Solutions to Problems in Chapter 6
Problems with Solutions

Problem 6.1

Compute the Laplace transforms of the following three signals (find the numerical values of w),

and @ in (c) first). Specify their regions of convergence. Find their Fourier transforms if they

exist.

(@) x,(t) =10 u(t —2) +10e”*"u(~ +2) as shown in Figure 6.1
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Figure 6.1: Double sided signal of Problem 6.1(a).

Answer:

Using the table and the time-shifting property, we get

x,(t) =10e” " Pu(t =2) +10e* " Pu(~ +2)
=10e” " Pu(t —2) +10e™Pu(~t -2))
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The Fourier transform exists since the ROC contains the imaginary axis, i.e., s = j@. It is given

by:
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(b) Signal x,(#) shown in Figure 6.2.

Figure 6.2: Sawtooth signal of Problem 6.1(b).

Answer:



We can compute this one by using the integral defining the Laplace transform. Here x,(#) has

finite support, hence the Laplace transform integral converges for all s.
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The Fourier transform of this signal is given by:
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It is odd and purely imaginary, as expected. Applying L'Hopital's rule twice, we can also check

that X, (j0) is finite as it should.

(c) Damped sinusoid signal x,(t) =e™'" sin(ct + Ou(t) of Figure 6.3



Answer:
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Figure 6.3: Damped sinousoid signal of Problem 1(c).

Let us first find the values of the parameters & and «),. We have

and

x,(0) = 0.5 =sin(6)
@ = arcsin(0.5)

g="
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The signal's Laplace transform can be obtained as follows:



x()=e sin(%T ¢ +£)u(t)
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The Fourier transform of x,(¢) exists since the imaginary axis lies in the ROC.
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Problem 6.2

For the causal LTI system H (S):%I,RG{S} > -1 shown in Figure 6.4, find the output
s

responses y,(¢) and y,(¢) to the input signals x,(¢) and x,(¢) of Problem 1.

X(s) Y(s)
—»| H(s) —»

Figure 6.4: Causal LTI system of Problem 2.

The Laplace transform of the output response y,(#) is given by

Y (s) = H(s)X,(s)
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The coefficients are computed as follows:
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Thus
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and taking the inverse Laplace transform, we get

»,(6) =10(t =2)e” " Pu(t —=2) +6.667e™ Pu(t —2) +6.667e"°" Pu(+ +2).
The Laplace transform of the output response y,(¢) is given by:
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We find the coefficients by first multiplying on both sides by the common denominator, and then

by identifying the coefficients of the polynomials
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We obtain the linear matrix equation:
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from which we compute

A 0.0323
B |=|-0.0323
C 0.0073

Thus,
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and taking the inverse Laplace transform, we get

3, (£) = 0.0323¢™"u(r) —0.0323¢™" cos(28.81)u(f) +0.0073¢ ™" sin(28.8¢)u(r).

Problem 6.3

Find all possible ROCs for the following transfer function and give the corresponding impulse

responses. Specify for each ROC whether the corresponding system is causal and stable.
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Answer:

The complex poles are found by identifying the damping ratio and undamped natural frequency

of the second-order denominator factor with the standard second-order polynomial

s> +2¢w, + of . Here @, =3, C=?. Thus the poles are
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There are three possible ROCs: Re{s} <-1.5, —1.5 <Re{s} <3, Re{s} >3.

The partial fraction expansion of H(s) yields:
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Using the table and simplifying, we find the following impulse responses:
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These are further simplified to their real form in Table 6.1.

Table 6.1: Impulse responses in Problem 3 for the three possible ROCs
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Exercises

Problem 6.4
_6(s+1)
Compute the step response of the LTI system H(s) = 5+3)’ Re{s} >0.
s(s
Problem 6.5
100

Compute the output y(¢) of the LTI system H(s) = Re{s} > =5 for the input

52 +10s +100°

signal x(¢) = e*u(-t).

