Solutions to Problems in Chapter 5

Problems with Solutions

Problem 5.1

Sketch the following signals and find their Fourier transforms.

(a)
$$x(t) = (1 - e^{-|t|})[u(t+1) - u(t-1)]$$
. Show that $X(j\omega)$ is real and even.

Answer:

The signal is sketched in Figure 5.1.

Figure 5.1: Signal of Problem 5.1(a).

$$\begin{split} X(j\omega) &= \int_{-1}^{1} x(t) e^{-j\omega t} dt = \int_{-1}^{1} \left(1 - e^{-|t|}\right) e^{-j\omega t} dt = \int_{-1}^{1} e^{-j\omega t} dt - \int_{-1}^{0} e^{(1-j\omega)t} dt - \int_{0}^{1} e^{-(1+j\omega)t} dt \\ &= -\frac{1}{j\omega} \left[e^{-j\omega t} \right]_{-1}^{1} - \frac{1}{1-j\omega} \left[e^{(1-j\omega)t} \right]_{-1}^{0} + \frac{1}{1+j\omega} \left[e^{-(1+j\omega)t} \right]_{0}^{1} = \frac{e^{j\omega} - e^{-j\omega}}{j\omega} - \frac{1-e^{-1}e^{j\omega}}{1-j\omega} + \frac{e^{-1}e^{-j\omega} - 1}{1+j\omega} \\ &= \frac{2\sin\omega}{\omega} + \frac{(1+j\omega)(-1+e^{-1}e^{j\omega}) + (1-j\omega)(-1+e^{-1}e^{-j\omega})}{1+\omega^{2}} \\ &= \frac{2\sin\omega}{\omega} + \frac{(-1-j\omega+e^{-1}e^{j\omega}+j\omega e^{-1}e^{j\omega}) + (-1+j\omega+e^{-1}e^{-j\omega}-j\omega e^{-1}e^{-j\omega})}{1+\omega^{2}} \\ &= \frac{2\sin\omega}{\omega} + \frac{-2+e^{-1}(e^{j\omega}+e^{-j\omega}) + j\omega e^{-1}(e^{j\omega}-e^{-j\omega})}{1+\omega^{2}} \\ &= \frac{2\sin\omega}{\omega} + \frac{-2+2e^{-1}(\cos\omega-\omega\sin\omega)}{1+\omega^{2}} \end{split}$$

1

This Fourier transform is obviously real. To show that it is even, we consider $X(-j\omega)$:

$$X(-j\omega) = \frac{2\sin(-\omega)}{-\omega} + \frac{-2 + 2e^{-1}(\cos(-\omega) + \omega\sin(-\omega))}{1 + (-\omega)^2}$$
$$= \frac{-2\sin(\omega)}{-\omega} + \frac{-2 + 2e^{-1}(\cos(\omega) - \omega\sin(\omega))}{1 + \omega^2} = X(j\omega)$$

(b) Periodic signal x(t) in Figure 5.2.

Figure 5.2: Signal of Problem 5.1(b).

Answer:

This signal is the sum of the constant signal –1 with our familiar rectangular wave of amplitude 2 and duty cycle $\eta = \frac{2T_1}{T}$. Therefore, its Fourier series coefficients are:

$$a_k = 2\frac{2T_1}{T}\operatorname{sinc}\left(\frac{k2T_1}{T}\right), \quad k \neq 0$$

$$a_0 = \frac{4T_1}{T} - 1$$

Note that since $0 < T_1 < \frac{T}{2}$, then $-1 < a_0 < 1$ depending on the duty cycle. The Fourier transform of the signal is given by:

$$X(j\omega) = 2\pi \sum_{\substack{k=-\infty\\k\neq 0}}^{+\infty} \frac{4T_1}{T} \operatorname{sinc}(\frac{k2T_1}{T}) \delta(\omega - k\frac{2\pi}{T}) + 2\pi(\frac{4T_1}{T} - 1) \delta(\omega)$$

Problem 5.2

Sketch the following signals and compute their Fourier transforms using the integral formula.

