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Problem 11.1

(a)
Vols) = A[Vi(s) = V_(s)]
Vi(s) = %%(s)
V() = SVils) + Vils)
(b)
B 1/(sC)
Gi(s) = R+1/(sC)
Ga(s) = A
1
Gs(s) = 5

(¢) To get G1(s) into the form of Black’s formula %, we divide the numerator and denominator by
R to get:

_ 1/(sRC)
G8) = T3/ RO)

We see that the forward path system function is 1/(sRC'), and the feedback path system function is 1
(unity feedback). 1/(sRC) is the cascade of an integrator 1/s and a gain 1/(RC'), so we get the following
block diagram for Gy (s):
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(d) We plug the second two equations from part (a) for Vi (s) and V_(s) into the first equation for V,(s),
and solve for H(s). We then take the limit as A — oo. There is a pole at lg—é and a zero at %. The
pole-zero diagram is shown below:
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Problem 11.2

(a) Hp(s) has two poles at 5. The pole-zero diagram and step response are shown below. Since the real
part of j is not negative, H,(s) is unstable. This is an undamped second-order system, so its step
response is a right-sided everlasting sinusoid:
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(b) (i) The closed-loop transfer function is:

_ HC(S)HP(S) _ K
Qs) = 1+ Ho(s)Hy(s) s2+K—+1°

(ii) The poles are at +jv K + 1. If K > —1, both poles are purely imaginary and lie on the jw axis,
and the system is unstable. If K < —1, both poles are real, but one is positive and the other
is negative, so the system is unstable. Thus, we cannot stabilize the system with a proportional
controller.

(¢) (i) The closed-loop transfer function is:

H.(s)Hp(s) As+ B

Q) =17 Ho(s)Hy(s) s2+As+ (B+1)

(ii) According to Routh and Hurwitz, we need A > 0 and B+1 > 0. Thus, we need A > 0 and B > —1.

(iii) The transfer function from the input x(¢) to the error e(¢) is:

E 1 241

X = 1+ H.(s)Hy(s) 52+ As+ (B+1)

The steady-state error is:

. . . E . 1 241 1
dm e(t) =l sB(s) =l s X(s) (o) = s o o T B D)~ BT

(d) (i) The closed-loop transfer function is:

H.(s)Hp(s) As?+ Bs+C

T 11 H.(s)Hy(s) $S+As2+(B+1)s+C’

Q(s)

(ii) According to Routh and Hurwitz, we need A >0, B4+1>0,C >0 and A(B+1) > C. Thus, we
need A>0,B>-1,C>0and A(B+1) > C.
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(iii) The transfer function from the input x(t) to the error e(t) is:

E 1 s(s®+1)

f(s) T 1+ H.(s)Hy(s) $+As2+ (B+1)s+C’

The steady-state error is:

) ) ) E i 1 s(s?2+1)
Jdim elt) = limy sB(s) =l sX(s) 2 (s) = Imys - = s B sr 0~
A PID controller enables us to stabilize the system and have steady-state error.
Problem 11.3
(a) Open-loop pole: 1. Open-loop zero: one at infinity. Characteristic equation: 0 = 1+ K Lg(s) = 1+ sI—<1 =

s — (1 — K). Thus, the single closed-loop pole is at 1 — K. We need K > 1 to make the closed-loop
system stable. The root locus plot is shown below:
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(b) Open-loop poles: two at the origin. Open-loop zeros: one at -1, one at infinity. Characteristic equation:
0=14+KLy(s) =1+ @ = 52 + Ks+ K. Thus, the closed-loop poles are at:

 —K+VK? 4K
- : ,

P+

When 0 < K < 4, py are both complex. When K =4, p; = p_ = —2 (both poles meet at -2). When
K >4, p; — —1 and p_ — —oo (both real). When K < 0, p; — +o0o and p_ — —1 (both real).
According to Routh and Hurwitz, we need K > 0 to make the closed-loop system stable. The root locus
plot is shown below:
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(¢) Open-loop poles: -2, -3. Open-loop zeros: two at infinity. Characteristic equation: 0 = 14+ K Lg(s) =

1+ m = 52455+ (6 + K). Thus, the closed-loop poles are at:
—5++v1—-4K
pr= .
2
When 0 < K < %, p+ are beteen -3 and -2. When K = %, p+ = p— = —2.5 (both poles meet at -2.5).

When K > %, both poles are complex and have -2.5 as their real part; the imaginary parts go to *oo.
When K < 0, both closed-loop poles are real and grow further apart. According to Routh and Hurwitz,
we need K > —6 to make the closed-loop system stable. The root locus plot is shown below:
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(d) Open-loop poles: -2, -3. Open-loop zeros: -1, 2. Each open-loop pole is paired up with an explicit open-
loop zero, so there are no open-loop zeros or poles at infinity. Characteristic equation: 0 = 1+ K Lg(s) =
14 BCHDE=2)  (f 4 1)62 4 (5 — K)s + (6 — 2K). Thus, the closed-loop poles are at:

(s+2)(s+3)
 K-5+V9K? — 26K + 1
B 2(K +1) '

b+
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Imaginary Axis

When K > 0, the closed-loop poles move toward each other. When K ~ 0.3899, the poles meet at
around -2.387 (on the real axis). As K is increased further, the poles become complex and move in a
curved manner back toward the real axis. When K ~ 2.8499, they meet on the real axis again at around
-0.279. As K is increased, they move apart toward the open-loop zeros. When K = 3, one of the poles
hits the jw-axis. When K < 0, both closed-loop poles are real. One moves from -2 (open-loop pole) to
-1 (open-loop zero). The other one starts at -3 and heads towards negative infinity. When K = —1, it
hits infinity and starts coming back (“wrap around”) on the positive real axis toward 2 (open-loop zero).
Overall, the closed-loop system is stable when —1 < K < 3. The root locus plot is shown below:
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The wrap around effect for p_ is interesting, and it can be verified that it actually happens. The following
shows the location of p_ as a function of K. We see that as K goes from 0 to -1, p_ goes from -3 down
to negative infinity. As K goes from -1 down to negative infinity, p_ goes from positive infinity down to
2.
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