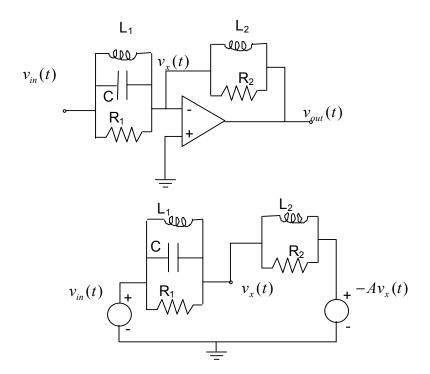
Sample Final Exam (finals01) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Problem 1 (20 marks)

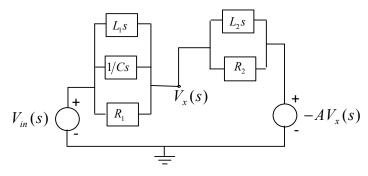
Consider the causal op-amp circuit initially at rest depicted below. Its LTI circuit model with a voltage-controlled source is also given below.

(a) [8 marks] Transform the circuit using the Laplace transform, and find the transfer function $H_A(s) = V_{out}(s)/V_{in}(s)$. Then, let the op-amp gain $A \to +\infty$ to obtain the ideal transfer function $H(s) = \lim_{A \to +\infty} H_A(s)$.



Answer:

The transformed circuit is



There are two supernodes for which the nodal voltages are given by the source voltages. The remaining nodal equation is

$$\frac{V_{in}(s) - V_{x}(s)}{R_{1} \left\| \frac{1}{Cs} \right\| L_{1}s} + \frac{-AV_{x}(s) - V_{x}(s)}{R_{2} \left\| L_{2}s \right\|} = 0$$

where $R_1 \left\| \frac{1}{Cs} \right\| L_1 s = \frac{1}{Cs + \frac{1}{R_1} + \frac{1}{L_1 s}} = \frac{R_1 L_1 s}{R_1 L_1 Cs^2 + L_1 s + R_1}$ and $R_2 \left\| L_2 s = \frac{R_2 L_2 s}{R_2 + L_2 s}$. Simplifying the above equation, we get:

$$\frac{R_1L_1Cs^2 + L_1s + R_1}{R_1L_1s}V_{in}(s) - \left[\frac{(A+1)(R_2 + L_2s)}{R_2L_2s} + \frac{R_1L_1Cs^2 + L_1s + R_1}{R_1L_1s}\right]V_x(s) = 0$$

Thus, the transfer function between the input voltage and the node voltage is given by

$$\frac{V_x(s)}{V_{in}(s)} = \frac{\frac{R_1 L_1 C s^2 + L_1 s + R_1}{R_1 L_1 s}}{\frac{(A+1)(R_2 + L_2 s)}{R_2 L_2 s} + \frac{R_1 L_1 C s^2 + L_1 s + R_1}{R_1 L_1 s}}$$

$$= \frac{R_2 L_2 s (R_1 L_1 C s^2 + L_1 s + R_1)}{R_1 L_1 s (A+1)(R_2 + L_2 s) + R_2 L_2 s (R_1 L_1 C s^2 + L_1 s + R_1)}$$

The transfer function between the input voltage and the output voltage is

$$H_{A}(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{-AV_{x}(s)}{V_{in}(s)} = \frac{-AR_{2}L_{2}s(R_{1}L_{1}Cs^{2} + L_{1}s + R_{1})}{R_{1}L_{1}s(A+1)(R_{2} + L_{2}s) + R_{2}L_{2}s(R_{1}L_{1}Cs^{2} + L_{1}s + R_{1})}$$

The ideal transfer function is the limit as the op-amp gain tends to infinity:

$$H(s) = \lim_{A \to \infty} H_A(s) = -\frac{R_2 L_2 (R_1 L_1 C s^2 + L_1 s + R_1)}{R_1 L_1 (R_2 + L_2 s)} = -\frac{L_2 (L_1 C s^2 + \frac{L_1}{R_1} s + 1)}{L_1 (1 + \frac{L_2}{R_2} s)}$$

(b) [5 marks] The circuit is used as a cascade equalizer for the system

$$G(s) = -50 \frac{s+1}{0.01s^2+0.1s+1} \text{, that is, } \left| G(j\omega)H(j\omega) \right| = 0 dB, \ \ \forall \omega \text{ . Let } L_1 = 10 H \text{ . Find the values}$$
 of the remaining circuit components L_2 , R_1 , R_2 , C .

