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Solutions to Problems in Chapter 15 
Problems with Solutions 

Problem 15.1 

The system shown in Figure 15.1 filters the continuous-time noisy signal ( ) ( ) ( )nx t x t n t= +  

composed of the sum of a signal ( )x t  and a noise ( )n t .  

 

Figure 15.1: Sampled-data system with antialiasing filter of Problem 15.1. 

The signal and noise have their respective spectrum ( ), ( )X j N jω ω  shown in Figure 15.2. The 

frequency response of the antialiasing low-pass filter is also shown in the figure. 

 

Figure 15.2: Antialiasing filter and signal and noise spectra in Problem 15.1. 
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(a) Let the sampling frequency be 11000  rd/ssω π= . Sketch the spectrum ( )W jω  of the signal 

( )w t . Also sketch the spectrum ( )j
dW e Ω . Indicate the important frequencies and magnitudes on 

your sketch. Discuss the results. 

Answer:  

The Nyquist frequency is 5500
2

sω π= . The spectra ( )W jω  and ( )j
dW e Ω  are shown in Figure 

15.3. 

 

Figure 15.3: FT of output of antialiasing filter and DTFT of signal after CTDT,  Problem 15.1. 

(b) Design an ideal discrete-time lowpass filter ( )j
lpKH e Ω  (give its cutoff frequency cΩ  and 

gain K ) so that the signal ( )x t  (possibly distorted by linear filtering) can be approximately 

recovered at the output. Sketch the spectrum ( )j
dY e Ω  with this filter.  

Answer:  
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From Figure 15.3, the ideal lowpass would have a cutoff frequency 10
11c

πΩ =  in order to 

remove the remaining noise, and unity gain since the DT/CT operator already contains a gain of 

sT . The frequency response of the low-pass filter ( )j
lpH e Ω  is shown in Figure 15.4, and the 

DTFT of the output of the filter ( )j
dY e Ω  is in Figure 15.5.   

 

Figure 15.4: Frequency response of ideal low-pass filter, Problem 15.1. 

 

Figure 15.5: DTFT of output of ideal low-pass filter, Problem 15.1. 

(c) Sketch the spectrum ( )Y jω  and compute the ratio of linear distortion in the output ( )y t  with 

respect to the input signal, i.e., compute 100 error

x

E
E

×  in percent, where 

:  energy of ( ) ( )errorE x t y t− ,     :  energy of ( )xE x t . 

Answer: 
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The Fourier transforms of the output ( )Y jω  and the error signal ( ) ( )X j Y jω ω−  are sketched in 

Figure 15.6. 

 

Figure 15.6: Fourier transforms of continuous-time output signal and error signal, Problem 15.1. 

The energy of the signal and the energy of the error signal are computed using the Parseval 

Equality as follows: 
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Problem 15.2 

Consider the discrete-time system shown in Figure 15.7, where N↓  represents decimation by 

N . The operator { } lpN↑  denotes upsampling by N  followed by an ideal unity-gain lowpass 

filter with cutoff frequency 
N
π . This system transmits a signal [ ]x n  which comes in at a rate of 

100 kilosamples/s over a channel with limited bit-rate capacity. At each time n , the 16-bit 

quantizer basically rounds offs the real value 2[ ]x n  to a 16-bit value [ ]y n .  

 

Figure 15.7: Block diagram of discrete-time system, Problem 15.2. 

(a) Given that the input signal [ ]x n  is bandlimited to 0.13π  radians, find the integers 1 2,N N  that 

will minimize the sample rate for transmission over the channel. Give the bit rate that you obtain.  

Answer: 

Bandwidth of  signal [ ]x n : 13 13(2 )
100 200m

π πω = = . We want the DTFT of 2[ ]x n  to cover as much 

as the frequency interval [ , ]π π−  as possible using upsampling and decimation. We can 

upsample first by a factor 1 13N = , which compresses the bandwidth to 
100
π , and then we can 

decimate by a factor 2 100N =  to expand the spectrum up to π . The resulting sample rate is 
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reduced by a factor 2

1

100
13

N
N

=  to 13 kilosamples/s. With a 16-bit quantizer, the bit rate needed to 

transmit signal [ ]y n  is 16bits/sample 13000samples/s 208000 bits/s× = . 

(b) With the values obtained in (a), assume a triangular spectrum for [ ]x n  of unit amplitude at 

dc, and sketch the spectra ( )jX e ω , 1 ( )jX e ω , 2 ( )jX e ω , indicating the important frequencies and 

magnitudes. 

