Sample Midterm Test 1 (mt1s01) Covering Chapters 10-13 of Fundamentals of Signals & Systems

Problem 1 (25 marks)

Consider the causal LTI state-space system with initial state $x(t_0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$:

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t)$$

where $x(t) \in \mathbb{R}^2$, $u(t) \in \mathbb{R}$, $y(t) \in \mathbb{R}$, $A = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 2 \end{bmatrix}$, D = 0

(a) [5 marks] Find the state transition matrix $\Phi(t,t_0) = e^{A(t-t_0)}$.

Answer:

We have to diagonalize the A-matrix first

The eigenvalues of the A matrix are computed:

$$\det(\lambda I - A) = 0$$

$$\det\begin{bmatrix} \lambda + 1 & -1 \\ 1 & \lambda + 1 \end{bmatrix} = \lambda^2 + 2\lambda + 2 = 0$$

$$\Rightarrow \lambda_1 = -1 + j, \lambda_2 = -1 - j$$

Next, we compute the eigenvectors of A:

Eigenvector v_1 corresponding to $\lambda_1 = -1 + j$:

$$\begin{bmatrix} j & -1 \\ 1 & j \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow v_{11} = 1, v_{12} = j$$

Eigenvector v_2 corresponding to $\lambda_2 = -1 - j$:

$$\begin{bmatrix} -j & -1 \\ 1 & -j \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow v_{21} = 1, v_{22} = -j$$

Diagonalizing matrix
$$T = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$$

$$\begin{split} &\Phi(t,t_0) = e^{A(t-t_0)} = T \mathrm{diag}\{e^{(-1+j)(t-t_0)}, e^{(-1-j)(t-t_0)}\}T^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \begin{bmatrix} e^{(-1+j)(t-t_0)} & 0 \\ 0 & e^{(-1-j)(t-t_0)} \end{bmatrix} \frac{j}{2} \begin{bmatrix} -j & -1 \\ -j & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \begin{bmatrix} \frac{1}{2}e^{(-1+j)(t-t_0)} & -\frac{j}{2}e^{(-1+j)(t-t_0)} \\ \frac{1}{2}e^{(-1-j)(t-t_0)} & \frac{j}{2}e^{(-1-j)(t-t_0)} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{2}e^{(-1+j)(t-t_0)} + \frac{1}{2}e^{(-1-j)(t-t_0)} & \frac{1}{2j}e^{(-1+j)(t-t_0)} - \frac{1}{2j}e^{(-1-j)(t-t_0)} \\ -\frac{1}{2j}e^{(-1+j)(t-t_0)} + \frac{1}{2j}e^{(-1-j)(t-t_0)} & \frac{1}{2}e^{(-1+j)(t-t_0)} + \frac{1}{2}e^{(-1-j)(t-t_0)} \end{bmatrix} \\ &= \begin{bmatrix} e^{-(t-t_0)}\cos(t-t_0) & e^{-(t-t_0)}\sin(t-t_0) \\ -e^{-(t-t_0)}\sin(t-t_0) & e^{-(t-t_0)}\cos(t-t_0) \end{bmatrix} \end{split}$$

(b) [10 marks] Write down the general formula for the response of the system y(t), identifying the zero-state response and the zero-input response. Then, compute the response y(t) for the above system with $t_0 = 1$ and $u(t) = \delta(t-1)$.

Answer:

General response:

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0)q(t-t_0)}_{y_{zi}(t)} + \underbrace{\int_{t_0}^{t} Ce^{A(\tau-t_0)}Bu(t-\tau)d\tau + Du(t)}_{y_{zs}(t)}$$

where q(t) is the unit step.

Specific case: $t_0 = 1$ and $u(t) = \delta(t-1)$

Time-domain solution:

$$y(t) = \underbrace{Ce^{A(t-1)}x(1)q(t-1)}_{y_{zt}(t)} + \underbrace{\int_{1}^{t} Ce^{A\tau}Bu(t-\tau)d\tau + Du(t)}_{y_{zt}(t)}$$

$$= \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} e^{-(t-1)}\cos(t-1) & e^{-(t-1)}\sin(t-1) \\ -e^{-(t-1)}\sin(t-1) & e^{-(t-1)}\cos(t-1) \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} q(t-1)$$

$$+ \int_{1}^{t} \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} e^{-\tau}\cos(\tau) & e^{-\tau}\sin(\tau) \\ -e^{-\tau}\sin(\tau) & e^{-\tau}\cos(\tau) \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \delta(t-\tau-1)d\tau$$