$$V_m(j\omega)$$

$$G(j\omega)$$

$$V_{in}(j\omega)$$

$$H(j\omega)$$

$$V_{out}(j\omega)$$

$$V_{out}(j\omega)$$

$$V_{out}(j\omega)$$

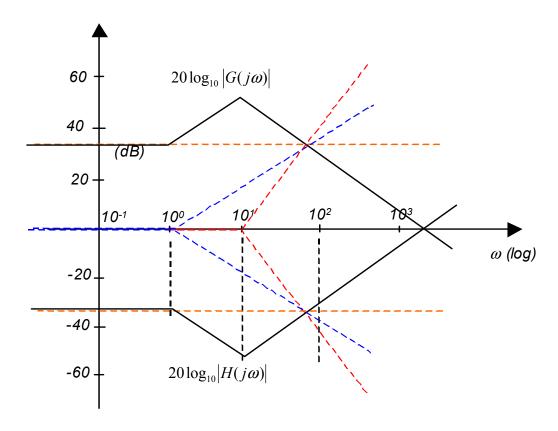
Component values are obtained by setting

$$H(s) = G^{-1}(s) = -0.02 \frac{0.01s^2 + 0.1s + 1}{s + 1} = -\frac{L_2}{L_1} \frac{(L_1 Cs^2 + \frac{L_1}{R_1}s + 1)}{(\frac{L_2}{R_2}s + 1)}$$

which yields $\iff L_2 = 0.2H, R_1 = 100\Omega, R_2 = 0.2\Omega, C = 0.001F$

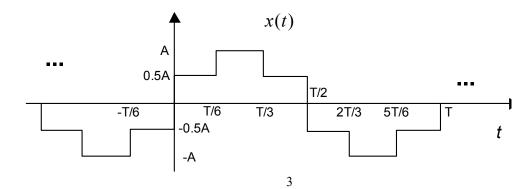
(c) [7 marks] Sketch the Bode plot of H(s) and G(s) (magnitude only, both on the same plot).

Magnitude Bode plot of
$$G(j\omega) = -50 \frac{j\omega + 1}{0.01(j\omega)^2 + 0.1(j\omega) + 1}$$
 and desired
$$H(j\omega) = -0.02 \frac{0.01(j\omega)^2 + 0.1(j\omega) + 1}{j\omega + 1}$$
:



Problem 2 (20 marks) Digital Signal Generator

A programmable digital signal generator generates a sinusoidal waveform by LTI filtering of a staircase approximation to a sine wave x(t).



(a) [9 marks] Find the Fourier series coefficients a_k of the periodic signal x(t). Show that the even harmonics vanish. Express x(t) as a Fourier series.

Answer:

First of all, the average over one period is 0, so $a_0 = 0$. For $k \neq 0$,

$$\begin{split} a_k &= \frac{1}{T} \int_{\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-jk\frac{2\pi}{T}t} dt \\ &= -\frac{A}{2T} \int_{\frac{T}{2}}^{\frac{T}{2}} e^{-jk\frac{2\pi}{T}t} dt - \frac{A}{T} \int_{\frac{T}{3}}^{\frac{T}{6}} e^{-jk\frac{2\pi}{T}t} dt - \frac{A}{2T} \int_{\frac{T}{6}}^{0} e^{-jk\frac{2\pi}{T}t} dt \\ &+ \frac{A}{2T} \int_{\frac{T}{3}}^{\frac{T}{2}} e^{-jk\frac{2\pi}{T}t} dt + \frac{A}{T} \int_{\frac{T}{6}}^{\frac{T}{6}} e^{-jk\frac{2\pi}{T}t} dt + \frac{A}{2T} \int_{0}^{\frac{T}{6}} e^{-jk\frac{2\pi}{T}t} dt \\ &= \frac{A}{2T} \int_{0}^{\frac{T}{6}} \left(e^{-jk\frac{2\pi}{T}t} - e^{jk\frac{2\pi}{T}t} \right) dt + \frac{A}{2T} \int_{\frac{T}{3}}^{\frac{T}{2}} \left(e^{-jk\frac{2\pi}{T}t} - e^{jk\frac{2\pi}{T}t} \right) dt + \frac{A}{T} \int_{\frac{T}{6}}^{\frac{T}{6}} \left(e^{-jk\frac{2\pi}{T}t} - e^{jk\frac{2\pi}{T}t} \right) dt \\ &= \frac{-jA}{T} \int_{0}^{\frac{T}{6}} \sin\left(k\frac{2\pi}{T}t \right) dt - \frac{j2A}{T} \int_{\frac{T}{6}}^{\frac{T}{3}} \sin\left(k\frac{2\pi}{T}t \right) dt - \frac{jA}{T} \int_{\frac{T}{3}}^{\frac{T}{3}} \sin\left(k\frac{2\pi}{T}t \right) dt \\ &= \frac{jA}{T} \left(\frac{T}{2\pi k} \right) \cos\left(k\frac{2\pi}{T}t \right) \int_{0}^{\frac{T}{6}} + \frac{j2A}{T} \left(\frac{T}{2\pi k} \right) \cos\left(k\frac{2\pi}{T}t \right) \int_{\frac{T}{6}}^{\frac{T}{3}} + \frac{jA}{T} \left(\frac{T}{2\pi k} \right) \cos\left(k\frac{2\pi}{T}t \right) \int_{\frac{T}{3}}^{\frac{T}{3}} \\ &= \frac{jA}{2\pi k} \left[\cos\left(k\frac{\pi}{3} \right) - 1 + 2\cos\left(k\frac{2\pi}{3} \right) - 2\cos\left(k\frac{\pi}{3} \right) + \cos\left(k\pi \right) - \cos\left(k\frac{2\pi}{3} \right) \right] \\ &= \frac{jA}{2\pi k} \left[-\cos\left(k\frac{\pi}{3} \right) + \cos\left(k\frac{2\pi}{3} \right) - 1 + \cos\left(k\pi \right) \right] \end{split}$$

