Solutions to Problems in Chapter 5
Problems with Solutions

Problem 5.1

Sketch the following signals and find their Fourier transforms.
(a) x(t) = (1 — e )[u(l +1) —u(t =1)] . Show that X(jc) is real and even.

Answer:

The signal is sketched in Figure 5.1.
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Figure 5.1: Signal of Problem 5.1(a).
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This Fourier transform is obviously real. To show that it is even, we consider X (—jw):
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(b) Periodic signal x(¢) in Figure 5.2.
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Figure 5.2: Signal of Problem 5.1(b).

Answer:

This signal is the sum of the constant signal —1 with our familiar rectangular wave of amplitude 2

2T . : . :
and duty cycle 77 = Tl Therefore, its Fourier series coefficients are:
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Note that since 0 <7, < g , then —1 <g, <1 depending on the duty cycle. The Fourier transform

of the signal is given by:
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Problem 5.2

Sketch the following signals and compute their Fourier transforms using the integral formula.
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Answer:

This real, odd signal is composed of two periods of a sine wave. Its sketch is in Figure 5.3.
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Figure 5.3: Signal composed of two periods of a sine wave in Problem 5.2(a).

Let us compute its Fourier transform:
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This Fourier transform is imaginary and odd, as expected.

(b) x,(t) =x,(t) Up(¢) where x,(¢) is as defined in (a) and p(¢) = Z o(t —k4—n) is an impulse
w

k=—0c0 0

train.
Answer:

Note that x,(¢#)=x,(f)Up(t) 1s just the regular sine wave of frequency @), since

x,(¢) = x,(¢) Op(t)= xl(t)DZJ(t— il ): Z x, (- k%’): sin(¢gt) . Thus,
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We know that the Fourier transform of ¢’“ is given by 277X w- ¢), so
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We can obtain the same result by applying the convolution property:
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The term in the above summation for X (jw) is equal to zero for all integers k # +2 . In the case

k=2, we have a 0/0 indeterminacy, and using I'Hopital's rule we find that:
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Similarly, for £k = -2, we get
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Problem 5.3

Find the time-domain signals corresponding to the following Fourier transforms.
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From Table D.1 of Fourier transform pairs,
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Let s = jw. Partial fraction expansion:
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Thus X (jw) x(t) 6'(t)+( %e +%e_3’}u(t)

Problem 5.4

Consider the feedback interconnection in Figure 5.4 of two causal LTI differential systems

defined by Sl : d):i(tt) +y(t) X(I) Sz : d);’(t) +2 ( ) dX(f) + (t)
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Figure 5.4: Feedback interconnection of two LTI systems in Problem 5.4.

(a) Find the frequency response of the overall system H(j«) and plot its magnitude and phase

using Matlab.

Answer:

S0 J)Y(jw+Y(jO=X( @

C Y(w) _ 1
= e =y T e
S0 (JOY(J+2Y(j = QX (j @+X(j @
= H(ja) =~ I = T
X(jw) jw+2

The overall closed-loop frequency response is obtained by first writing the loop equations for the

error signal e(¢) (output of the summing junction), and the output.

E(jo)=X(jw +H,(jOH (] QE(j @
Y(jo)=H,(JWE( W

Solving the first equation for E(jw), we obtain:
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Using Matlab, we obtain the frequency response plots of Figure 5.5. These so-called Bode plots

|H(jw) =

have a logarithmic frequency axis, and a logarithmic scale for the magnitude as well (more on

Bode plots in Chapter 8.)
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Figure 5.5: Frequency response of feedback system in Problem 5.4(a).

(b) Find the output signal y(¢) (the step response) using the Fourier transform technique, and

sketch it.

Answer:
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Taking the inverse transform, we obtain the step response shown in Figure 5.6.
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Figure 5.6: Step response of feedback system in Problem 5.4(b).

Exercises

Problem 5.5

Compute the energy-density spectrum of the signal x(¢) = e u(¢ —2) . Now, suppose that this

signal is filtered by a unit-gain ideal bandpass filter with cutoff frequencies w, =2ﬁ,

N

w, = 4% . Compute the total energy contained in the output signal of the filter.

Answer:

The Fourier transform of the signal is computed first:
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The energy-density spectrum is the squared magnitude of the FT:
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The total energy at the output of the bandpass filter is computed using the Parseval Equality:

1% 2t 1 1 wl 1 4 2
E, =— J- |Y(ja))|2 dw:—_[ d w= —n[arctan—} =—f[arctan— —arctan—} =0.0187
o) 2w 25 s 5], 75 5 5

Problem 5.6

Compute the Fourier transform of the signal x(¢#) shown in Figure 5.7.
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Figure 5.7: Signal in Problem 5.6.
Problem 5.7

jw+1

Find the time-domain signal corresponding to the Fourier transform: X (jw) = ——.
jAw+4 -

Answer:
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We find the coefficients:
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and finally, from Table D.1 of FT pairs:
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Problem 5.8

jdwrd-d (& +FjAwrd ( wr2)

Sketch the signal x(¢) = e [u(t) —u(t =1)] +e™*™ [u(t 1) ~u(t -3)] and compute its Fourier

transform.

Problem 5.9

Find the time-domain signals corresponding to the following Fourier transforms. You can use the

Table D.1 of Fourier transform pairs.

i+ 2 27T
/ + 22X W

(a) X(jw) =m 5

Answer:
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From Table D.1 of Fourier transform pairs,
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(b) X(jw) =

Answer:

Let s = jw. Partial fraction expansion:
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(c) X(jw) =

Answer:

This is a sinc function which we recognize as the FT of a rectangular pulse. From the table:

9

B L R L
o or T

hence,

(172, <1
x(t) = 0. |t|>l'

, w,<lWw<w
d) Hjw)y =4~ ¢ |4 _ 7, where w, < @, .
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Answer:

This is a bandpass filter. We can use the impulse response of the ideal lowpass and the frequency

shifting property to obtain #,,(¢) . We know that:
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Let o := %, and w, = @, — @. Then, we can write the frequency response of the ideal

bandpass filter as follows: H(jw) = H,(j(w+ @) +H,(j( v~ @),

which yields:
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Problem 5.10

Compute the Fourier transform of the periodic signal x(¢) shown in Figure 5.8.

A X(l)

v

Figure 5.8: Periodic triangular waveform of Problem 5.10.
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Problem 5.11

Find the inverse Fourier transform x(z) of X(j«) whose magnitude and phase are shown in

Figure 5.9.
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Figure 5.9: Magnitude and phase of Fourier transform in Problem 5.11.
Answer:
Let

Y(j«) be the Fourier transform of a rectangular window of unit magnitude and zero phase

(i.e., it is real) from = to W . Then the Fourier transform of x(#) is
X(jw) = jaY(jw).

Using the differentiation property, the signal x(z) is given by:

wo..
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