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Solutions to Problems in Chapter 17 
Problems with Solutions 

Problem 17.1 

We want to implement a causal continuous-time LTI Butterworth filter of the second order as a 

discrete-time system. The transfer function of the Butterworth filter is given by: 
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(a) Find a state-space realization of the Butterworth filter and discretize it with a sampling 

frequency ten times higher than the cutoff frequency of the filter. Use the bilinear transformation.  

Answer: 
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The controllable canonical state-space realization is given by: 
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The cutoff frequency of the filter is 2000nω π= , thus we set the sampling frequency at 

20000sω π= , so that 410sT s−= .  
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(b) Plot the frequency responses of both the continuous-time and the discrete-time filter on the 

same graph up to the Nyquist frequency (half of the sampling frequency) in radians/s. Discuss 

the results and how you would implement this filter.   

Answer: 

The transfer function is computed as: 
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The Bode plots of ( )H jω  and 0.0001( )j
bilinH e ω  up to the Nyquist frequency 10000π radians/s are 

computed using the following MATLAB script: 



 3 

    %% Problem 17.1 discretization of Butterworth filter 

    % transfer function and CT state-space model 

    num=[1]; 

    den=[1/(2000*pi)^2 sqrt(2)/(2000*pi) 1]; 

     [A,B,C,D]=tf2ss(num,den); 

    T=[0 1; 1 0]; % permutation matrix to get same form as in Chapter 10 

    A=inv(T)*A*T; 

    B=inv(T)*B; 

    C=C*T; 

    H=ss(A,B,C,D); 

 

    % bilinear transf 

    Ts=0.0001 

    Ab=inv(eye(2)-0.5*Ts*A)*(eye(2)+0.5*Ts*A); 

    Bb=Ts*inv(eye(2)-0.5*Ts*A)*inv(eye(2)-0.5*Ts*A)*B; 

    Cb=C; 

    Db=D+0.5*Ts*C*inv(eye(2)-0.5*Ts*A)*B; 

    Hb=ss(Ab,Bb,Cb,Db,Ts); 

 

    % Frequency response of CT Butterworth and its discretized version 

    w=logspace(1,log10(10000*pi),200); 

    w=w(1,1:199); 

    [MAG,PHASE] = bode(H,w); 

    [MAGbilin,PHASEbilin] = bode(Hb,w); 

    figure(1) 

    semilogx(w,20*log10(MAGbilin(:,:)),w,20*log10(MAG(:,:))) 

    figure(2) 

    semilogx(w,PHASEbilin(:,:),w,PHASE(:,:)) 
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The resulting Bode plots are shown in Figure 17.1. 
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Figure 17.1: Bode plots of second-order Butterworth filter and its bilinear discretization up to the Nyquist frequency. 

The filter can be implemented as a second-order recursive difference equation: 

[ ] 1.1683 [ 1] 0.4241 [ 2] 0.06396 [ ] 0.1279 [ 1] 0.06396 [ 2]y n y n y n x n x n x n= − − − + + − + −  

(c) Compute and plot on the same graph the first 30 points of the step response of the 

Butterworth and its discretized version. 
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Answer: 

The following MATLAB script (run after the script given in (b)) computes the continous-time 

step response using the lsim command (which internally uses a c2d discretization) with a 

sampling period ten times shorter than sT . 

    % Step responses 

    figure(3) 

    t=[0:0.00001:.00299];  % time vector to plot step resp of CT system 

     [y,ts,x]=lsim(H,ones(1,300),t); 

    plot(ts,y) 

    hold on 

     [yb,tsb,xb]=lsim(Hb,ones(1,30)); 

    plot(tsb,yb,'o') 

    hold off 

The resulting plot is shown in Figure 17.2. 

 

0 0.5 1 1.5 2 2.5 3

x 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

:  bilinear

( )t s  

Figure 17.2: Step responses of second-order Butterworth filter and its bilinear discretization. 
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Problem 17.2  

Consider the causal DLTI system given by its transfer function  

2

2( ) , 0.9
0.1 0.72
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(a) Find the controllable canonical state-space realization (A,B,C,D) of the system (draw the 

block diagram and give the realization.) Assess its stability based on the eigenvalues of A. 