Note that the coefficients are purely imaginary, which is consistent with our real, odd signal. The even FS coefficients are for k=2m, m=1,2,...:

$$a_k = a_{2m} = \frac{jA}{2\pi 2m} \left[-\cos\left(m\frac{2\pi}{3}\right) + \cos\left(m\frac{4\pi}{3}\right) - 1 + \cos\left(m2\pi\right) \right]$$

$$= \frac{jA}{2\pi 2m} \left[-\cos\left(-m\frac{\pi}{3} + m\pi\right) + \cos\left(m\frac{\pi}{3} + m\pi\right) \right]$$

$$= \frac{jA}{2\pi 2m} \left[-\cos\left(m\frac{\pi}{3} - m\pi\right) + \cos\left(m\frac{\pi}{3} + m\pi\right) \right]$$

$$= \frac{jA}{2\pi 2m} \left[-\cos\left(m\frac{\pi}{3} + m\pi\right) + \cos\left(m\frac{\pi}{3} + m\pi\right) \right] = 0$$

The Fourier series representation of x(t) is

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\frac{2\pi}{T}t} = \sum_{\substack{k=-\infty\\k\neq 0}}^{+\infty} \frac{jA}{2\pi k} \left[-\cos\left(k\frac{\pi}{3}\right) + \cos\left(k\frac{2\pi}{3}\right) - 1 + \cos\left(k\pi\right) \right] e^{jk\frac{2\pi}{T}t}.$$

(b) [3 marks] Write x(t) using the real form of the Fourier series.

$$x(t) = a_0 + 2\sum_{k=1}^{+\infty} [B_k \cos(k\omega_0 t) - C_k \sin(k\omega_0 t)]$$

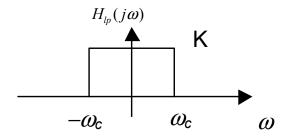
Answer:

Recall that the $\,C_{\scriptscriptstyle k}\,$ coefficients are the imaginary parts of the $\,a_{\scriptscriptstyle k}\,$'s. Hence

$$x(t) = \sum_{k=1}^{+\infty} \frac{-A}{\pi k} \left[-\cos\left(k\frac{\pi}{3}\right) + \cos\left(k\frac{2\pi}{3}\right) - 1 + \cos\left(k\pi\right) \right] \sin(k\omega_0 t).$$

(c) [2 marks] Design an ideal lowpass filter that will produce the perfect sinusoidal waveform $y(t) = \sin\frac{2\pi}{T}t \text{ at its output with } x(t) \text{ as its input. Sketch its frequency response and specify its gain } K \text{ and cutoff frequency } \omega_c \,.$

Answer:



The cutoff should be between the fundamental and the second harmonic, say $\omega_c = \frac{3\pi}{T}$. The gain

should be
$$K = \frac{-\pi}{A} \left[-\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{2\pi}{3}\right) - 1 + \cos(\pi) \right]^{-1} = \frac{-\pi}{A} \left[-\frac{1}{2} - \frac{1}{2} - 2 \right]^{-1} = \frac{\pi}{3A}$$
.