Answer:
The Laplace transform of the input is looked up in Table D.4: X (s) = —%, Re{s} <4.The
5 —
output signal is the inverse transform of:
-100
Y(s)=H(s)X(s) = -5 <Re{s} <4

(s> +10s +100)(s —4)’

_A(s+5)+BJ75 e
(s+5°+75 s-4
—_—

Re{s}<4

Re{s}>-5
_ 0.641(s +5) +0.667+/75 _ 0.641
(s +5)° +75 s—4

Re{s}<4

Re{s}>-5

which yields: y(¢) = [0.641e‘5f cos(/75¢) +0.667¢™ sin(ﬁr)] u(t) +0.641" u( ).
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Problem 6.6

Suppose that the LTI system described by H(s) = is known to be stable. Is this

2z
(s +3)(s —1)

system causal? Compute its impulse response A(?) .

Problem 6.7

2
: ) : -5s=2 . )
Consider an LTI system with transfer function H(s) = —S2 " SS e Sketch all possible regions of
s S

convergence of H(s) on pole-zero plots and compute the associated impulse responses /(?).

Indicate for each impulse response whether it corresponds to a system that is causal/stable.

Answer:

_(s=2)(s+1)

"= a6 +3)

There are three possible ROC's shown below that can be associated with this transfer function.

Only one ROC leads to a stable system: ROCI.
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Impulse response with ROC1: stable and causal.
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H (s)

h(t) = S(t) +| 4™ =10e™ Ju(t)

Impulse response with ROC2: unstable, anticausal
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Impulse response with ROC3: unstable, noncausal (impulse response is two-sided.)
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Problem 6.8

s(s—1)

Consider an LTI system with transfer function H(s) = —————
57 +/2s +1

. Sketch all possible regions

of convergence (ROC's) of H(s) on a pole-zero plot and compute the associated impulse
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responses A(t). Indicate for each impulse response whether it corresponds to a system that is

causal/stable.

Problem 6.9

System identification

Suppose we know that the input of an LTI system is x(¢) = e'u(—t) . The output was measured to
be y(t) =& sin(H)u(t) +e'u(t) +2e'u( ). Find the transfer function H(s) of the system, its
region of convergence, and sketch its pole-zero plot. Is the system causal? Is it stable? Justify

your answers.
Answer:

First take the Laplace transforms of the input and output signals using Table D.4:

X(s)= —ﬁ, Re{s} <1

1 1 2
Y(s)= —+ -
(S + 1) +1 s+1 s—1
— —
Re{s}>-1 Re{s}>-1  Re{s}<l

_(s7 =) — (s +25 +2)(s +3)
(7 + 25 +2)(s +1)(s -1)
(s’ +4s” +8s +7)

(52 +25 +2)(s +1)(s —1)

, =1 <Re{s} <1

~1 <Re{s} <1

Then, the transfer function is simply:
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—(s> +4s° +8s5 +7)
Y(s) _ (s2 +2s +2)(s +1)(s —-1) _ s> +4s®> +8s +7
X(s) 1 (s +2s +2)(s +1)

H(s) =

s—1
To determine the ROC of H(s), first note that the ROC of Y(s) should contain the intersection
of the ROC's of H(s) and X(s). There are two possible ROC's for H(s) : (a) an open left half-
plane to the left of Re{s} = —1, (b) an open right half-plane to the right of Re{s} = —1. But since
the ROC of X(s) is an open left half-plane to the left of Re{s} =1, the only possible choice is

(b). Hence, the ROC of H(s) is Re{s} >-—1.

The system is causal as the transfer function is rational and the ROC is a right half-plane. It is

also stable as all three poles p,, ==1%j, p, = -1 are in the open left half-plane. The zeros are

computed as z,, =-1.14 £ j1.67, z; = -1.7. The pole-zero plot of the system is shown below.
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Problem 6.10

35> =35 -6
s3 +12s% +120s +200°

(a) Find the impulse response of the system H(s) = Re{s} > 2. Hint:

this system has a pole at 2.

(b) Find the settling value of the step response of H(s) given in (a).
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