Answer: 

The spectra ( )jX e ω , 1 ( )jX e ω , 2 ( )jX e ω  are sketched in Figure 15.8. 

 

Figure 15.8: DTFTs of upsampled-filtered and decimated signals, Problem 15.2. 
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Exercises 

Problem 15.3 

The signals below are sampled with sampling period sT . Determine the bounds on sT  that 

guarantee there will be no aliasing. 

(a) sin( )( ) cos(10 )
2

tx t t
t
ππ= . 

Answer: 

This signal is an AM modulation of the impulse response of a lowpass filter with cutoff 

frequency π . The spectrum is shifted to 10π± rd/s. Therefore, no aliasing will occur if 

2(11 )sω π> , i.e., 1
11sT < . Also, No aliasing would result for lower sampling periods violating 

the sampling theorem, but keeping the original double-rectangle spectrum intact.  

(b) 4 sin( )( ) ( )t Wtx t e u t
tπ

−= ∗  

Answer: 

The convolution results in the product of the two spectra. The spectrum of 4 ( )te u t−  extends to 

±∞ , but the spectrum of sin( )Wt
tπ

 is a perfect lowpass with bandwidth W . Hence, no aliasing 

will occur if 2s Wω > , i.e., sT
W
π< . 

 



 8 

 

Problem 15.4 

A continuous-time voltage signal lies in the frequency band 5ω π< . This signal is 

contaminated by a large sinusoidal signal of frequency 120π . The contaminated signal is 

sampled at a sampling rate of 13sω π= . 

(a) After sampling, at what frequency does the interfering sinusoidal signal appear? 

(b) Now suppose the contaminated signal is passed through an antialiasing filter consisting of an 

RC circuit with frequency response 1( )
1

H j
RCj

ω
ω

=
+

. Find the value of the time constant RC 

required so that the contaminated sinusoid is attenuated by a factor of 1000 (60dB) prior to 

sampling. 

Problem 15.5 

Consider the sampling system in Figure 15.9 with an ideal unit-gain, lowpass antialiasing filter 

( )lpH jω  with cutoff frequency cω , and where the sampling frequency is 2
s

sT
πω = .  

 

Figure 15.9: Sampling system in Problem 15.5. 

The input signal is ( ) ( )tx t e u t−= , and the sampling period is set at 
3sT π= .  
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(a) Give a mathematical expression for X j( )ω , the Fourier transform of the input signal, and 

sketch it (magnitude and phase.) Design the antialiasing filter (i.e., find its cutoff frequency) so 

that its bandwidth is maximized while avoiding aliasing of its output ( )w t  in the sampling 

operation. With this value of cω , sketch the magnitudes of the Fourier transforms ( )W jω  and 

( )sW jω . 

Answer: 

The Fourier transform of the input signal ( ) ( )tx t e u t−=  is 1( )
1

X j
j

ω
ω

=
+

. 

Magnitude: 
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The cutoff frequency of the antialiasing filter must be set equal to half of the sampling frequency 

to satisfy the sampling theorem. Therefore, 1 1 2 3
2 2c s

sT
πω ω= = = . With this cutoff frequency, 

the magnitudes of ( )W jω  and ( )sW jω  are shown below. 

 

 

 

 

 

 

 

 

 

 

 

1 

( )W jω

ω3− 3

( )sW jω

ω3− 3 2 32 3−

3
π

3 33 3−



 11 

(b) Compute the ratio of total energies 100 w

x

E
r

E
∞

∞

=  in percent, where wE∞  is the total energy in 

signal ( )w t  and xE∞  is the total energy in signal ( )x t . This ratio gives us an idea of how similar 

( )w t  is to ( )x t  before sampling. How similar is it? (Hint: 2 2

1 arctandu u C
a auα

 = + +  ∫ )  

Answer: 

The total energy in the input signal is easy to compute in the time domain: 

2 2 2

0
0 0

1 1
2 2

t t t
xE e dt e dt e

∞ ∞
∞− − −

∞  = = = − = ∫ ∫  

On the other hand, the total energy in the filtered signal is easier to compute in the frequency 

domain: 
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−
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 = − − =  

∫ ∫

∫ ∫
 

Ratio of total energies: 1 3100 % 100 % 67%
1 2

w

x

E
r

E
∞

∞

= = = . This ratio indicates that quite a bit of 

energy is lost in the antialiasing filter and therefore ( )w t  is not very similar to ( )x t . To do a 
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better job, one would have to increase both the cutoff frequency of the filter and the sampling 

frequency.  

