
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.003: Signals and Systems — Spring 2004

Tutorial 1

Monday and Tuesday, February 9 and 10, 2004

Announcements

• Problem set 1 is due this Wednesday. Unless you made previous arrangements with your TA, you must
submit it in your assigned recitation section.

• Please check the 6.003 website (http://web.mit.edu/6.003/www) and make sure you have been as-
signed a recitation and a tutorial.

Today’s Agenda

• Complex numbers

– i vs. j

– Rectangular form

– Euler’s relation and polar form

– Continous phase vs. principal value of phase

– Complex arithmetic

• Signals

– Linear transformations on the independent variable of signals in CT

– Transformations of signals in DT

– Periodic signals

– DT unit impulse and unit step functions

– CT unit impulse and unit step functions

• Systems
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1 Complex Numbers

1.1 i vs. j

In some fields (and in high school), the imaginary unit is written as i. However, in electrical engineering,
the symbol i is also used for electric current, so to prevent confusion, we write j to represent

√−1. We will
use this notation throughout.

1.2 Rectangular form

We can write any complex number z in two forms. The rectangular (or Cartesian) form has z as a sum
of its real and imaginary parts:

z = x+ jy. (1.1)

We can extract the real part x and imaginary part y of z using the operations

x = Re{z} (1.2)
y = Im{z}. (1.3)

1.3 Euler’s relation and polar form

Recall Euler’s relation:

ejθ = cos θ + j sin θ. (1.4)

So:

cos θ =
1
2
(ejθ + e−jθ) (1.5)

sin θ =
1
2j

(ejθ − e−jθ) (1.6)

Writing sines and cosines in this form will be very helpful for us later on, especially when we deal with
Fourier series and Fourier transforms.

Euler’s relation allows us to express complex numbers in polar form:

z = rejθ. (1.7)
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We can extract the magnitude (or absolute value or modulus) r and angle (or phase or argument) θ of z
using the operations

r = |z| (1.8)
θ = ∠z = arg{z}. (1.9)

The components of the two forms are related by

r =
√
x2 + y2 (1.10)

tan θ =
y

x
. (1.11)

The following diagram shows the complex number z = a+ jb = rejθ in the complex plane:

Im

Re

r

θ

x

y

The complex conjugate of a complex number z is the complex number z∗ (also written z) whose imaginary
part is the opposite of the imaginary part of z. So, if

z = x+ jy = ejθ (1.12)

then

z∗ = x− jy = e−jθ (1.13)

An easy way to take the conjugate of a complicated arithmetic expression containing complex numbers
is to replace all the j’s with −j’s. The conjugate is an alternative method for determining the magnitude of
a complex number:

|z|2 = z∗z (1.14)
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We can use the complex conjugate to extract the real and imaginary parts of a complex number z:

Re{z} =
1
2
(z + z∗) (1.15)

Im{z} =
1
2j

(z − z∗) (1.16)

1.4 Continuous phase vs. principal value of phase

Note that we can add any multiple of 2π to the phase of a complex number z without changing z’s value.
So what happens when we compute arg{ejθ}? Is it the same as arg{ej(θ+2π)}? This question isn’t a big deal
right now, but later, when we take the phase of a function (such as the Fourier transform), we will need to
distinguish between the continuous phase (denoted by arg{}), which ensures that the phase is a continous
function, and the principal value of the phase (denoted by ARG{}), where the returned phase θ satisfies
−π < θ ≤ π.

