Solutions to Problems in Chapter 8

Problems with Solutions

Problem 8.1

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the
following systems. Specify if the transfer functions have poles or zeros at infinity.

100(s — 1)(s +10)
(s +100)?

(@) H(s)= , Re{s} >-100.

Answer:

100(s = 1)(s +10) _
(s +100)*

_ 0.1(=s +1)(s/10 +1)

H(S) = b
(0.01s +1)(0.01s +1)

Re{s} >-100

H(s)

Break frequencies at «) =1, @) =10 (zeros); & =100 (double pole). The pole-zero plot is

shown in Figure 8.1, and the Bode plot is in Figure 8.2.
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Figure 8.1: Pole-zero plot of transfer function of Problem 8.1(a).
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Figure 8.2: Bode plot of transfer function of Problem 8.1(a).
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(b)H(S):m, Re{s} >0.
Answer:
H(s) = s+10 _ 10(s/10 +1) Re{s} >0.

~ 5(0.001s+1)  s(s/1000+1)’

The pole-zero plot is given in Figure 8.3.
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Figure 8.3: Pole-zero plot of transfer function of Problem 8.1(b).

The break frequencies are @ =10 (zero); « =0, &) =1000 (poles), and the transfer function

has one zero at o . The Bode plot is shown in Figure 8.4.
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Figure 8.4: Bode plot of transfer function of Problem 8.1(b).
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sT+2s +1

(© HE) = 70002 +105 100)°

Re{s} > -5

We can write the transfer function as follows:

_ 0.0001(s +1)? _ 0.0001(s +1)?
H(S) - 2 - 5
(0.01s +1)(0.01s* +0.1s +1)  (0.01s +1)(s +5 = j53/3)(s +5 +5v3)

Re{s} >-5

The pole zero plot is shown in Figure 8.5, and the Bode plot is in Figure 8.6.
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Figure 8.5: Pole-zero plot of transfer function of Problem 8.1(c).
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Figure 8.6: Bode plot of transfer function of Problem 8.1(c).



Problem 8.2

Consider the mechanical system of Figure 8.7 consisting of a mass m attached to a spring of
stiffness & and a viscous damper (dashpot) of damping factor b, both rigidly connected to
ground. This basic system model is quite useful to study a number of systems, including a car's

suspension, or a flexible robot link.

x(t) (force input)

|

m

1)/([) (mass position wrt rest)
force applied on mass by spring and gravity:

|J__| L (1) = ky(1)
k b

force applied on mass by damper:

() =by(0)

W

Figure 8.7: Mass-spring-damper system of Problem 8.2.

Assume that the mass-spring-damper system is initially at rest, which means that the spring
generates a force equal to the force of gravity to support the mass. The balance of forces on the

mass causing motion is the following:
x(t) = F, (1) = F, (1) =mji(1).
(a) Write the differential equation governing the motion of the mass.

Answer:

my(t) +by(t) + ky(2) = x()



(b) Find the transfer function of the system relating the applied force to the mass position.

Aor

n

. What is the damping ratio ¢ for this mechanical
S 20w st ping 4

Express it in the form H(s) =

system? What is its undamped natural frequency «, ?

Answer:

1
ms® +bs +k

_ (Wk)k/m)

s +2s +£

m m

H(s) =

The natural frequency is given by &’ = L3 = W, = \/E . Note: the larger the mass, the lower
m m

the undamped natural frequency; the stiffer the spring, the higher the undamped natural

frequency. The damping ratio of the system is then:

b b b

¢= 20, 2JE 2mk’

For a given dashpot, the larger the mass and/or spring constant, the less damped the system will

be.

(c) Let the physical constants have numerical values m =2kg, k=8 N/m, and b=4 N/,
Suppose that the applied force is a step x(z) =3u(t) N. Compute and sketch the resulting mass
position for all times. What is the mass position in steady-state? What is the percentage of the
first overshoot in the step response? What is the 5% settling time of the mass? (a numerical

answer will suffice.)



Answer:

With the numerical values given, the damping ratio and undamped natural frequencies are:

=
w, :\/E =, :2%
m 2kg

4N
nls =5

_ b
C2Jmk 2 /16kg X

{

The step input force is x(¢) =3u(t) E, Re{s} > 0. The Laplace transform of the step response
s
is given by:

1.5
s(s> +2s +4)
_ —0.18750 + ;0.10826 , —0.18750 -;0.10826 , 0.375
= + +
s+1-j\3 s+1+ /3 s

Y(s) =

Taking the inverse Laplace transforms of the partial fractions and simplifying, we get

0 :[(—0.18750 +70.10826)e " +(-0.18750 — j0.10826)e(_1_j‘/§)’Ju(t) +0.375u(f)
=2¢™ Re[(—o.18750 +0.10826)e ™ ]u(t) +0.375u(?)

