Sample Midterm Test 1 (mt1s03)

Sample Midterm Test 1 (mt1s03)
Covering Chapters 10-12 of Fundamentals of Signals & Systems

Problem 1 (25 marks)

Consider the causal LTI state-space system initially at rest:
x(t) = Ax(t) + Bu(t),

y(1) = Cx(1) + Du(r)

17 -9 0
where x(/) OR?, u(d R, y@ R,A=L4 28}, B{ J, c=[1 1, D=0

(a) [8 marks] Find the state transition matrix ®(z,7,) = et

Answer:
We have to diagonalize the A-matrix first
The eigenvalues of the A matrix are:

det(AI1—A4)=0

A =-1,4,=-10
Next, we compute the eigenvectors of A:
Eigenvector v, corresponding to /11 =-1:

=18 9 4w, | _|0
=54 27||v, 0
=>v, =1Ly, =2

Eigenvector v, correspondingto A, = —10:
=27 9 ||vy |_|0
ol
=v,, =Lv, =3

1 1
Diagonalizing matrix 7' =[v, v,] ={2 3}

cb(l‘, to) = eA(t—tU) :Tdiag{e—(t—to)’e—lo(,_,o)}T_l

_1 1 e—(t—tg) 0 3 -1 1 1 36—(1—10) _e_([_tﬂ)
= 2 3:| 0 e—lO(t—t(,) |:_2 1 :| _|:2 3:| _26—10(1,‘—:0) 6—10([_,‘0)
_38_(t_t0) - 28—10(1‘—;0) —-e (1) +e H0(t ) :|

6e—(t—t0) _66—10(t—t0) _2e—(t—t0) +3e—10(t-t0)

Laplace transform approach also acceptable: e”  (sI — A)™
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(b) [10 marks] Compute the impulse response /(%) of the state-space system.

Answer:
Impulse response:

6e—t _ 6e—10t _2e—t +3e—10t _1

-10¢

=1 1]{ ¢ }:(3? —4e™")q(1)

- -10
e =3¢

where ¢(t) is the unit step.

(c) [12 marks] Find the transfer function P(s) of the above state-space system which is the
plant in the feedback control system shown below. Suppose that a pure gain controller
K(s) =1 is used. Sketch the Bode plot abd the Nyquist plot of the loop gain. Assess the

stability of the unity feedback control system using the Nyquist criterion and justify your
conclusion. Find the phase and gain margins of the closed-loop system. Determine whether

the closed-loop system would be stable with the controller K(s) =100 .

K(s) P P(s) >

Answer:

Taking the Laplace transform of the impulse response, we obtain:

+30 —4s — - +
P(s) = 3 4 :3s2 30-4s -4 _ s +26 Rels} >
s+1  s+10 s*+1ls +10 (s +1)(s +10)
—— —
Re{s}>-1 Re{s}>-10
-5 +
Loop gain: L(s) = s—26’ Re{s} > -1
(s +1)(s +10)

From the Nyquist plot below we can see that this feedback system is stable. The Bode plot shows a
crossover frequency of @, = 2.3rd/s, and the phase margin is found: ¢, =180 —85" =95". The
gain margin is found to be k,, = 20dB at frequency @_,, =18rd/s . Hence, a controller gain of 100
(40dB) would destabilize the system.
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Bode Diagrams
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Nyquist plot:

Nyquist Diagrams
From: U(1)

Imaginary Axis
To: Y(1)

Real Axis

We have no open-loop pole encircled by the Nyquist contour. Therefore, the Nyquist plot should not
encircle the critical point —1, and it does not. Therefore, the closed-loop system is stable.
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Problem 2 (30 marks)

(a) [10 marks] Compute the Fourier transform X (e’?) of the signal x[n] shown below and
sketch its magnitude and phase over the interval [—7T, 77] .

A
x[n]

1@

o
54 32 2 345
1o

Answer:

X(@?) =D xnle”® =1-¢'“ =/ =1 =2 cos(w)

n=-o

X (e™)| = 1 ~2cos(w)]
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(b) Find the DTFT W (e’®) of the periodic signal w{n] = x{n —1] DZ O[n— k6] and the

k=—00
coefficients of its Fourier series. Write the signal w[n] as a Fourier series and compute its values
atn=0,1,2.

Answer:
First consider the DTFT of the signal in (a): X (e’“) =1—-2cos(w)

W(e) = e X (e 2”2 S(w —kz—”)

k=—-00

=e [l - 2003(0))]—25( —kz—”)

k=—00

Tﬂ ¢’ 12cos(k—)]5( —kz’S

The spectral coefficients are simply the impulse areas divided by 2/7:

1 -szf”

a, —ge 1—2005(k—)] k =0,1,2

jk==n 1 2 -AF A% o -ATAT
wrnl|=>» ae 3 =—+—e 3e 3 +—e 3e3
[n] Z 153 3
1 2 -2 242 1 2 27T 4 4
wl]=—-——+—e 3 +—e 3 =— +—(cos— —jsin— +— cos— —jsin—
{0] 313 3 3 3( J ) (co j 3
1 2 1 3.2 1 3
=t (- —) +—(— —) =4
373y ) Ry )
o am o4nm
W[l]:_l +%e 303 +ge'1 3o 3 _l +% +% =1
3 3 3 3 3 3
_2m 4w 4m 8w 2 4n
w[2]= 1 ge "3 +ge'l ve's -1 +ge‘]3 +ge]3
3 3 3 3 3 3
1 2 27T 47 4
=——+—(cos— +jsin—) +—(cos— +jsin—
15 jsin = +3 (cos = +jsin "]
1 2 1 3.2 1 B
=t ) (S ) =
3 32 2 3° 2 2
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Problem 3 (25 marks)
Consider the LTI unity feedback regulator

d,(t)
0 t
+e(t) kK(s)u—(Q ) :g _’y( )

s—1 s+3

Wh P(s)=———, K(s) = d kU .
ere P(s) s> +6s+18 (5) s+5 on [0;'-00)

(@) [8 marks] Let k =1. Use any of the four theorems to assess the stability of the closed-loop
system. (hint: there is a closed-loop pole at —6.197.)

Answer:
Using Theorem I:

We have to show that T(s), P~ (s)T(s) and P(s)S(s) are all stable.

(s=D(s+3)
T(s) = P(s)K(s) _ (s* + 65 +18)(s +5) _ (s=D(s+3)
1+ P(s)K(s) (s =D(s +3) s> +12s5° +50s +87

1+

(s> + 65 +18)(s +5)
Using the hint, we have:

s* +12s5° +50s +87 =(s° +as +b)(s +6.197)
=5 +(6.197 +a)s’ +(6.197a +b)s +6.197b

From which we find the coefficients a = 5.803, b =14.039 leading to the remaining two closed-loop
poles: -2.901+j2.371, -2.901-j2.371 which are stable.

is stable (all three poles in LHP, strictly proper)

poles are: -6.197, -2.1, -0.2

10(0.5s +1)
B} C0ls+1 0.1s* +0.95 —1)(5s +10)
P (s) = 0.1s +1 _ (
(OIe) 14 10(@s +1)(0.55 +1)  0.015” +20.195” +45.85 +9
(s —1)(0.1s +1)?

is also stable (same poles as above, proper)
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4s +1
P(s) _  (s=D(0.1s+1)  _ 0.4s” +4.1s +1
1+ P(s)K(s) |, 10(4s +D(0.55 +1) ~0.015* +20.195" +45.85 +9
(s —1)(0.1s +1)?

P(s)S(s) =

is stable (same poles as above, strictly proper)
Therefore the feedback system is stable.

Using Theorem lI:

We have to show that either 7'(s) or S(s) is stable, and that no pole-zero cancellation occurs in the
closed RHP in forming the loop gain. The latter condition holds, but

10(4s +1)(0.5s +1)
T(s) = P(s)K(s) _  (s=D(O0.Is+1)* 20s*> +45s +10
1+ P(s)K(s) 1+ 10(4s +1)(0.5s +1)  0.01s” +20.19s” +45.85 +9
(s —1)(0.1s +1)

is stable (all three poles in LHP, strictly proper)
poles are: -2017, -2.1, -0.2
Therefore the feedback system is stable.

Using Theorem llI:

We have to show that the closed-loop poles, i.e., the zeros of the characteristic polynomial p(s), are

all in the open LHP. The plant and the controller are already expressed as ratios of coprime
polynomials.

p(s)=nen, +d.d, =0.01s> +20.19s> +45.8s +9

All three closed-loop poles -2017, -2.1, -0.2 lie in the open LHP and therefore the feedback system is
stable.

Using Theorem IV:

We have to show that 1+ K(s)P(s) has no zero in the closed RHP, and that no pole-zero

cancellation occurs in the closed RHP in forming the loop gain. The latter condition obviously holds,
and

I, 10(s+1)(0.55 +1) _0.01s* +20.195” +45.85 +9

1+ K(s)P(s) = =
($)2(s) S(s) (s —=1)(0.1s +1)2 0.01s® +0.195* +0.8s —1

All three zeros of this TF -2017, -2.1, -0.2 lie in the open LHP and therefore the feedback system is
stable.
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(b) [72 marks] Sketch the root locus of this feedback control system for k [ [O;I-OO ) :

Answer:

k(s —1)(s +3)

the loop gainis L(s) = P(s)K(s) = (% +65 +18)(s 5)

e The root locus starts at the (open-loop) poles of L(s): =3 % j3,—5 for k =0 and it ends at the
zeros of L(s):1,—3, oo for k = +oo,

*  On the real line, the root locus will have one segment between the zero 1 and the pole —3, and a second
segment between the pole at -5 and —©0 . (this is our asymptote going to infinity) (Rule 4)
*  For the one branch of the root locus going to infinity, the asymptote is described by

: Zpoles of L(s) - Zzeros of L(s)

Centre of asymptotes V—H
-1-2-3-(1-4)
= =3
1
2k +1
= m, k=0
Angle of asymptote v — i/
=n
Root locus:
4
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(c) [5 marks] Find the value of the gain & for which the system becomes unstable.

Answer:
The only branch going into the RHP is on the real line, hence it crosses the imaginary axis at the origin:

p(0)=0

p(s) = (s +6s5 +18)(s +5) +k(s —1)(s +3)
=5 +11s° +48s +90 +k(s*> +2s -3)
=5’ +(11+k)s> +(48 +2k)s +90 =3k

p(0)=0= 90-3k=0 = k =30