Problem 15.6 

Consider the sampling system in Figure 15.10 where the sampling frequency is 2
s

sT
πω = .  

 

Figure 15.10: Sampling system in Problem 15.6. 

The input signal is 
2

2( ) sinc
2 2
W Wx t t

π π
 =  
 

 and the spectra of the ideal bandpass filter and the 

ideal lowpass filter are shown in Figure 15.11. 

 

Figure 15.11: Frequency responses of ideal low-pass and band-pass filters in Problem 15.6. 
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(a) Compute and sketch X j( )ω , the Fourier transform of the input signal. For what range of 

sampling frequencies 2
s

sT
πω =  is the sampling theorem satisfied for the first sampler?  

(b) Assume that the sampling theorem is satisfied with the slowest sampling frequency sω  in the 

range found in (a). Sketch the spectra Y j( )ω , W j( )ω and Z j( )ω  for this case. 

(c) Sketch the Fourier transforms ( )rX jω , ( )E jω . Compute the total energy in the error signal 

e t x t x tr( ): ( ) ( )= − . 

Problem 15.7 

Consider the sampling system of Figure 15.12, where the input signal is x t W W t( ) = F
HG
I
KJπ π

sinc  

and the spectra of the ideal bandpass filter and the ideal lowpass filter are shown in Figure 15.13. 

 

Figure 15.12: Sampling system in Problem 15.7. 

 

 

 

Figure 15.13: Frequency responses of the ideal low-pass and band-pass filters in Problem 15.7. 
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(a) Find and sketch X j( )ω , the Fourier transform of the input signal x t W W t( ) = F
HG
I
KJπ π

sinc . For 

what range of sampling frequencies 2
s

sT
πω =  is the sampling theorem satisfied?  

Answer: 

From the table, we find the DTFT of x t W W t( ) = F
HG
I
KJπ π

sinc  to be a rectangular spectrum of 

bandwidth W: 

 

 

Hence, the sampling theorem is satisfied for ωs W> 2 . 

(b) Assume that the sampling theorem is satisfied with for the remaining questions. Sketch the 

Fourier transforms Y j( )ω  and W j( )ω . 

Answer: 
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(c) Sketch the Fourier transforms Z j( )ω  and X jr ( )ω . 

Answer: 
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(d) Using the Parseval Equality, find the total energy of the error signal ( ) : ( ) ( )re t x t x t= −  

defined as the difference between the input signal ( )x t  and the "reconstructed" output signal 

( )rx t . 

Answer: 

Total energy of the error signal is:  

21 ( )
2 2e

WE E j dω ω
π π

∞

∞
−∞

= =∫  

where the Fourier transform of the error signal is shown below. 

 

 

 

 

 

Problem 15.8 

The system depicted in Figure 15.14 is used to implement a continuous-time bandpass filter. The 

discrete-time filter ( )j
dH e Ω  has frequency response on [ , ]π π−  given as: 

1,
( )

0, otherwise
j a b

dH e Ω  Ω ≤ Ω ≤ Ω
= 


. 

ω 

1 

W/2 W -W -W/2 

E j X j X jr( ) ( ) ( )ω ω ω= −
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Find the sampling period sT , and frequencies aΩ , bΩ , 1W  so that the equivalent continuous-time 

frequency response ( )G jω  satisfies ( ) 1G jω =  for 100 200π ω π< < , and ( ) 0G jω =  

elsewhere. In solving this problem, choose 1W  as small as possible, and choose sT  as large as 

possible. 

 

Figure 15.14: System implementing a continuous-time bandpass filter in Problem 15.8. 

Problem 15.9 

The signal [ ]x n  with DTFT depicted in Figure 15.15 is decimated to obtain 4[ ] [4 ]x n x n↓ = . 

Sketch 4 ( )jX e ω
↓ . 

 

Figure 15.15: DTFT of signal in Problem 15.9. 

Answer: 
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Problem 15.10 

Suppose that you need to transmit a discrete-time signal whose DTFT is shown in Figure 15.16 

with sample rate 1MHz. The specification is that the signal should be transmitted at the lowest 

possible rate, but in real time, i.e., the signal at the receiver must be exactly the same with a 

sample rate of 1MHz. Design a system (draw a block diagram) that meets these specs. Both 

before transmission and after reception, you can use upsampling-filtering denoted as { } lpN↑ , 

decimation denoted as N↓ , ideal filtering, modulation, demodulation and summing junctions. 