=2¢™ [—0.18750cos J3t —0.10826sinﬁz]u(r) +0.375u(t) m

This step response is plotted in Figure 8.8. The mass position in steady state is 0.375m.



6 7 8 9 10
1)
Figure 8.8: Step response of mass-spring-damper system of Problem 8.2.

The +5% settling time of the mass is found to be ¢, = 2.65. Percentage of overshoot:

¢ 0.5

08 =100e V= % =100e P % =16.3% .

Exercises
Problem 8.3

Compute the 95% rise time ¢, and the 5% settling time ¢, of the step response of the system

0.001s +1
H(s) =295 petsy > 10,
) == 5+ s}

Answer:

Here, we have a first-order lag with @ = 0.01 and time constant 7 = 0.1, i.e.,

ars+1_0.010.Ds+1 _, ., 0.99

H(s) = . ,
Ts +1 0.1s +1 0.1s +1

the step response is:  s(t) = 0.01u(z) +0.99(1 =™ Yu(z).
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Rise time: t =lys, —ts, =2.94447 =0.29444s .

+5% Settling time: ¢, =t,,, =2.99571 =0.29957s

Problem 8.4

Compute the DC gain in dBs, the peak resonance in dBs, and the quality QO of the second-order

1000

causal filter with transfer function: H(s)=—————.
s°+2s+100

Problem 8.5

Compute the actual value of the first overshoot in the step response of the causal LTI system

5
H(s)=————.
(<) 35> +35+6
Answer:
_ 5 _5/3 . 5_ L .
H(s)=— =— has a DC gain of — =0.833, which is also equal to the settling
3s"+3s+6 57 +s5+2 6

value of the step response of the system. The damping ratio is found to be { = , which gives

1
22

1
—F=7

2\2

¢

us

- 7 _n
a percentage of overshoot of OS =100e ﬁ% =100e \/; % =100e Y7 % =30.5%. Therefore,

the value of the first overshoot in the step response is given by: 1.305 *% =1.088.

11



Problem 8.6

Compute the group delay of a communication channel represented by the causal first-order

1
0.01s +1

system H(s) = , Re{s} >-100. Compute the approximate value of the channel's delay

at very low frequencies.

Problem 8.7

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the

following systems. Specify whether the transfer functions have poles or zeros at infinity.

_100(s - 20) _
@) His)= (s +5)(s +100)*’ Rels}> .
Hsy=1006=20 _ 1 (=s5/20 +1)

T (s+5)(s +100)° 250 (s/5 +1)(s/100 +1)’

Break frequencies at ) =20 (zero); @ =5, @ =100(x2) (poles), two zeros at .

Im{s} 4

k
K e
O
v

'
wn

————————

-100
Re{s}
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(b) H(s)=— 10

=— , Re{s} >0.
5(0.005s +1)

Answer:

Im {s}

—s+10 _10(=5/10 +1)

H(s) = . |
5(0.005s +1)  s5(0.005s +1) 4 : o .
-200 E 10
Break frequencies at &) =10 (zero); @, =0, «) =200 (poles), one zero at .
20log,,|H(je)|
>
N w (log)
-20 T
-40 T
-60 +
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w
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~~
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-511/4

-3n/2T

2
S

o H(s)=— 5
© H(S) = 5 305 7900

, Ref{s} >-15

Answer:

2
S 1 Ky

s> +30s+900 900 s* 1
S b s+l
302 30

2

H(s) =

15

, @, =30, =0.5

4

A

Im{s}

126
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-26

Re{s}
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Problem 8.8

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the

following systems. Specify if the transfer functions have poles or zeros at infinity.

_100(s~10) )
@ HE) = s +10)s +100)° e >
) Hs)=—1 Refs}>0.
5(0.01s +1)
_ s(s’> =9) _
© HE) = 00y s2 105 +100)7 877
Problem 8.9

Consider the causal differential system described by:

ldzy(t) +L dy(t) +y(t) :M +x(t),

4 di* 2 at dt

with initial conditions

b ;O ) - 3, »(07) =0. Suppose that this system is subjected to the input
t

signal x(¢) =eu(t).