(d) [6 marks] Now suppose that the first-order lowpass filter whose differential equation is given below is used to filter x(t).

$$\tau \frac{d}{dt} y(t) + y(t) = Bx(t)$$

where the time constant is chosen to be $\tau=\frac{T}{2\pi}$. Give the Fourier series representation of the output y(t). Compute the total average power in the fundamental components P_{1tot} and in the third harmonic components P_{3tot} . Find the value of the dc gain B such that the output w(t) produced by the fundamental harmonic of the real Fourier series of x(t) has unit amplitude.

Answer:

$$H(s) = \frac{B}{\tau s + 1}$$

$$H(j\omega) = \frac{B}{\tau j\omega + 1}$$

$$y(t) = \sum_{k=-\infty}^{+\infty} a_k H(jk\frac{2\pi}{T})e^{jk2\pi t} = \sum_{\substack{k=-\infty\\k\neq 0}}^{+\infty} \frac{B}{jk + 1}\frac{jA}{2\pi k} \left[-\cos\left(k\frac{\pi}{3}\right) + \cos\left(k\frac{2\pi}{3}\right) - 1 + \cos\left(k\pi\right) \right] e^{jk\frac{2\pi}{T}t}$$

Power:

$$P_{1tot} = 2 \left| \frac{B}{j+1} \frac{jA}{2\pi} \left[-\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{2\pi}{3}\right) - 1 + \cos(\pi) \right] \right|^{2}$$

$$= 2 \left| \frac{B}{j+1} \frac{jA}{2\pi} \left[-\frac{1}{2} - \frac{1}{2} - 2 \right] \right|^{2} = 2 \left| \frac{B}{j+1} \frac{j3A}{2\pi} \right|^{2}$$

$$= B^{2} \left| \frac{3A}{2\pi} \right|^{2} = \frac{9A^{2}B^{2}}{4\pi^{2}}$$

$$P_{3tot} = 2 \left| \frac{B}{j3+1} \frac{jA}{2\pi} \left[-\cos(\pi) + \cos(2\pi) - 1 + \cos(\pi) \right] \right|^{2}$$

$$= 2 \left| \frac{B}{j3+1} \frac{jA}{2\pi} \left[0 \right] \right|^{2} = 0$$

DC gain B:

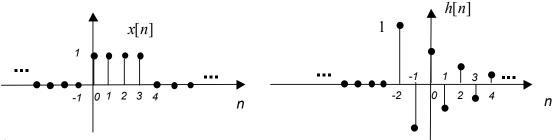
We found that the gain at ω_0 should be

$$\frac{\pi}{3A} = |H(j\omega_0)| = \frac{B}{|\tau j\omega_0 + 1|} = \frac{B}{\sqrt{(\tau \omega_0)^2 + 1}}$$

$$\Leftrightarrow B = \frac{\pi\sqrt{(\tau \omega_0)^2 + 1}}{3A}$$

Problem 3 (15 marks)

Compute the response y[n] of an LTI system described by its impulse response h[n] shown below and whose magnitude from a time instant to the next decays by 0.9 on its support. The input signal x[n] is the rectangular pulse shown below shown below. Give a mathematical expression for h[n].



Answer:

Mathematical expression for impulse response: $h[n] = (-0.9)^{(n+2)} u[n+2]$

We break down the problem into 3 intervals for n.

For n < -2: h[n-k] is zero for k>=0, hence $g[k] = h[k]x[n-k] = 0 \ \forall k$ and y[n] = 0.

For $-2 \le n \le 1$: Then $g[k] = h[k]x[n-k] \ne 0$ for k = 0, ..., n+2. We get

$$y[n] = \sum_{k=0}^{n+2} g[k] = \sum_{k=0}^{n+2} (-0.9)^{n-k+2} = (-0.9)^{n+2} \sum_{k=0}^{n+2} (-0.9)^{-k}$$
$$= (-0.9)^{n+2} \sum_{k=0}^{n+2} (-\frac{10}{9})^k = (-0.9)^{n+2} \left(\frac{1 - (-0.9)^{-n-3}}{1 - (-0.9)^{-1}} \right)$$
$$= \frac{(-0.9)^{n+2} - (-0.9)^{-1}}{1 - (-0.9)^{-1}} = \frac{(-0.9)^{n+3} - 1}{-1.9}$$

For $n \ge 2$: Then $g[k] = h[k]x[n-k] \ne 0$ for k = 0,...,4. We get

$$y[n] = \sum_{k=0}^{3} g[k] = \sum_{k=0}^{3} (-0.9)^{n-k+2} = (-0.9)^{n+2} \sum_{k=0}^{3} (-0.9)^{-k}$$
$$= (-0.9)^{n+2} \left(\frac{1 - (-0.9)^{-4}}{1 - (-0.9)^{-1}} \right)$$
$$= \frac{(-0.9)^{n+2} - (-0.9)^{n-2}}{1 - (-0.9)^{-1}}$$