1.5 Complex arithmetic

Suppose we have the complex numbers:

z1 = x1 + jy1 = r1ejθ1 , (1.17)
z2 = x2 + jy2 = r2ejθ2 , (1.18)

where xi, yi, ri and θi are real numbers. Then, we define the sum of z1 and z2 to be the sum of the real
and imaginary parts independently:

Re{z1 + z2} = Re{z1}+ Re{z1}, (1.19)
Im{z1 + z2} = Im{z1}+ Im{z1}. (1.20)

This can easily be verified in rectangular form:

z1 + z2 = (x1 + jy1) + (x2 + jy2) (1.21)
= (x1 + x2) + j(y1 + y2). (1.22)

This motivates us to picture complex numbers as vectors: individual components of vectors add indepen-
dent, just like the real and imaginary components of complex numbers. However, multiplication is a bit
harder to interpret in rectangular form:

z1z2 = (x1 + jy1)(x2 + jy2) (1.23)
= (x1x2 − y1y2) + j(x1y2 + y1x2) (1.24)
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A recurrent problem-solving technique is to switch forms or representations when one becomes difficult to
use. So, let’s try this in polar form:

z1z2 =
(
r1ejθ1

) (
r2ejθ2

)
(1.25)

= (r1r2)ej(θ1+θ2). (1.26)

Thus, the magnitude of the product of two complex numbers is the product of the magnitude of the factors,
and the angle is the sum of the angles of the factors:

|z1z2| = |z1||z2|, (1.27)
∠{z1z2} = ∠{z1}+ ∠{z2}. (1.28)

To summarize:

Addition of Multiplication of Complex Numbers: Let

z1 = x1 + jy1 = r1ejθ1 , (1.29)
z2 = x2 + jy2 = r2ejθ2 , (1.30)

be two complex numbers. Then, their sum is:

z1 + z2 = (x1 + x2) + j(y1 + y2), (1.31)

and their product is:

z1z2 = (x1x2 − y1y2) + j(x1y2 + y1x2) = r1r2ej(θ1+θ2). (1.32)

When we divide complex numbers in rectangular form, we multiply the top and bottom by the conjugate
of the denominator. Likewise, exponentiation is usually done most easily when polar notation is used.

In 6.003, we will be dealing with complex numbers all the time. So, it will be important for you to
be comfortable with switching between rectangular and polar forms as appropriate for a given concept or
problem.
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Problem 1.1

Try the following exercises to practice working with complex numbers.

(a) Compute 1+j√
3+j

using both rectangular arithmetic and by converting the problem first into polar form.
Which method was less painful?

(b) Compute the magnitude and angle of ej + e3j .

(c) Simplify (
√
3− j)8.

(d) Compute
∫ ∞
0

e−2t cos(πt) dt.

(e) Write the real part of:

1− zn

1− z (1.33)

in terms of the magnitude and phase of z, where n is a positive integer.

(f) What did you learn from this problem?

(Workspace)
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(Workspace)
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2 Signals

2.1 Linear transformations on the independent variable of signals in CT

The are many ways of transforming a CT signal into another. For instance, we can scale it, shift it in
time, differentiate it, or perform a combination of these actions. Later in this chapter, we’ll introduce the
idea of transforming a signal as a system. To familiarize you with manipulating signals, we’ll examine a
particular type of transformation in this subsection: transformation on the independent variable of signals.
More formally, let us for now restrict ourselves to transformations of the form:

x(t) −→ y(t) = x(f(t)), (1.34)

where x(t) is the starting signal given to us, y(t) is the signal we end up with after the transformation,
and f(t) is a function of t. The arrow “−→” denotes the action and direction of transformation. The function
f(t) can be any well-defined function, of course, but for the study of 6.003, we’ll look at the class of linear
functions f(t) = at+ b, where a and b are arbitrary real constants. The resulting transformation of x(t) into
y(t) is hence called “linear transformations on the independent variable.”

All such transformations can be decomposed into just three fundamental types of signal transformations
on the independent variable: time shift, time scaling, and time reversal1. They involve a change of the
variable t into something else:

• Time shift: t −→ t− t0, t0 ∈ R

• Time scaling: t −→ at, a ∈ R
+

• Time reversal (or flip): t −→ −t

When applied to the signal x(t), we obtain:

• Time shift: x(t) t→t−t0−→ xshift(t) = x(t− t0)

When the shift constant t0 is positive, the effect is to move the signal x(t) to the right by t0. In
other words, each point on the signal x(t) now falls t0 later in time, so we call this transformation a
time delay. Likewise, when it’s negative, we call it a time advance.