(a)
$$x_1(t) = \begin{cases} \sin \omega_0 t, & -\frac{2\pi}{\omega_0} \le t \le \frac{2\pi}{\omega_0} \\ 0, & \text{otherwise} \end{cases}$$

Answer:

This real, odd signal is composed of two periods of a sine wave. Its sketch is in Figure 5.3.

Figure 5.3: Signal composed of two periods of a sine wave in Problem 5.2(a).

Let us compute its Fourier transform:

$$\begin{split} X(j\omega) &= \int_{-\frac{2\pi}{\omega_0}}^{\frac{2\pi}{\omega_0}} x(t)e^{-j\omega t}dt = \int_{-\frac{2\pi}{\omega_0}}^{\frac{2\pi}{\omega_0}} \sin(\omega_0 t)e^{-j\omega t}dt = \frac{1}{2j} \int_{-\frac{2\pi}{\omega_0}}^{\frac{2\pi}{\omega_0}} \left(e^{j(\omega_0 - \omega)t} - e^{j(-\omega_0 - \omega)t}\right)dt \\ &= -\frac{j}{2j(\omega_0 - \omega)} \left[e^{j(\omega_0 - \omega)t}\right]_{-\frac{2\pi}{\omega_0}}^{\frac{2\pi}{\omega_0}} + \frac{j}{2j(-\omega_0 - \omega)} \left[e^{j(-\omega_0 - \omega)t}\right]_{-\frac{2\pi}{\omega_0}}^{\frac{2\pi}{\omega_0}} \\ &= \frac{1}{2(\omega - \omega_0)} \left[e^{j(\omega_0 - \omega)\frac{2\pi}{\omega_0}} - e^{-j(\omega_0 - \omega)\frac{2\pi}{\omega_0}}\right] - \frac{1}{2(\omega_0 + \omega)} \left[e^{-j(\omega_0 + \omega)\frac{2\pi}{\omega_0}} - e^{j(\omega_0 + \omega)\frac{2\pi}{\omega_0}}\right] \\ &= \frac{1}{2(\omega - \omega_0)} \left[e^{-j\omega\frac{2\pi}{\omega_0}} - e^{j\omega\frac{2\pi}{\omega_0}}\right] - \frac{1}{2(\omega_0 + \omega)} \left[e^{-j\omega\frac{2\pi}{\omega_0}} - e^{j\omega\frac{2\pi}{\omega_0}}\right] \\ &= \frac{1}{2(\omega - \omega_0)(\omega_0 + \omega)} \left[2\omega_0 e^{-j\omega\frac{2\pi}{\omega_0}} - 2\omega_0 e^{j\omega\frac{2\pi}{\omega_0}}\right] \\ &= \frac{2j\omega_0 \sin(\frac{2\pi}{\omega_0}\omega)}{\omega_0^2 - \omega^2} \end{split}$$

This Fourier transform is imaginary and odd, as expected.

(b) $x_2(t) = x_1(t) * p(t)$ where $x_1(t)$ is as defined in (a) and $p(t) = \sum_{k=-\infty}^{+\infty} \delta(t - k \frac{4\pi}{\omega_0})$ is an impulse train.

Answer:

Note that $x_2(t) = x_1(t) * p(t)$ is just the regular sine wave of frequency ω_0 since

$$x_2(t) = x_1(t) * p(t) = x_1(t) * \sum_{k=-\infty}^{+\infty} \delta(t - k \frac{4\pi}{\omega_0}) = \sum_{k=-\infty}^{+\infty} x_1(t - k \frac{4\pi}{\omega_0}) = \sin(\omega_0 t)$$
. Thus,

$$X(j\omega) = \int_{-\infty}^{\infty} \sin(\omega_0 t) e^{-j\omega t} dt$$
$$= \frac{1}{2j} \int_{-\infty}^{\infty} e^{j\omega_0 t} e^{-j\omega t} dt - \frac{1}{2j} \int_{-\infty}^{\infty} e^{-j\omega_0 t} e^{-j\omega t} dt$$