$$= 2e^{-(t-1)} \begin{bmatrix} \sin(t-1) + \cos(t-1) \end{bmatrix} q(t-1) - 4e^{-(t-1)}\sin(t-1)q(t-1)$$

$$= 2e^{-(t-1)} \begin{bmatrix} -\sin(t-1) + \cos(t-1) \end{bmatrix} q(t-1)$$

Laplace-domain solution also acceptable:

$$\mathcal{Y}(s) = \left[C(sI_n - A)^{-1} B + D \right] \mathcal{U}(s) + C(sI_n - A)^{-1} x_0 e^{-s}$$

we have $\mathcal{U}(s) = e^{-s}$, thus

$$\mathbf{\mathcal{Y}}(s) = \left(\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) e^{-s} + \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-s}$$

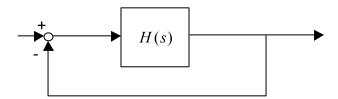
$$= \frac{1}{s^2 + 2s + 2} \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ -1 & s+1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} e^{-s} + \frac{1}{s^2 + 2s + 2} \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ -1 & s+1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-s}$$

$$= \frac{-4e^{-s}}{s^2 + 2s + 2} + \frac{(2s+4)e^{-s}}{s^2 + 2s + 2} = \frac{2(s+1)e^{-s}}{s^2 + 2s + 2} - \frac{2e^{-s}}{s^2 + 2s + 2}, \operatorname{Re}\{s\} > -1$$

and the inverse Laplace transform is

$$y(t) = 2e^{-(t-1)} \left[-\sin(t-1) + \cos(t-1) \right] q(t-1).$$

(c) [10 marks] Find the transfer function H(s) of the state-space system. Sketch its Nyquist plot. Assess the stability of the unity feedback control system shown below.



Answer:

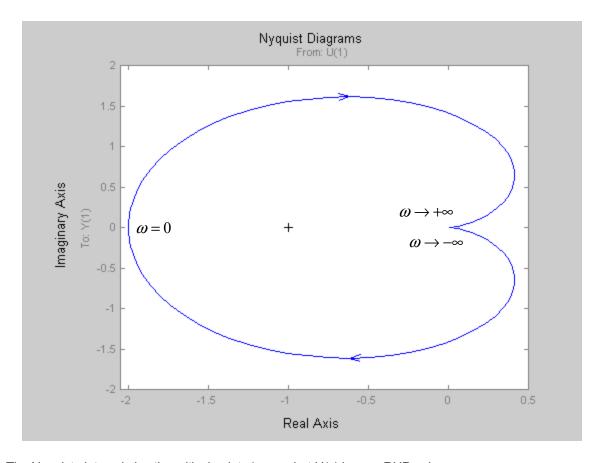
$$H(s) = C(sI_n - A)^{-1}B + D$$

$$= \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \frac{1}{s^2 + 2s + 2} \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ -1 & s+1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \frac{-4}{s^2 + 2s + 2}, \operatorname{Re}\{s\} > -1$$

Nyquist plot

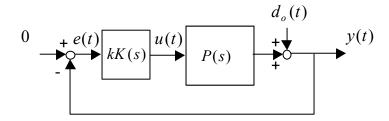


The Nyquist plot encircles the critical point -1 once, but H(s) has no RHP pole.

Therefore, the closed-loop system is unstable.

Problem 2 (25 marks)

Consider the LTI unity feedback regulator



Where $P(s) = \frac{s-10}{s^2+10s+50}$, and K(s) is given in the form of a differential system: $\frac{dy}{dt} + 100y = \frac{dx}{dt} + 10x$.

(a) [5 marks] Compute the sensitivity function S(s) and the complementary sensitivity function T(s) with k=10.

Answer:

Sensitivity:

$$S(s) = \frac{1}{1 + 10K(s)P(s)} = \frac{1}{1 + 10\left(\frac{s + 10}{s + 100}\right)\left(\frac{s - 10}{s^2 + 10s + 50}\right)}$$
$$= \frac{s^3 + 110s^2 + 1050s + 5000}{s^3 + 110s^2 + 1050s + 5000 + 10s^2 - 1000}$$
$$\frac{s^3 + 110s^2 + 1050s + 5000}{s^3 + 120s^2 + 1050s + 4000}$$

Complementary sensitivity

$$T(s) = 1 - S(s) = 1 - \frac{s^3 + 110s^2 + 1050s + 5000}{s^3 + 120s^2 + 1050s + 4000} = \frac{10s^2 - 1000}{s^3 + 120s^2 + 1050s + 4000}$$

(b) [5 marks] Give the steady-state error in the output for a step disturbance $d_a(t) = 100u(t)$.