In summary, the output signal of the LTI system is

$$y[n] = \begin{cases} 0, & n < -2 \\ \frac{(-0.9)^{n+3} - 1}{-1.9}, & -2 \le n < 1 \\ \frac{(-0.9)^{n+2} - (-0.9)^{n-2}}{1 - (-0.9)^{-1}}, & 2 \le n \end{cases}$$

Problem 4 (10 marks)

The unit step response of an LTI system was measured to be

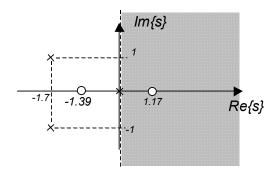
$$s(t) = 2e^{-\sqrt{3}t} \sin(t - \frac{\pi}{6})u(t) + u(t) - tu(t).$$

(a) [6 marks] Find the transfer function H(s) of the system. Specify its ROC. Sketch its pole-zero plot.

$$\begin{split} H(s) &= sS(s) = s\mathcal{L} \left[2e^{-\sqrt{3}s} \sin(t - \frac{\pi}{6})u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[2e^{-\sqrt{3}s} \left(\frac{e^{j(t - \frac{\pi}{6})} - e^{-j(t - \frac{\pi}{6})}}{2j} \right) u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[2e^{-\sqrt{3}s} \left(\frac{(\sqrt{3} - j \frac{1}{2})e^{-jt} - (\sqrt{3} + j \frac{1}{2})e^{-jt}}{2j} \right) u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[\left(\frac{(\sqrt{3} - j \frac{1}{2})e^{-\sqrt{3}s + jt} - (\sqrt{3} + j \frac{1}{2})e^{-\sqrt{3}s - jt}}{j} \right) u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[\left(\frac{(\sqrt{3} - j \frac{1}{2})e^{-\sqrt{3}s + jt} - (\sqrt{3} + j \frac{1}{2})e^{-\sqrt{3}s - jt}}{j} \right) u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[\left(\sqrt{3} e^{-\sqrt{3}st + jt} - \frac{\sqrt{3}}{2} e^{-\sqrt{3}s - jt} \right) - j \frac{1}{2} e^{-\sqrt{3}s + jt} - j \frac{1}{2} e^{-\sqrt{3}s - jt}} \right] u(t) + u(t) - tu(t) \right] \\ &= s\mathcal{L} \left[\left(\sqrt{3} e^{-\sqrt{3}st} \sin t - e^{-\sqrt{3}st} \cos t \right) u(t) + u(t) - tu(t) \right] \\ &= s\left[\frac{\sqrt{3}}{(s + \sqrt{3})^2 + 1} - \frac{s + \sqrt{3}}{(s + \sqrt{3})^2 + 1} + \frac{1}{s} - \frac{1}{s^2} \right] \\ &= \frac{-s^3 + [(s + \sqrt{3})^2 + 1]}{s[(s + \sqrt{3})^2 + 1]} \\ &= \frac{-s^3 + [s^2 + 2\sqrt{3}s + 4](s - 1)}{s[(s + \sqrt{3})^2 + 1]} \\ &= \frac{(2\sqrt{3} - 1)s^2 + (4 - 2\sqrt{3})s - 4}{s[(s + \sqrt{3})^2 + 1]} = \frac{(2\sqrt{3} - 1)\left[s^2 + \frac{(4 - 2\sqrt{3})}{(2\sqrt{3} - 1)} s - \frac{4}{(2\sqrt{3} - 1)} \right]}{s[(s + \sqrt{3})^2 + 1]} \\ &= \Omega(0) \quad \text{Re}(s) > 0. \end{split}$$

$$p_1=0 \qquad \qquad z_1=-1.3875,$$
 Poles are
$$p_2=-\sqrt{3}+j \text{ , Zeros are zeros of } s^2+0.21748s-1.62331 \colon z_2=1.1700$$

$$p_3=-\sqrt{3}-j \qquad \qquad z_3=\infty$$



(b) [2 marks] Is the system causal? Is it stable? Justify your answers.