(You might want to read the section on amplitude modulation and synchronous demodulation in 

Chapter 16 first.) 

 

Figure 15.16: Spectrum of discrete-time signal to be transmitted in Problem 15.10. 
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Problem 15.11 

Decimated multirate system 

Consider the decimated multirate system shown in Figure 15.17, used for voice data 

compression. This system transmits a signal [ ]x n  over two low-bit-rate channels. The sampled 

voice signal is bandlimited to 2
5M
πω = . 

 

 

 

 

Figure 15.17: Decimated multirate system in Problem 15.11. 

Numerical values:  

• Input lowpass filters' cutoff frequency 
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πω = ,  

• Input highpass filter's cutoff frequency 
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πω = , 
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(a) Sketch the spectra ( )jX e ω , 1 ( )jX e ω , 2 ( )jX e ω , indicating the important frequencies and 

magnitudes. 

Answer: 

 

 

 

 

 

 

 

(b) Find the maximum decimation factors 1N  and 2N  avoiding aliasing and sketch the 

corresponding spectra 1 ( )jV e ω , 2 ( )jV e ω , 1( )jW e ω , 2 ( )jW e ω , indicating the important frequencies 

and magnitudes. Specify what the ideal output filters 1( )jH e ω  and 2 ( )jH e ω  should be for perfect 

signal reconstruction. Sketch their frequency responses, indicating the important frequencies and 

magnitudes. 

Answer: 

Maximum decimation factors: 1 3N = , and 2 12N =  since the copies of the spectrum 2 ( )jX e ω  

can be interleaved without aliasing. 
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Filter 1( )jH e ω  should be low-pass and filter 2 ( )jH e ω  should be bandpass: 
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(c) Compute the ratio of total energies at the output between the high-frequency subband 2[ ]y n  

and the output signal [ ]y n , i.e., compute 2: 100 %y

y

E
r

E
∞

∞

= , where the energy is given by 

2: [ ]y
n

E y n
+∞

∞
=−∞

= ∑ . 

Answer: 

Using Parseval's relationship: 

22

22 /5 2 /5
2

2
0 0

2 /52 / 5 3
2 3

2 2
0 0

1[ ] ( )
2

1 5 1 5 251 1
2 4

1 5 25 1 2 2 25(8 )
2 12 5 5 12 (125)

1 2 2 0.1333
15 15

j
y

n
E y n Y e d

d d

π
ω

π

π π

ππ

ω
π

ω ω ω ω ω
π π π π π

π π πω ω ω
π π π π π

π
π

+∞

∞
=−∞ −

= =

 = − = − + 
 

  = − + = − +  
   

 = = = 
 

∑ ∫

∫ ∫
 

ω 
−π 

3 

π/3 π −π/3 

2 ( )jH e ω

1( )jH e ω

ω −π 

12 

2π/5 π −2π/5 π/3 −π/3 



 23 

2

2

2

22 /5

/3
2 /5

2 3
2

/ 3

3 3

2 2

1 ( )
2

1 51
2

1 5 25
2 12

1 2 2 25(8 ) 5 25( )
5 5 12 (125) 3 18 12 (27)

1 2 25 2 1 25 0.000617
15 18 12(27) 15 18 324

j
yE Y e d

d

π
ω

π

π

π
π

π

ω
π

ω ω
π π

ω ω ω
π π π

π π π π π π
π π π

π π π
π

∞
−

=

= −

 = − + 
 

 
= − + − + − 

 
 

= − − = − − = 
 

∫

∫

 

{ }
{ }

2 0.000617100 100 0.46%
0.1333

E y
r

E y
= = =  

(d) Now suppose each of the two signal subbands 1[ ]v n  and 2[ ]v n  are quantized with a different 

number of bits to achieve good data compression, without losing intelligibility of the voice 

message. According to your result in (c), it would seem to make sense to use less bits to quantize 

the high-frequency subband. Suppose that the filter bank operates at an input/output sample rate 

of 10kHz, and you decide to use 12 bits to quantize 1[ ]v n  and 4 bits to quantize 2[ ]v n . Compute 

the bit rates of channel 1 and channel 2, and the overall bit rate of the system.  

Answer: 

After decimation by 3, channel 1 operates at 3.333 kilosamples/s which results in a bit rate of 

3333.33333*12 40000 bits/s= . And after decimation by 2, channel 2 operates at 5 kilosamples/s 

which results in a bit rate of 5000*12 60,000 bits/s= . 

Therefore, the overall bit rate of the filter bank is 100,000 bits/s. 