Answer:

Steady-state error is
$$100S(0) = 100 \frac{s^3 + 110s^2 + 1050s + 5000}{s^3 + 120s^2 + 1050s + 4000} \bigg|_{s=0} = \frac{500}{4} = 125$$

(c) [10 marks] Sketch the root locus of this feedback control system for $k \in [0, +\infty)$.

The closed-loop poles are the zeros of the characteristic polynomial:

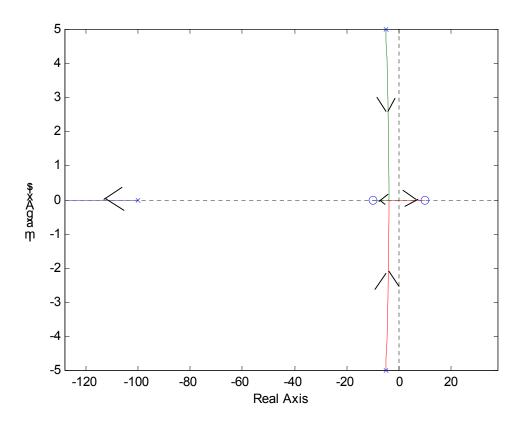
$$p(s) = (s+100)(s^2+10s+50) + k(s+10)(s-10)$$

= $s^3 + 110s^2 + 1050s + 5000 + ks^2 - k100$
= $s^3 + (110+k)s^2 + 1050s + (5000 - k100)$

the loop gain is $L(s)=kP(s)K(s)=k\bigg(\frac{s+10}{s+100}\bigg)\bigg(\frac{s-10}{s^2+10s+50}\bigg).$

- The root locus starts at the (open-loop) poles of L(s): -100, $-5 \pm 5j$ for k = 0 and it ends at the zeros of L(s): 10, -10, ∞ for $k = +\infty$.
- On the real line, the root locus will have one branch between the zero -10 and the zero +10 (Rule 4) and to the right of the pole at -100 extending to infinity.

Root locus:



(d) [5 marks] Find the value of the gain k for which the system becomes unstable.

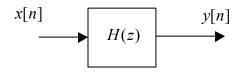
Answer:

The only branch going into the RHP is on the real line, hence it crosses the imaginary axis at the origin: p(0) = 0

$$p(s) = s^{3} + (110 + k)s^{2} + 1050s + (5000 - k100)$$
$$p(0) = 0 \implies 5000 - k100 = 0 \iff k = 50$$

Problem 3 (20 marks)

Consider the DLTI system



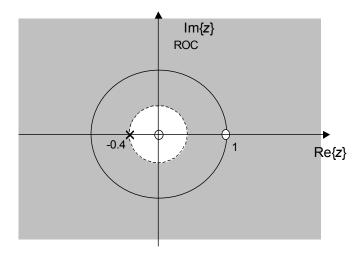
with transfer function $H(z) = \frac{z-1}{z^{-1}(z+0.4)}$.

(a) [5 marks] Sketch the pole-zero plot of the system. Find the ROC that makes this system stable and indicate it on the pole-zero plot.

Answer:

$$H(z) = \frac{z-1}{z^{-1}(z+0.4)} = \frac{z(z-1)}{z+0.4}.$$

The poles and zero are $\ p_1=-0.4, \, z_1=0, \, z_2=1$. Pole-zero plot:



ROC is: $|z| > 0.4/\{\infty\}$

(b) [5 marks] Is the system causal with the ROC that you found in (b)? Justify your answer.

Answer:

No, the system is not causal because the ROC is not the exterior of a disk extending to infinity.

(c) [10 marks] Suppose that $H(e^{j\omega})$ is bounded for all frequencies. Calculate the response of the system y[n] to the input $x[n] = \delta[n-2]$.

Answer:

$$X(z) = z^{-2}, |z| > 0,$$

so the z-transform of the output is

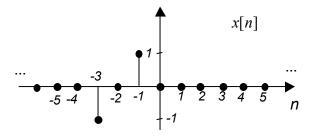
$$Y(z) = \frac{z^{-2}(z-1)}{z^{-1}(z+0.4)} = \frac{z-1}{z(z+0.4)} = \frac{z^{-1}-z^{-2}}{(1+0.4z^{-1})}, 0.4 < |z|$$