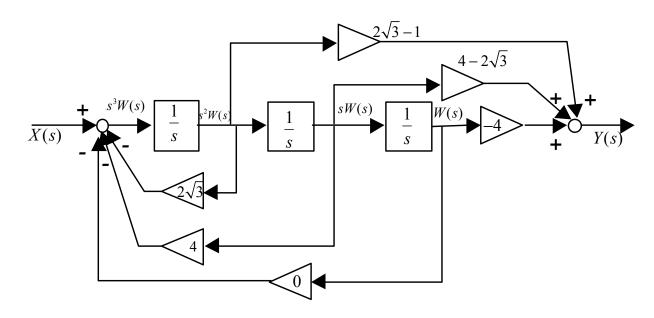
Answer:

System is causal: ROC is an open RHP <u>and</u> transfer function is rational.

This system isn't stable as ROC doesn't include the imaginary axis (or because rightmost pole 0 has a nonnegative real part.)

(c) [2 marks] Give the direct form realization (block diagram) of $\,H(s)\,$. Answer:

$$H(s) = \frac{(2\sqrt{3} - 1)s^2 + (4 - 2\sqrt{3})s - 4}{s^3 + 2\sqrt{3}s^2 + 4s}$$



Problem 5 (5 marks)

True or False?

(a) The Fourier transform $Z(j\omega)$ of the convolution of a real even signal x(t) and a real odd signal y(t) is imaginary even.

Answer: False.

(b) The system defined by y(t) = tx(t) is time-invariant.

Answer: False.

(c) The Fourier series coefficients b_k of the periodic signal y(t) = x(10t) are given by $b_k = \frac{1}{10}a_k$,

where $x(t) \leftrightarrow a_k$.

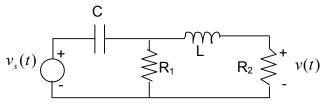
Answer: False.

- (d) The Fourier transform $X(j\omega)$ of the product of a real signal x(t) and an impulse $\delta(t)$ is real. *Answer: True.*
- (e) The fundamental period of the signal $x[n] = \sin(\frac{3\pi}{5}n)\cos(\frac{2\pi}{3}n)$ is 60.

Answer: False. (N=30)

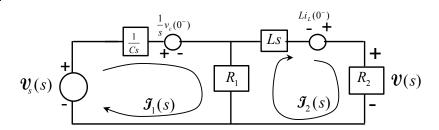
Problem 6 (15 marks)

The following circuit has initial conditions on the capacitor $v_{\mathcal{C}}(0^-)$ and inductor $i_{\mathcal{L}}(0^-)$.



(a) [3 marks] Transform the circuit using the unilateral Laplace transform.

Answer:



(b) [6 marks] Find the unilateral Laplace transform of v(t).

Answer:

Let's use mesh analysis.

For mesh 1:

$$\mathcal{V}_{s}(s) - \frac{1}{Cs} \mathcal{J}_{1}(s) - \frac{1}{s} v_{c}(0^{-}) - R_{1}[\mathcal{J}_{1}(s) - \mathcal{J}_{2}(s)] = 0$$

$$\Rightarrow \mathcal{J}_{2}(s) = -\frac{1}{R_{1}} \mathcal{V}_{s}(s) + \frac{1}{R_{1}s} v_{c}(0^{-}) + (1 + \frac{1}{R_{1}Cs}) \mathcal{J}_{1}(s)$$

For mesh 2:

$$R_{1}[\mathcal{J}_{1}(s) - \mathcal{J}_{2}(s)] - (R_{2} + Ls)\mathcal{J}_{2}(s) + Li_{L}(0^{-}) = 0$$

$$\Rightarrow \mathcal{J}_{1}(s) = \frac{1}{R_{1}}(R_{1} + R_{2} + Ls)\mathcal{J}_{2}(s) - \frac{L}{R_{1}}i_{L}(0^{-})$$

Substituting, we obtain

$$\begin{split} & \mathcal{J}_{2}(s) = -\frac{1}{R_{1}} \mathcal{V}_{s}(s) + \frac{1}{R_{1}s} v_{c}(0^{-}) + (1 + \frac{1}{R_{1}Cs}) \left[\frac{1}{R_{1}} (R_{1} + R_{2} + Ls) \mathcal{J}_{2}(s) - \frac{L}{R_{1}} i_{L}(0^{-}) \right] \\ & \left[R_{1}^{2} Cs - (1 + R_{1}Cs)(R_{1} + R_{2} + Ls) \right] \mathcal{J}_{2}(s) = -R_{1} Cs \mathcal{V}_{s}(s) + R_{1} Cv_{c}(0^{-}) - (1 + R_{1}Cs) Li_{L}(0^{-}) \right. \\ & \left. - [LR_{1}Cs^{2} + (L + R_{1}R_{2}C)s + R_{1} + R_{2}] \mathcal{J}_{2}(s) = -R_{1}Cs \mathcal{V}_{s}(s) + R_{1}Cv_{c}(0^{-}) - (1 + R_{1}Cs) Li_{L}(0^{-}) \right] \end{split}$$