• Time scaling: x(t) t→at−→ xscale(t) = x(at)

When the scaling factor a is greater than 1, the effect is to “squeeze” the signal toward t = 0: an
arbitrary point on x(·) located at, say, t = t1, namely x(t1), is now moved to the point t′1 = t1/a on
the resulting signal xscale(·). Quick check: xscale(t

′
1) = xscale(t1/a) = x(at1/a) = x(t1). Since t′1 is

closer to the vertical axis than t1 is, this is called time compression. When the factor a is between 0
and 1, we call it time expansion. At first, the correspondence of a large factor to compression and a
small factor to expansion seems counterintuitive, but the above example explains the nomenclature.

• Time reversal: x(t) t→−t−→ xreverse(t) = x(−t)

When more than one transformation is applied to a signal, one must be careful about the order in which
it is done. The following example illustrates this.

1Time reversal is really a special case of time scaling, but we’d like to think of it as conceptually different. It is sometimes
easier to analyze a problem that involves a time scaling by a negative factor by breaking down that time scaling into a time
scaling by the absolute value of the factor followed by a time reversal (or vice versa).
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Example 1.2

We are given the signal x(t):

0−1 1 2 3 4 5

1

x(t)

t

Let us transform the given x(t) to x(−2t+6). We need to use all three types of transformations (a shift, a
scale and a flip), but what in what order shall we do them? How do we do it? The following guide explains:

What to do when you need to do multiple transformations:

• We can do the transformations in any order. However, the amount and
direction of the shift depends on whether it is performed before or after
the reversal and the scale.

• We can think of cascaded transformations as repeated substitutions of
the independent variable t.

To demonstrate these principles, let’s do the transformation in three different orders.

• x(t) Advance by 6−→ x(t+ 6) Reverse−→ x(−t+ 6)
Compress by 2−→ x(−2t+ 6).

• x(t) Compress by 2−→ x(2t)
Advance by 3−→ x(2(t+ 3)) Reverse−→ x(2(−t+ 3)).

• x(t) Reverse−→ x(−t) Delay by 6−→ x(−(t− 6))
Compress by 2−→ x(−(2t− 6)).
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We observe the following:

• We need to use the same operations: a time reversal, a time shift, and a time scaling.

• The operations are generally not commutative; switching the order may change the result. However,
scaling and reversal are commutative operations.

• The time scale is always a compression by 2 (it’s never an expansion).

• The time shift, on the other hand, depends on its order relative to the other operations:

– If it is after compression, then it’s a shift by 3, otherwise it’s by 6.

– If it is after time reversal, then it’s a delay, otherwise it’s an advance.

Because of the subtlety with the time shift, you may want to adopt a consistent order that you use
whenever you encounter these problems. However, you should be able to do it in any order. Of course, you
can always double-check your solution by plugging in values of t.

Let us show that the operations are generally not commutative; switching the order may change the result.
If we do the first series of transformations (advance, reverse, compress) in the opposite order, we get:

x(t)
Compress by 2−→ x(2t) Reverse−→ x(2(−t)) Advance by 6−→ x(2(−(t+ 6))) = x(−2t− 12).

(1.35)

The final result from this series of transformations is not the same as before.

A common mistake when considering independent variable transformations is to misinterpret the English
description, leading to incorrect final results. For instance, the first series of transformations in this example
has an advance followed by a time reversal and a compression. When told to perform this sequence in English
words on x(t) and to say what is the dot for x(·) at each stage, some students mistakenly implement those
words as (quotes indicate what they think the transformation is):

x(t)
“Advance by 6”−→ x(t+ 6) “Reverse”−→ x(−(t+ 6))

“Compress by 2”−→ x(2(−(t+ 6))), (1.36)

when it is actually:

x(t)
Advance by 6−→ x(t+ 6) Reverse−→ x(−t+ 6)

Compress by 2−→ x(−(2t) + 6). (1.37)