We know that the Fourier transform of $e^{j\omega_0 t}$ is given by $2\pi\delta(\omega-\omega_0)$, so

$$X(j\omega) = -\frac{1}{2j} 2\pi \delta(\omega + \omega_0) + \frac{1}{2j} 2\pi \delta(\omega - \omega_0)$$
$$= j\pi \delta(\omega + \omega_0) - j\pi \delta(\omega - \omega_0)$$

We can obtain the same result by applying the convolution property:

$$x_2(t) = x_1(t) * p(t) \stackrel{\mathcal{F}T}{\longleftrightarrow} X_1(j\omega) P(j\omega) = X(j\omega)$$

Thus,

$$X(j\omega) = X_1(j\omega)P(j\omega) = X_1(j\omega)\frac{\omega_0}{2}\sum_{k=-\infty}^{+\infty}\delta(\omega - k\frac{\omega_0}{2})$$

$$= \frac{\omega_0}{2}\sum_{k=-\infty}^{+\infty}X_1(jk\frac{\omega_0}{2})\delta(\omega - k\frac{\omega_0}{2})$$

$$= \frac{\omega_0}{2}\sum_{k=-\infty}^{+\infty}\frac{2j\omega_0\sin(k\frac{2\pi}{\omega_0}\frac{\omega_0}{2})}{\omega_0^2 - \frac{1}{4}k^2\omega_0^2}\delta(\omega - k\frac{\omega_0}{2})$$

$$= \frac{\omega_0}{2}\sum_{k=-\infty}^{+\infty}\frac{2j\omega_0\sin(k\pi)}{\omega_0^2 - \frac{1}{4}k^2\omega_0^2}\delta(\omega - k\frac{\omega_0}{2})$$

$$= \frac{\omega_0}{2}\sum_{k=-\infty}^{+\infty}\frac{2j\omega_0\sin(k\pi)}{\omega_0^2 - \frac{1}{4}k^2\omega_0^2}\delta(\omega - k\frac{\omega_0}{2})$$

The term in the above summation for $X(j\omega)$ is equal to zero for all integers $k \neq \pm 2$. In the case k=2, we have a 0/0 indeterminacy, and using l'Hopital's rule we find that:

$$\frac{2j\omega_{0}\sin(k\pi)}{{\omega_{0}}^{2} - \frac{1}{4}k^{2}{\omega_{0}}^{2}}\bigg|_{k=2} = \frac{2j\omega_{0}\pi\cos(k\pi)}{-\frac{1}{2}k{\omega_{0}}^{2}}\bigg|_{k=2} = \frac{2j\omega_{0}\pi}{-{\omega_{0}}^{2}} = -j\frac{2\pi}{\omega_{0}}.$$

Similarly, for
$$k = -2$$
, we get $\frac{2j\omega_0 \sin(k\pi)}{\omega_0^2 - \frac{1}{4}k^2\omega_0^2}\Big|_{k=-2} = j\frac{2\pi}{\omega_0}$, and therefore,

$$X(j\omega) = \frac{\omega_0}{2} \sum_{k=-\infty}^{+\infty} \frac{2j\omega_0 \sin(k\pi)}{\omega_0^2 - \frac{1}{4}k^2\omega_0^2} \delta(\omega - k\frac{\omega_0}{2})$$

$$= \frac{\omega_0}{2} \left(j\frac{2\pi}{\omega_0} \right) \delta(\omega + \omega_0) + \frac{\omega_0}{2} \left(-j\frac{2\pi}{\omega_0} \right) \delta(\omega - \omega_0)$$

$$= j\pi\delta(\omega + \omega_0) - j\pi\delta(\omega - \omega_0)$$

Problem 5.3

Find the time-domain signals corresponding to the following Fourier transforms.