(a) Find the system's damping ratio { and undamped natural frequency «@,. Compute the output
of the system y(¢) for t 2 0. Find the steady-state response y_(¢), the transient response y, (),

the zero-input response y_ (¢) and the zero-state response y_ (¢) for £ 20.

Answer:
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Let's take the unilateral Laplace transform on both sides of the differential equation.

1 YE) —59(0) - dyfl?_)} #=[SY0) 50 ] +Y) =52(5) +2(s)

Collecting the terms containing Y(s) on the left-hand side and putting everything else on the

right-hand side, we can solve for Y(s).

(52 + 2325 +4)Y(s) =45 (s) +42(s5) +59(07) +242)(0) +_dy§l‘t)_)

(s +242)y(07) + PO

4s + HA(s
BPCAL): {6 i d
S +2\/§S +4 S +2\/§S +4
zero-state resp. zero-input resp.

Since the system is causal, the ROC is an open RHP to the right of the rightmost pole. The

undamped natural frequency is @, =2 and the damping ratio is { :L_ The poles are

V2
P, =W, £jw\1- = ~/2 /2 . Therefore the ROC is Re{s} > —/2 . The unilateral LT

of the input is given by
X(s)= b Re{s} > =2
S + 2 b b

thus,

4(s +1) 3
Y(s) = + :
(s +2)(s> +242s +4) s> +2/25 +4
—_—
Re{s}>—2 Re{s}>-2
zero-state resp. zero-input resp.

Let's compute the zero-state response first:
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4(s +1)
(s +2)(s> +2/25 +4)
_ A2 +B(s +42) . C
(s +\/§)2 2 %2

Re{s}>=2

Y, (s) = Refs} > —/2

Re{s}>=2
_ A2+ B(s +2) _1.707
(S+\/5)2 2 S*Z

Re{s}>=2

Re{s}>—\/5

1-2
2-\2

to get B=-C =1+1/2 =1.707:

Let s = —/2 to compute 4 = -3 =2.1213, then multiply both sides by s and let s — o

_ 212182 +1.707(s ++/2) _1.707

Y, (s)
(s +«/§)2 +2 St2,
Re{s}>2
Re{s}>—/2

Notice that the second term is not a steady-state response, and thus y_(¢) = 0. Taking the inverse

Laplace transform using the table yields
v (f) = [—1.707e‘2' +2.121e™ sin(/21) +1.707e™ cos(ﬁt)]u(z) .

The zero-input response is given by:

3

s*+ 2\/§s +4
%/—/
Re{s}>—ﬁ

zero-input resp.

3
—/2
_ 2
C(s++2) +2] Refs} > ~/2

Y, (s)=

19



which yields:

V()= %e‘@ sin(v20)u(t) .

The transient response is the sum of y_(¢) and y_(¢) above.
y, (1) = [—1.7075” +2.121e™ sin(v/2¢) +1.707e ™ cos(+/2¢) +%e“@ sin(\/zt)}u(t)

(b) Plot y (?), y,(¢), y,(@), y,(t) for t 20, all on the same figure.

Answer:

212141000 expi-2"2 1) sin(2™? 0+ 4312 exp-2"2 1) 212 5ini2'2 4

0.8 H

0.5

0.4

0.z

(c) Find the frequency response of the system and sketch its Bode plot.
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Answer:

The transfer function of the system is H(s) = &, and the frequency response is given
57+ 2425 +4
by:
HGy = I = O
(jw) jw (@ Y2 0+
4 2
20log, |H(jw)|
A -
(dB) prad
401 el
2 O T Pid -
101 102 10! 102 103
_____________ - ' | | >
w (log)
-20 T
40 4+
-60 4+
-80 T
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Problem 8.10
Consider the causal differential system described by its direct form realization shown in Figure

8.9.

(s)
o ! ,l|>_.
M

Figure 8.9: System of Problem 8.10.
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dy(0”
dt

N

This system has initial conditions

=-1, y(07) =2. Suppose that the system is subjected

to the unit step input signal x(¢) = u(¢).

(a) Write the differential equation of the system. Find the system's damping ratio { and

undamped natural frequency @),. Give the transfer function of the system and specify its ROC.

Sketch its pole-zero plot. Is the system stable? Justify.

(b) Compute the step response of the system (including the effect of initial conditions), its

steady-state response y  (¢) and its transient response y, (¢) for ¢ =0. Identify the zero-state

response and the zero-input response in the Laplace domain.

(c) Compute the percentage of first overshoot in the step response of the system assumed this

time to be initially at rest.
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