Using the table, we find

$$y[n] = (-0.4)^{n-1}u[n-1] - (-0.4)^{n-2}u[n-2].$$

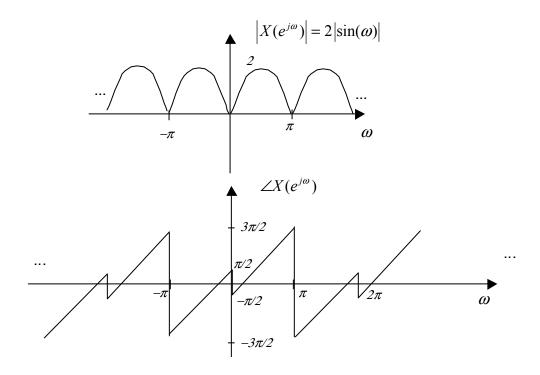
Problem 4 (20 marks)

(a) [8 marks] Compute the Fourier transform $X(e^{j\omega})$ of the signal x[n] shown below and sketch its magnitude and phase over the interval $[-\pi,\pi]$.



Answer:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = -e^{j3\omega} + e^{j\omega} = e^{j2\omega} \left(-e^{j\omega} + e^{-j\omega} \right)$$
$$= -2je^{j2\omega} \sin(\omega) = 2e^{j(2\omega - \frac{\pi}{2})} \sin(\omega)$$



(b) [6 marks] Find the DTFT $W(e^{j\omega})$ of the periodic signal $w[n] = \sum_{k=-\infty}^{+\infty} x[n-2-k4]$.

Answer:

First consider the DTFT of the signal in Problem 4(a): $X(e^{j\omega}) = 2e^{j(2\omega - \frac{\pi}{2})} \sin(\omega)$

$$W(e^{j\omega}) = e^{-j2\omega} X(e^{j\omega}) \frac{2\pi}{4} \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{4})$$

$$= 2e^{-j\frac{\pi}{2}} \sin(\omega) \frac{2\pi}{4} \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{4})$$

$$= -j\pi \sum_{k=-\infty}^{\infty} \sin(k \frac{2\pi}{4}) \delta(\omega - k \frac{2\pi}{4})$$

$$= -j\pi \sum_{k=-\infty}^{\infty} \sin(k \frac{\pi}{2}) \delta(\omega - k \frac{2\pi}{4})$$

(c) [6 marks] Suppose the periodic signal w[n] is upsampled to obtain $y[n] = w_{(2)}[n]$. Sketch the magnitude of its Fourier series coefficients.

Answer:

The DTFS coefficients of y[n] are identified by first using the above expression:

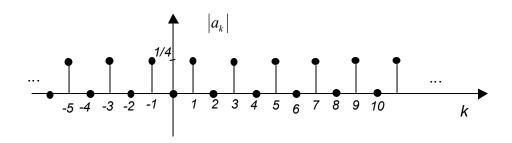
$$W(e^{j\omega}) = -j\pi \sum_{k=-\infty}^{\infty} \sin(k\frac{\pi}{2}) \delta(\omega - k\frac{2\pi}{4}) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\frac{2\pi}{4})$$

$$a_k = -\frac{j}{2} \sin(k\frac{\pi}{2}), \quad k = 0, 1, 2, 3$$

$$a_0 = 0, a_1 = -\frac{j}{2}, a_2 = 0, a_3 = \frac{j}{2}$$

The upsampling operation makes the fundamental period equal to 8, compresses the line spectrum around dc by a factor 2 and multiplies the coefficients by 1/2, and therefore the DTFS are:

$$a_0 = 0, a_1 = -\frac{j}{4}, a_2 = 0, a_3 = \frac{j}{4}, a_4 = 0, a_5 = -\frac{j}{4}, a_6 = 0, a_7 = \frac{j}{4}$$



Problem 5 (10 marks)

Just answer True or False.

- (a) The ROC of the transfer function of a discrete-time LTI system with a two-sided impulse response extending to $n=\pm\infty$ is either an open ring in the z-plane, or the empty set. *Answer: True*
- (b) Let $\{a_k\}$ be the Fourier series coefficients of the periodic signal $x[n]=(-1)^{n-1}$. Then $a_0=0, a_1=-1, a_3=-1$.

Answer: True.

(c) For stability of a feedback control system, the Nyquist plot of the loop gain L(s) must encircle the critical point counterclockwise a number of times equal to the number of closed right half-plane zeros of L(s).

Answer: False

(d) The DTFT of a real, odd signal can be expressed as $\frac{2}{i} \sum_{k=0}^{+\infty} x[n] \sin \omega n$.

Answer: True

(e) The transient component of the step response of a causal, stable discrete-time system contains only terms associated with the system's poles.

Answer: True