The incorrect version applies transformations to the entire argument of the function x(·), which results
in the signal that would come from reversing the order of the transformations as shown earlier, whereas the
correct version replaces the independent variable t by some function of t. In fact, the incorrect solution has
an interesting interpretation. When a minus sign is

11



To clarify the “replace t” idea, let’s define the following auxiliary functions:

g(u) = u+ 6, (1.38)
h(u) = −u, (1.39)
k(u) = 2u. (1.40)

Note that g(·) represents a time advance, h(·) represents a time reversal, and k(·) represents a time
compression. We can emphasize the “replace t” concept by rewriting Eq. 1.37 as:

x(t)
Advance by 6−→ x( g(t)︸︷︷︸

was t

) = x(t+ 6) (1.41)

x(t+ 6) Reverse−→ x( h(t)︸︷︷︸
was t

+6) = x(−t+ 6) (1.42)

x(−t+ 6)
Compress by 2−→ x(− k(t)︸︷︷︸

was t

+6) = x(−2t+ 6). (1.43)

Note that at each step, we replace t with the appropriate auxiliary function of t. We can also express the
final signal x(−2t+ 6) as:

x(−2t+ 6) = x(−k(t) + 6) = x(h(k(t)) + 6) = x(g(h(k(t)))). (1.44)

Of course, we can unravel this nested expression in a different order to arrive at the same result:

x(g(h(k(t)))) = x(g(h(2t))) = x(g(−2t)) = x(−2t+ 6). (1.45)

Here, we begin inside and act on t and move outwards, whereas before, the nest was simplified in the
opposite direction. The operations are applied in reverse order to t: we apply k(·) to t to get k(t), then
apply h(·) to get h(k(t)), then apply g(·) to get g(h(k(t))), then finally feed this as the argument to x(·) to
get x(g(h(k(t)))).

This exercise suggest the following theory as to why some students get x(2(−(t + 6))) when asked to do
an advance, then a reversal, then a compression. They assemble the functions g(·), h(·) and k(·) to t in the
order in which they see and by putting the first function on the inside and the last function on the outside.
They get:

x(k(h(g(t)))), (1.46)

which simplifies to:

x(k(h(g(t)))) = x(k(h(t+ 6))) = x(k(−(t+ 6))) = x(2(−(t+ 6))). (1.47)
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Thus, some students think of the expression x(g(h(k(t)))) as a nest, where k(·) (which represents time
compression) is applied first on the variable t, even though we are applying the time compression operation
last to the signal. We read the order of transformations as the order in which replacements of t are made,
as opposed to the order in which function are successively applied to t, which yields the classic incorrect
result. The result from applying successive transformations on the original signal (which is interpreted as
replacements of t) is the same as the result of applying the corresponding transformations in reverse order
to the argument of x(·) instead.

It is interesting to observe that by applying the steps in reverse order yields the answer from the incorrect
interpretation:

x(t) −→ x(k(t)) = x(2t) −→ x(k(h(t)) = x(k(2t)) = x(−2t) (1.48)
−→ x(k(h(g(t)))) = x(k(h(t+ 6))) = x(k(−(t+ 6))) = x(2(−(t+ 6))). (1.49)

It is now easy to see the source of the incorrect interpretation: the auxiliary functions are being applied to
t in the opposite order in which we are actually using them to transform the signal. We want x(g(h(k(t)))) =
x(−2t + 6), which we confirmed is the result of a time advance (corresponds to g(·)), then a time reversal
(h(·)), then a time compression (k(·)). Thus, some students think of the expression x(g(h(k(t)))) as a nest,
where k(·) (time compression) is applied first, even though we are applying the time compression operation
last. We read the order of transformations as the order in which replacements of t are made, as opposed to
the order in which function are successively applied to t, which yields the classic incorrect result. The result
from applying successive transformations on the original signal (which is interpreted as replacements of t)
is the same as the result of applying the corresponding transformations in reverse order to the argument of
x(·) instead.