Solving for $\mathcal{J}_{2}(s)$, we get

$$\mathcal{J}_{2}(s) = \frac{R_{1}Cs\mathcal{V}_{s}(s)}{LR_{1}Cs^{2} + (L + R_{1}R_{2}C)s + R_{1} + R_{2}} + \frac{(1 + R_{1}Cs)Li_{L}(0^{-}) - R_{1}Cv_{c}(0^{-})}{LR_{1}Cs^{2} + (L + R_{1}R_{2}C)s + R_{1} + R_{2}}$$

And finally the output voltage is

$$\mathbf{\mathcal{V}}(s) = R_2 \mathbf{\mathcal{J}}_2(s) = \frac{R_1 R_2 C s \mathbf{\mathcal{V}}_s(s)}{L R_1 C s^2 + (L + R_1 R_2 C) s + R_1 + R_2} + \frac{R_2 (1 + R_1 C s) L i_L(0^-) - R_1 R_2 C v_c(0^-)}{L R_1 C s^2 + (L + R_1 R_2 C) s + R_1 + R_2}$$

(c) [6 marks] Draw the Bode plot (magnitude and phase) of the frequency response from the input voltage $v(j\omega)$ to the output voltage $v(j\omega)$. Assume that the initial conditions on the capacitor and

the inductor are 0. Use the numerical values:
$$R_1=1\,\Omega,\ R_2=\frac{109}{891}\,\Omega,\ L=\frac{1}{891}\,H,\ C=1\,F$$
.

Answer:

For the values given, the transfer function from the source voltage to the output voltage is

$$\mathcal{H}(s) := \frac{\mathcal{V}(s)}{\mathcal{V}_{s}(s)} = \frac{\frac{R_{2}}{L}s}{s^{2} + \frac{L + R_{1}R_{2}C}{LR_{1}C}s + \frac{R_{1} + R_{2}}{LR_{1}C}}$$

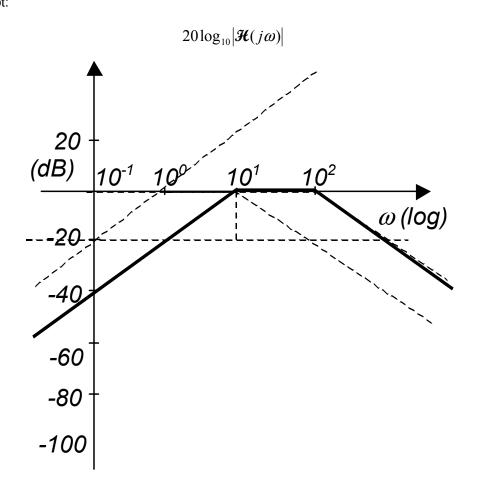
$$= \frac{109s}{s^{2} + \frac{\frac{1}{891} + \frac{109}{891}}{\frac{1}{891}}s + \frac{1 + \frac{109}{891}}{\frac{1}{891}}}$$

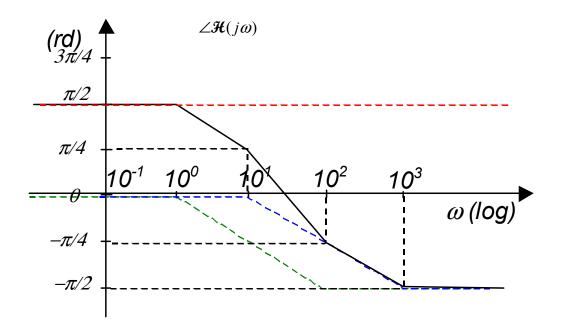
$$= \frac{109s}{s^{2} + 110s + 1000}$$

$$= \frac{109s}{(s + 10)(s + 100)}$$

$$= 0.109 \frac{s}{(\frac{1}{10}s + 1)(\frac{1}{100}s + 1)}$$

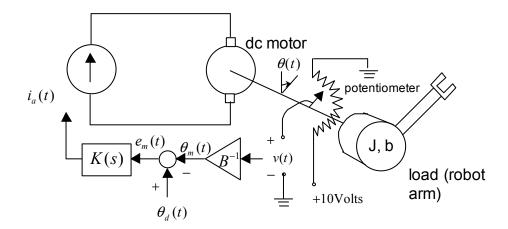
Bode Plot:





Problem 7 (15 marks)

A classical technique to control the position of an inertial load (e.g., a robot arm) driven by a permanent-magnet DC motor is to vary the armature current based on a potentiometer measurement of the robot's joint angle $\theta(t)$, as shown in the diagram below.