(a)
$$X(j\omega) = \frac{j\sqrt{2}\omega + 1 - \omega^2}{(j\omega)(j2\sqrt{2}\omega + 4 - \omega^2)} + \frac{\pi}{4}\delta(\omega)$$

Answer:

$$X(j\omega) = \frac{j\sqrt{2}\omega + 1 - \omega^{2}}{(j\omega)(j2\sqrt{2}\omega + 4 - \omega^{2})} + \frac{\pi}{4}\delta(\omega)$$

$$= \frac{(j\omega)^{2} + \sqrt{2}j\omega + 1}{(j\omega)\left[(j\omega)^{2} + 2\sqrt{2}j\omega + 4\right]} + \frac{\pi}{4}\delta(\omega)$$

$$= \frac{\frac{3}{8} + j\frac{1}{8}}{(j\omega + \sqrt{2} - j\sqrt{2})} + \frac{\frac{3}{8} - j\frac{1}{8}}{(j\omega + \sqrt{2} + j\sqrt{2})} + \frac{1}{4j\omega} + \frac{\pi}{4}\delta(\omega)$$

From Table D.1 of Fourier transform pairs,

$$X(j\omega) \stackrel{\mathcal{F}T}{\longleftrightarrow} x(t) = \left(\frac{3}{8} + j\frac{1}{8}\right) e^{(-\sqrt{2} + j\sqrt{2})t} u(t) + \left(\frac{3}{8} - j\frac{1}{8}\right) e^{(-\sqrt{2} - j\sqrt{2})t} u(t) + \frac{1}{4}u(t)$$

$$x(t) = 2\operatorname{Re}\left\{\left(\frac{3}{8} + j\frac{1}{8}\right) e^{(-\sqrt{2} + j\sqrt{2})t}\right\} u(t) + \frac{1}{4}u(t)$$

$$x(t) = e^{-\sqrt{2}t} \left(\frac{3}{4}\cos(\sqrt{2}t) - \frac{1}{4}\sin(\sqrt{2}t)\right) u(t) + \frac{1}{4}u(t)$$

(b)
$$X(j\omega) = \frac{(j\omega+2)^2(j\omega)}{(j\omega+3)(j\omega+1)}$$

Answer:

Let $s = j\omega$. Partial fraction expansion:

$$X(s) = \frac{(s+2)^2 s}{(s+3)(s+1)}$$

$$= As + B + \frac{C}{s+1} + \frac{D}{s+3}$$

$$= s + \frac{-0.5}{s+1} + \frac{1.5}{s+3}$$

$$X(j\omega) = j\omega + \frac{-0.5}{j\omega + 1} + \frac{1.5}{j\omega + 3}$$

Thus
$$X(j\omega) \stackrel{\mathcal{F}T}{\longleftrightarrow} x(t) = \delta'(t) + \left(-\frac{1}{2}e^{-t} + \frac{3}{2}e^{-3t}\right)u(t)$$

Problem 5.4

Consider the feedback interconnection in Figure 5.4 of two causal LTI differential systems

defined by
$$S_1$$
: $\frac{dy(t)}{dt} + y(t) = x(t)$, S_2 : $\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + x(t)$.

Figure 5.4: Feedback interconnection of two LTI systems in Problem 5.4.

(a) Find the frequency response of the overall system $H(j\omega)$ and plot its magnitude and phase using Matlab.

Answer:

$$\begin{split} S_1: & (j\omega)Y(j\omega)+Y(j\omega)=X(j\omega) \\ \Rightarrow H_1(j\omega)=\frac{Y(j\omega)}{X(j\omega)}=\frac{1}{j\omega+1} \\ S_2: & (j\omega)Y(j\omega)+2Y(j\omega)=(j\omega)X(j\omega)+X(j\omega) \\ \Rightarrow H_2(j\omega)=\frac{Y(j\omega)}{X(j\omega)}=\frac{j\omega+1}{j\omega+2} \end{split}$$

The overall closed-loop frequency response is obtained by first writing the loop equations for the error signal e(t) (output of the summing junction), and the output.

$$E(j\omega) = X(j\omega) + H_2(j\omega)H_1(j\omega)E(j\omega)$$
$$Y(j\omega) = H_1(j\omega)E(j\omega)$$

Solving the first equation for $E(j\omega)$, we obtain:

$$E(j\omega) = \frac{1}{1 + H_2(j\omega)H_1(j\omega)}X(j\omega)$$
$$Y(j\omega) = \underbrace{\frac{H_1(j\omega)}{1 + H_2(j\omega)H_1(j\omega)}}X(j\omega)$$