We can also clarify transformations by defining a new signal at each step by its relationship to the previous
signal. For the same series just described, let’s define:

y(t) = x(t+ 6), (1.50)
z(t) = y(−t), (1.51)
w(t) = z(2t). (1.52)

Note that x(·) −→ y(·) represents a time advance, y(·) −→ z(·) represents a time reversal, and
z(·) −→ w(·) represents a time compression. We can write the transformation process as:

x(t)
Advance by 6−→ y(t) = x(t+ 6) (1.53)

y(t) Reverse−→ z(t) = y(−t) = x(−t+ 6) (1.54)

z(t)
Compress by 2−→ w(t) = z(2t) = y(−2t) = x(−2t+ 6). (1.55)

So, the final result is w(t) = z(2t) = y(−2t) = x(−2t + 6), as expected. With this picture, each step is
then completely modularized from the other steps and there is no confusion.
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2.2 Transformation of signals in DT

Transformations in discrete time are analogous to those in continuous time. However, there are a few
subtle points to consider. For instance, can we time shift x[n] by a non-integer delay, say to x[n− 1

2 ]? If we
compress the signal x[n] to x[2n], do we lose half the information stored? Finally, if we expand x[n] to x[12n],
how do we “fill in the blanks?” These are some interesting questions to think about, and we will examine
them further when we study sampling. It turns out that one useful method of executing a non-integer delay
is by interpolating the DT samples (“connecting the dots”) into a CT signal, shifting the CT signal, then
resampling to get the final shifted DT signal. A similar trick can be used for DT expansion. We will discuss
the actual methods of interpolation later.

2.3 Periodic signals

When signals are invariant under certain transformations, they exhibit symmetry properties. If a signal is
left unchanged by a time shift T0, then it is periodic. In other words, periodic signals repeat themselves in
time and have the property that there exists a T in CT (or N in DT) such that

x(t) = x(t+ T ) (1.56)
x[n] = x[n+N ] (1.57)

for all t (or n). The constant T (or N) is called the period. Because all multiples of T (or N) also
satisfy the periodicity condition above, we will usually refer to the smallest positive period T0 (or N0) as the
fundamental period. What if we have a constant CT signal? Is it periodic? It would be considered periodic,
but the fundamental period is undefined. In DT, we have no problem; constant signals have a fundamental
period of 1.

One must be careful when determining whether a DT signal is periodic. Complex exponentials certain
look periodic, but are they? For instance, it is tempting to say that the signal:

x[n] = cosn (1.58)

is periodic. In fact, it is not; let’s see why it isn’t. Suppose x[n] were a periodic signal. Then, there exists
some integer N such that:

cosn = cos(n+N) (1.59)

The sine function repeats itself every 2π, and only for interval that are multiples of 2π, so N must be a
multiple of 2π. Since π is irrational, this cannot be the case, so cosn is aperiodic.

In general, a DT exponential of the form x[n] = Aeω0n+φ is periodic if and only if there exists some integer
N0 such that the exponent shifts by an integer multiple of 2π after N0. Why? A periodic signal cycles back
to the same value after one period, so the angle of the exponential must be offset by an integer multiple of
2π. Thus:
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Periodicity of Complex Exponentials:

• A continuous-time exponential of the form:

x(t) = Aeω0t+φ (1.60)

is always periodic with fundamental period:

N0 =
2π
ω0
. (1.61)

• In DT, it’s more complicated. A discrete-time exponential of the form:

x[n] = Aeω0n+φ (1.62)

is periodic if and only if the frequency ω0 is a rational multiple of π of
the form:

ω0 = 2π
m

N0
, (1.63)

where m and N0 are integers that share no common factors. The funda-
mental period is:

N0 = 2π
m

ω0
. (1.64)

We should also consider whether the sum, product, or other combination of two periodic signals is periodic:

Combining Periodic Signals:

• Adding, multiplying, or combining periodic DT signals always creates a
periodic signal. The period is the lowest common multiple (LCM) of the
periods of the individual signals.

• However, the result of combining periodic CT signals may not be pe-
riodic. If any of the ratios of the fundamental periods of the individual
signals is irrational, then the signal may not be not periodic. If those
ratios are all rational, then the period is the lowest common multiple
(LCM) of the periods of the individual signals.

