If $K \leq-1$, both poles are real, but one is positive and the other is negative, so the system is unstable. Thus, we cannot stabilize the system with a proportional controller.
(c) (i) The closed-loop transfer function is:

$$
Q(s)=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}=\frac{A s+B}{s^{2}+A s+(B+1)}
$$

(ii) According to Routh and Hurwitz, we need $A>0$ and $B+1>0$. Thus, we need $A>0$ and $B>-1$.
(iii) The transfer function from the input $x(t)$ to the error $e(t)$ is:

$$
\frac{E}{X}(s)=\frac{1}{1+H_{c}(s) H_{p}(s)}=\frac{s^{2}+1}{s^{2}+A s+(B+1)}
$$

The steady-state error is:

$$
\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s X(s) \frac{E}{X}(s)=\lim _{s \rightarrow 0} s \cdot \frac{1}{s} \cdot \frac{s^{2}+1}{s^{2}+A s+(B+1)}=\frac{1}{B+1}
$$

(d) (i) The closed-loop transfer function is:

$$
Q(s)=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}=\frac{A s^{2}+B s+C}{s^{3}+A s^{2}+(B+1) s+C}
$$

(ii) According to Routh and Hurwitz, we need $A>0, B+1>0, C>0$ and $A(B+1)>C$. Thus, we need $A>0, B>-1, C>0$ and $A(B+1)>C$.
(iii) The transfer function from the input $x(t)$ to the error $e(t)$ is:

$$
\frac{E}{X}(s)=\frac{1}{1+H_{c}(s) H_{p}(s)}=\frac{s\left(s^{2}+1\right)}{s^{3}+A s^{2}+(B+1) s+C}
$$

The steady-state error is:

$$
\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s X(s) \frac{E}{X}(s)=\lim _{s \rightarrow 0} s \cdot \frac{1}{s} \cdot \frac{s\left(s^{2}+1\right)}{s^{3}+A s^{2}+(B+1) s+C}=0
$$

A PID controller enables us to stabilize the system and have steady-state error.

Problem 11.3

(a) Open-loop pole: 1. Open-loop zero: one at infinity. Characteristic equation: $0=1+K L_{0}(s)=1+\frac{K}{s-1}=$ $s-(1-K)$. Thus, the single closed-loop pole is at $1-K$. We need $K>1$ to make the closed-loop system stable. The root locus plot is shown below:

(b) Open-loop poles: two at the origin. Open-loop zeros: one at -1 , one at infinity. Characteristic equation: $0=1+K L_{0}(s)=1+\frac{K(s+1)}{s^{2}}=s^{2}+K s+K$. Thus, the closed-loop poles are at:

$$
p_{ \pm}=\frac{-K \pm \sqrt{K^{2}-4 K}}{2} .
$$

When $0<K<4, p_{ \pm}$are both complex. When $K=4, p_{+}=p_{-}=-2$ (both poles meet at -2). When $K>4, p_{+} \rightarrow-1$ and $p_{-} \rightarrow-\infty$ (both real). When $K<0, p_{+} \rightarrow+\infty$ and $p_{-} \rightarrow-1$ (both real). According to Routh and Hurwitz, we need $K>0$ to make the closed-loop system stable. The root locus plot is shown below:

(c) Open-loop poles: $-2,-3$. Open-loop zeros: two at infinity. Characteristic equation: $0=1+K L_{0}(s)=$ $1+\frac{K}{(s+2)(s+3)}=s^{2}+5 s+(6+K)$. Thus, the closed-loop poles are at:

$$
p_{ \pm}=\frac{-5 \pm \sqrt{1-4 K}}{2}
$$

When $0<K<\frac{1}{4}, p_{ \pm}$are beteen -3 and -2 . When $K=\frac{1}{4}, p_{+}=p_{-}=-2.5$ (both poles meet at -2.5). When $K>\frac{1}{4}$, both poles are complex and have -2.5 as their real part; the imaginary parts go to $\pm \infty$. When $K<0$, both closed-loop poles are real and grow further apart. According to Routh and Hurwitz, we need $K>-6$ to make the closed-loop system stable. The root locus plot is shown below:

(d) Open-loop poles: $-2,-3$. Open-loop zeros: $-1,2$. Each open-loop pole is paired up with an explicit openloop zero, so there are no open-loop zeros or poles at infinity. Characteristic equation: $0=1+K L_{0}(s)=$ $1+\frac{K(s+1)(s-2)}{(s+2)(s+3)}=(K+1) s^{2}+(5-K) s+(6-2 K)$. Thus, the closed-loop poles are at:

$$
p_{ \pm}=\frac{K-5 \pm \sqrt{9 K^{2}-26 K+1}}{2(K+1)}
$$

When $K>0$, the closed-loop poles move toward each other. When $K \approx 0.3899$, the poles meet at around -2.387 (on the real axis). As K is increased further, the poles become complex and move in a curved manner back toward the real axis. When $K \approx 2.8499$, they meet on the real axis again at around -0.279 . As K is increased, they move apart toward the open-loop zeros. When $K=3$, one of the poles hits the $j \omega$-axis. When $K<0$, both closed-loop poles are real. One moves from -2 (open-loop pole) to -1 (open-loop zero). The other one starts at -3 and heads towards negative infinity. When $K=-1$, it hits infinity and starts coming back ("wrap around") on the positive real axis toward 2 (open-loop zero). Overall, the closed-loop system is stable when $-1<K<3$. The root locus plot is shown below:

The wrap around effect for p_{-}is interesting, and it can be verified that it actually happens. The following shows the location of p_{-}as a function of K. We see that as K goes from 0 to $-1, p_{-}$goes from -3 down to negative infinity. As K goes from -1 down to negative infinity, p_{-}goes from positive infinity down to 2.