Thus,

$$H(j\omega) = \frac{H_1(j\omega)}{1 + H_2(j\omega)H_1(j\omega)} = \frac{\frac{1}{j\omega + 1}}{1 + \frac{1}{j\omega + 1}\frac{j\omega + 1}{j\omega + 2}}$$
$$= \frac{\frac{1}{j\omega + 1}}{1 + \frac{1}{j\omega + 2}} = \frac{j\omega + 2}{(j\omega + 3)(j\omega + 1)}$$

Magnitude and phase:

$$|H(j\omega)| = \frac{\sqrt{\omega^2 + 4}}{\sqrt{\omega^2 + 9}\sqrt{\omega^2 + 1}}$$

$$\angle H(j\omega) = \arctan\left(\frac{\omega}{2}\right) + \arctan\left(\frac{-\omega}{3}\right) + \arctan\left(\frac{-\omega}{1}\right)$$

Using Matlab, we obtain the frequency response plots of Figure 5.5. These so-called Bode plots have a logarithmic frequency axis, and a logarithmic scale for the magnitude as well (more on Bode plots in Chapter 8.)

Figure 5.5: Frequency response of feedback system in Problem 5.4(a).

(b) Find the output signal y(t) (the step response) using the Fourier transform technique, and sketch it.

Answer:

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{j\omega + 2}{(j\omega + 3)(j\omega + 1)} \left(\frac{1}{j\omega} + \pi\delta(\omega)\right)$$
$$= \frac{j\omega + 2}{(j\omega)(j\omega + 3)(j\omega + 1)} + \frac{2}{3}\pi\delta(\omega)$$
$$= \frac{-\frac{1}{6}}{j\omega + 3} + \frac{-\frac{1}{2}}{j\omega + 1} + \frac{\frac{2}{3}}{j\omega} + \frac{2}{3}\pi\delta(\omega)$$

Taking the inverse transform, we obtain the step response shown in Figure 5.6.

$$y(t) = \frac{2}{3}u(t) + \left[-\frac{1}{6}e^{-3t} - \frac{1}{2}e^{-t} \right]u(t)$$

Figure 5.6: Step response of feedback system in Problem 5.4(b).

Exercises

Problem 5.5

Compute the energy-density spectrum of the signal $x(t) = e^{-5(t-2)}u(t-2)$. Now, suppose that this signal is filtered by a unit-gain ideal bandpass filter with cutoff frequencies $\omega_{c1} = 2\frac{rd}{s}$, $\omega_{c2} = 4\frac{rd}{s}$. Compute the total energy contained in the output signal of the filter.

Answer:

The Fourier transform of the signal is computed first:

$$X(j\omega) = \underbrace{e^{-j\omega}}_{\substack{\text{time-delay} \\ \text{property}}} \int_{-\infty}^{+\infty} e^{-5t} u(t) e^{-j\omega t} dt = e^{-j\omega} \int_{0}^{+\infty} e^{-(5+j\omega)t} dt = \frac{e^{-j\omega}}{j\omega + 5}.$$

The energy-density spectrum is the squared magnitude of the FT:

$$\left|X(j\omega)\right|^2 = \left|\frac{e^{-j\omega}}{j\omega+5}\right|^2 = \left|\frac{1}{j\omega+5}\right|^2 = \frac{1}{\omega^2+25}.$$

The total energy at the output of the bandpass filter is computed using the Parseval Equality:

$$E_{\infty y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(j\omega)|^2 d\omega = \frac{2}{2\pi} \int_{2}^{4} \frac{1}{\omega^2 + 25} d\omega = \frac{1}{5\pi} \left[\arctan \frac{\omega}{5} \right]_{2}^{4} = \frac{1}{5\pi} \left[\arctan \frac{4}{5} - \arctan \frac{2}{5} \right] = 0.0187$$

Problem 5.6

Compute the Fourier transform of the signal x(t) shown in Figure 5.7.