• In both CT and DT, it is possible that the fundamental period of the
overall signal is smaller than the LCM of the fundamental periods of the
individual signals.
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Problem 1.3

Determine whether the following signals are periodic, and determine the fundamental period if they are.

(a) xa(t) = cos
(

3π
2 t

)
.

(b) xb[n] = cos
(

3π
2 n

)
.

(c) xc(t) = cos
(

3π
2 t

)
+ 3 sin

(
π
3 t

)
.

(d) xd[n] = cos
(

3π
2 n

)
+ 3 sin

(
π
3n

)
.

(e) xe(t) = cos
(

3π
2 t

)
+ 3 sin t.

(f) xf [n] = cos(3n).

(g) xg(t) = r(t) · sin(πt), where

r(t) =
{

1, if the largest integer smaller than t is even,
−1, otherwise.

(Workspace)
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2.4 The DT unit impulse and unit step functions

The unit impulse and unit step functions will form the basis (literally) of how we describe signals in the
time domain. In DT, the unit impulse (also called the unit sample) is defined as

δ[n] =
{

0, n �= 0
1, n = 0 (1.65)

The unit step is defined as

u[n] =
{

0, n < 0
1, n ≥ 0 (1.66)

They look like this:

−3 −2 −1 0 1 2 3

δ[n]

n

1

−3 −2 −1 0 1 2 3

u[n]

n

1 1 1 1

The two signals are related: the unit impulse is the first difference of the unit step, and the unit step is
the running sum of the unit impulse:

δ[n] = u[n]− u[n− 1] (1.67)

u[n] =
n∑

m=−∞
δ[m] (1.68)
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Problem 1.4

Express the following signal x[n] solely in terms of shifted scaled superpositions of (a) the unit impulse,
and (b) the unit step.

−2 −1 0 1 2 3

x[n]

n

−1

2

−1

(Workspace)
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2.5 The CT unit impulse and unit step functions

(Workspace)
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3 Systems

In 6.003, we are concerned with four system properties: stability, causality, linearity and time-invariance.

In general, the output of a cascaded series of systems where the output of one is the input to the next
one is different if the order of the systems is changed. However, there are cases in which switching the
order does not change the final output; such systems are commutative. It turns out that if systems posess
linearity or time-invariance, they are commutative with certain signal operations. In particular, a system H
is time-invariant if the output resulting from a shift the input in time by t0 followed by a run through H is
the same as the output resulting from switching the order of the two operations (first put it through H then
shift by time). Similarly, a system H is linear if the output resulting from the putting the superimposition of
individual signals through H is the same as the output resulting from a run of each individual signal through
the system and superimposing the individual outputs together. Here is a diagram to illustrate this concept
for time-invariance:

x(t) H−−−−→ y(t) = H{x(t)}

time delay by t0

� time delay by t0

�

x(t− t0) H−−−−→ y(t− t0) = H{x(t− t0)}︸ ︷︷ ︸
Equality holds iff time-invariant
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Problem 1.5

Which of the properties of stability, causality, linearity, and time-invariance do the following systems have?

(a) y(t) =
∫ t

−∞ x(τ) dτ .

(b) y(t) =
∫ t

0
x(τ) dτ .

(c) y(t) = x(t2).

(d) y[n] = (x[n])2.

(e) y[n] = median(x[n− 2], x[n− 1], x[n]).

(Workspace)
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Problem 1.6

Indicate which of the following statements are true and which ones are false.

(a) TRUE FALSE The overall system resulting from the series cascade of two linear systems is
also linear.

(b) TRUE FALSE The overall system resulting from the series cascade of two stable systems is
also stable.

(c) TRUE FALSE The overall system resulting from the series cascade of two time-invariant sys-
tems is also time-invariant.

(d) TRUE FALSE The overall system resulting from the series cascade of two time-varying (non-
TI) systems must not be time-invariant.

(Workspace)
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