Answer: 

The direct form realization is shown in Figure 17.3. 
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Figure 17.3: Direct form realization in Problem 17.2. 

Controllable canonical state-space realization: 
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Eigenvalues of A: 0.8, 0.9−  are inside the unit circle, and therefore the system is stable. 

(b) Compute the impulse response of the system [ ]h n  by diagonalizing the A  matrix. 

Answer: 

The impulse response of the system [ ]h n  is given by: 
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Exercises 

Problem 17.3  

The causal continuous-time LTI system with transfer function 1( )
0.1 1

G s
s

=
+

 is discretized with 

a sampling period of 0.01 ssT =  for simulation purposes. Use the c2d transformation first to get 

2 ( )c dG z , then the bilinear transformation to get ( )bilinG z . 
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Answer: 

For the c2d discretization, a state-space model of 1 10( )
0.1 1 10
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 is readily obtained: 
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Problem 17.4  

The causal continuous-time LTI system with transfer function ( )
( 1)( 2)

sG s
s s

=
+ +

 is discretized 

with a sampling period of 0.1 ssT =  for simulation purposes. The c2d transformation will be 

used first, and then it will be compared to the bilinear transformation.  

(a) Find a continuous-time state-space realization of the system. 

(b) Compute the discrete-time state-space system 2 2 2 2( , , , )c d c d c d c dA B C D  for ( )G s  and its 

associated transfer function 2 ( )c dG z , specifying its ROC. 

(c) Compute the discrete-time state-space system representing the bilinear transformation of 

( )G s  ( , , , )bilin bilin bilin bilinA B C D  and its associated transfer function ( )bilinG z , specifying its ROC.  
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(d) Use MATLAB to plot the frequency responses 2( ), ( ), ( )s sj T j T
bilin c dG j G e G eω ωω  up to 

frequency 
2

sω
 on the same graph, where ω  is the continuous-time frequency. Use a dB scale for 

the magnitude, and a log frequency scale for both magnitude and phase plots. Discuss any 

difference that you might observe. 

Problem 17.5  

Consider the causal DLTI system specified by its transfer function: 
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(a) Find the controllable canonical state-space realization ( , , , )A B C D  of the system. Assess its 

stability based on the eigenvalues of A. 

Answer: 
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Eigenvalues of A: 1 1
2 2

j±  are inside the unit circle, and therefore the system is stable. 
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(b) Compute the zero-input response of the system [ ]ziy n  for the initial state 
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diagonalizing the A  matrix. 

Answer: 

The zero-input response of the system [ ]ziy n  is given by: 
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Problem 17.6  

Consider the causal DLTI system with transfer function: 

2
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(a) Find the observable canonical state-space realization ( , , , )A B C D  of the system. Assess its 

stability based on the eigenvalues of A. 

(b) Compute the zero-input response of the system [ ]ziy n  for the initial state 
1

[0]
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Problem 17.7  

Find the controllable canonical state-space realization of the causal LTI system defined by the 

difference equation [ ] 0.4 [ 1] 2 [ ] 0.4 [ 1]y n y n x n x n− − = − − , and compute its transfer function 

from the state-space model, specifying its ROC. 

Answer: 

The state-space "matrices" (here they are scalars) are:  

0.4, 1, 0.4 2(0.4) 0.4, 2A B C D= = = − + = = . 

The transfer function is computed as follows: 
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Problem 17.8 

The causal continuous-time LTI system with transfer function 2( )
1

sG s
s
+=
+

 is discretized with 

sampling period 0.1 ssT =  for simulation purposes. The c2d transformation is used first, and 

then it is compared to the bilinear transformation. 

(a) Find a state-space realization of 2( ) , Re{ } 1
1

sG s s
s
+= > −
+

. 

(b) Compute the discrete-time state-space system ( , , , )d d d dA B C D  for ( )G s  and its associated 

transfer function 2 ( )c dG z , specifying its ROC. 

(c) Find the bilinear transformation ( )bilinG z  of ( )G s , specifying its ROC. Compute the 

difference between the two frequency responses obtained with c2d and the bilinear 

transformation, i.e., compute 2( ) : ( ) ( )j j j
bilin c dE e G e G eω ω ω= − . Evaluate this difference at DC 

and at the highest discrete-time frequency. 