Figure 5.7: Signal in Problem 5.6.

Problem 5.7

Find the time-domain signal corresponding to the Fourier transform: $X(j\omega) = \frac{j\omega + 1}{j4\omega + 4 - \omega^2}$.

Answer:

$$X(j\omega) = \frac{j\omega+1}{j4\omega+4-\omega^2} = \frac{j\omega+1}{(j\omega)^2+j4\omega+4} = \frac{j\omega+1}{(j\omega+2)^2}$$
$$= \frac{A}{(j\omega+2)} + \frac{B}{(j\omega+2)^2}$$

We find the coefficients:

$$B = \frac{(s+2)^2 (s+1)}{(s+2)^2} \bigg|_{s=-2} - (s+2)A \bigg|_{s=-2} = -1$$

$$A = \frac{(s+2)(s+1)}{(s+2)^2} \bigg|_{s=+\infty} + \frac{(s+2)}{(s+2)^2} \bigg|_{s=+\infty} = 1$$

and finally, from Table D.1 of FT pairs:

$$X(j\omega) = \frac{1}{(j\omega+2)} - \frac{1}{(j\omega+2)^2}$$

$$\Leftrightarrow$$

$$x(t) = e^{-2t}u(t) - te^{-2t}u(t)$$

Problem 5.8

Sketch the signal $x(t) = e^{(t-1)} \left[u(t) - u(t-1) \right] + e^{-(t-1)} \left[u(t-1) - u(t-3) \right]$ and compute its Fourier transform.

Problem 5.9

Find the time-domain signals corresponding to the following Fourier transforms. You can use the Table D.1 of Fourier transform pairs.

(a)
$$X(j\omega) = \frac{j\omega + 2}{j\omega(j\omega + 5)} + \frac{2\pi}{5}\delta(\omega)$$

Answer:

$$X(j\omega) = \frac{j\omega + 2}{j\omega(j\omega + 5)} + \frac{2\pi}{5}\delta(\omega)$$
$$= \frac{3}{5}\frac{1}{j\omega + 5} + \frac{2}{5}\frac{2\pi}{5}\delta(\omega)$$

From Table D.1 of Fourier transform pairs,

$$X(j\omega) \stackrel{\mathcal{F}T}{\longleftrightarrow}$$

 $x(t) = \frac{3}{5}e^{-5t}u(t) + \frac{2}{5}u(t)$

(b)
$$X(j\omega) = \frac{j\omega + 1}{-\omega^2 + j2\sqrt{2}\omega + 4}$$

Answer:

Let $s = j\omega$. Partial fraction expansion:

$$X(s) = \frac{s+1}{s^2 + 2\sqrt{2}s + 4}$$

$$= \frac{s+1}{(s+\sqrt{2}-j\sqrt{2})(s+\sqrt{2}+j\sqrt{2})}$$

$$= \frac{(1-\sqrt{2}+j\sqrt{2})/(j2\sqrt{2})}{s+\sqrt{2}-j\sqrt{2}} + \frac{(1-\sqrt{2}-j\sqrt{2})/(-j2\sqrt{2})}{s+\sqrt{2}+j\sqrt{2}}$$

$$= \frac{\frac{1}{2}+j(\frac{1}{2}-\frac{1}{2\sqrt{2}})}{s+\sqrt{2}-j\sqrt{2}} + \frac{\frac{1}{2}-j(\frac{1}{2}-\frac{1}{2\sqrt{2}})}{s+\sqrt{2}+j\sqrt{2}}$$

$$X(j\omega) = \frac{\frac{1}{2}+j(\frac{1}{2}-\frac{1}{2\sqrt{2}})}{j\omega+\sqrt{2}-j\sqrt{2}} + \frac{\frac{1}{2}-j(\frac{1}{2}-\frac{1}{2\sqrt{2}})}{j\omega+\sqrt{2}+j\sqrt{2}}$$