Before closing the feedback loop, we first look at the open-loop dynamics of this system in (a) and (b). The torque $\tau(t)$ in Newton-metres applied to the load by the motor is proportional to the armature current in Amps:

$$\tau(t) = Ai_a(t).$$

The robot arm is modeled as an inertia J with viscous friction represented by the coefficient b. The equation of movement for the load is

$$J\frac{d^2\theta(t)}{dt^2} + b\frac{d\theta(t)}{dt} = \tau(t).$$

(a) [2 marks] Assume that the system is initially at rest. Find the open-loop transfer function G(s):= $\Theta(s)/I_a(s)$ relating the joint angle $\Theta(s)$ to the motor's armsture current input $I_a(s)$.

Answer:

$$G(s) = \frac{\Theta(s)}{I_a(s)} = \frac{A}{s(Js+b)}$$

(b) [6 marks] Assume that $A=1~{\rm Nm/A}$, $J=1~{\rm Nm/rd/s}^2$ and $b=1~{\rm Nm/rd/s}^2$. Compute the open-loop unit step response $s_\omega(t)$ of the load's angular velocity $\omega(t)=\frac{d\,\theta(t)}{dt}$ for a unit step in armature current. What is the $\pm 5\%$ settling time t_s (an approximation is OK)?

Answer:

$$G_{\omega}(s) = \frac{s\Theta(s)}{I_{\alpha}(s)} = \frac{1}{s+1}$$

The unit step response $s_{\omega}(t)$ is given by

$$S_{\omega}(s) = \frac{1}{s}G_{\omega}(s) = \frac{\Theta(s)}{I_{\sigma}(s)} = \frac{1}{s(s+1)} = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$

Taking the inverse Laplace transform, we get

$$s_{\omega}(t) = (1 - e^{-t})u(t)$$

The $\pm 5\%$ settling time is approximately equal to three time constants: $t_s \approx 3 \ s$.

(c) [7 marks] Based on the above figure, find the gain B of the joint angle sensor (potentiometer) in Volts/radian. Assume, as shown in the figure above, that there is a gain B^{-1} in the feedback path canceling out the sensor gain, and thus the link angle $\theta(t)$ is measured perfectly, i.e., $\theta_{\scriptscriptstyle m}(t) = \theta(t)$. We want to analyze the feedback controller $K(s) = \lambda(s+\alpha)$ to control the robot's joint angle. That is, we want $\theta(t)$ to track the desired angle $\theta_{\scriptscriptstyle d}(t)$.

Answer:

Sensor gain is
$$B = \frac{10}{\pi} V/rd$$



Find the closed-loop transfer function $H(s) \coloneqq \Theta(s)/\Theta_d(s)$. Find expressions for the closed-loop damping ratio ζ and undamped natural frequency ω_n in terms of the controller parameters α and

 λ . For $\alpha=4$, find a value of λ that will result in a closed-loop damping ratio of $\zeta=\frac{1}{\sqrt{2}}$.

Closed-loop transfer function:

$$H(s) = \frac{K(s)G(s)}{1 + K(s)G(s)}$$

$$= \frac{\frac{\lambda(s+\alpha)}{s(s+1)}}{1 + \frac{\lambda(s+\alpha)}{s(s+1)}}$$

$$= \frac{\lambda(s+\alpha)}{s(s+1) + \lambda(s+\alpha)}$$

$$= \frac{\lambda(s+\alpha)}{s^2 + (1+\lambda)s + \alpha\lambda}$$

We get $\omega_n = \sqrt{\alpha \lambda}$ and $\zeta = \frac{1+\lambda}{2\sqrt{\alpha \lambda}}$.

For $\alpha=4$ and given $\zeta=\frac{1}{\sqrt{2}}$, we have:

$$\zeta = \frac{1}{\sqrt{2}} = \frac{1+\lambda}{2\sqrt{4\lambda}}$$

$$\Rightarrow \frac{1}{2} = \frac{(1+\lambda)^2}{16\lambda} \Rightarrow 8\lambda = 1+2\lambda+\lambda^2$$

$$\Rightarrow 1-6\lambda+\lambda^2 = 0$$

$$\Rightarrow \lambda_{1,2} = \frac{6\pm\sqrt{36-4}}{2} = 3\pm2\sqrt{2}$$

both values are positive (for stability) and hence acceptable.

END OF EXAMINATION