Thus,

$$X(j\omega) \overset{\mathcal{F}T}{\longleftrightarrow} x(t) = \left\{ \left(\frac{1}{2} + j(\frac{1}{2} - \frac{1}{2\sqrt{2}}) \right) e^{(-\sqrt{2} + j\sqrt{2})t} + \left(\frac{1}{2} - j(\frac{1}{2} - \frac{1}{2\sqrt{2}}) \right) e^{(-\sqrt{2} - j\sqrt{2})t} \right\} u(t)$$

$$= 2 \operatorname{Re} \left\{ \left(\frac{1}{2} + j(\frac{1}{2} - \frac{1}{2\sqrt{2}}) \right) e^{(-\sqrt{2} + j\sqrt{2})t} \right\} u(t)$$

$$= 2 \operatorname{Re} \left\{ \left(\frac{1}{2} + j(\frac{1}{2} - \frac{1}{2\sqrt{2}}) \right) e^{j\sqrt{2}t} \right\} e^{-\sqrt{2}t} u(t)$$

$$= e^{-\sqrt{2}t} \left[\cos(\sqrt{2}t) - (1 - \frac{1}{\sqrt{2}}) \sin(\sqrt{2}t) \right] u(t)$$

(c)
$$X(j\omega) = \frac{\sin(\omega)}{\omega}$$

Answer:

This is a sinc function which we recognize as the FT of a rectangular pulse. From the table:

$$w(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T \end{cases} \xrightarrow{FT} \frac{2\sin \omega T_1}{\omega},$$

hence,

$$x(t) = \begin{cases} 1/2, & |t| < 1 \\ 0, & |t| > 1 \end{cases}.$$

(d)
$$H(j\omega) = \begin{cases} 1, & \omega_{c1} < |\omega| < \omega_{c2} \\ 0, & \text{otherwise} \end{cases}$$
, where $\omega_{c1} < \omega_{c2}$.

Answer:

This is a bandpass filter. We can use the impulse response of the ideal lowpass and the frequency shifting property to obtain $h_{bp}(t)$. We know that:

$$h_{l_p}(t) = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}t\right) \quad \stackrel{FT}{\longleftrightarrow} \quad H_{l_p}(j\omega) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

Let $\omega_1 := \frac{\omega_{c1} + \omega_{c2}}{2}$, and $\omega_c := \omega_{c2} - \omega_1$. Then, we can write the frequency response of the ideal

bandpass filter as follows: $H(j\omega) = H_{lp}(j(\omega + \omega_1)) + H_{lp}(j(\omega - \omega_1))$,

which yields:

$$h(t) = e^{j\omega_{l}t} \frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\frac{\omega_{c}}{\pi}t\right) + e^{-j\omega_{l}t} \frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\frac{\omega_{c}}{\pi}t\right)$$
$$= \frac{2\omega_{c}}{\pi} \cos(\omega_{l}t) \operatorname{sinc}\left(\frac{\omega_{c}}{\pi}t\right)$$

Problem 5.10

Compute the Fourier transform of the periodic signal x(t) shown in Figure 5.8.

Figure 5.8: Periodic triangular waveform of Problem 5.10.

Problem 5.11

Find the inverse Fourier transform x(t) of $X(j\omega)$ whose magnitude and phase are shown in Figure 5.9.

Figure 5.9: Magnitude and phase of Fourier transform in Problem 5.11.

Answer:

Let $Y(j\omega)$ be the Fourier transform of a rectangular window of unit magnitude and zero phase (i.e., it is real) from -W to W. Then the Fourier transform of x(t) is

$$X(j\omega) = j\omega Y(j\omega)$$
.

Using the differentiation property, the signal x(t) is given by:

$$x(t) = \frac{dy(t)}{dt} = \frac{d\frac{W}{\pi}\operatorname{sinc}(\frac{W}{\pi}t)}{dt}$$

$$= \frac{W}{\pi}\frac{d}{dt}\frac{\sin(Wt)}{Wt}$$

$$= \frac{W}{\pi}\left[\frac{W^2t\cos(Wt) - W\sin(Wt)}{W^2t^2}\right]$$

$$= \frac{W\cos(Wt)}{\pi t} - \frac{\sin(Wt)}{\pi t^2}$$