Solutions to Problems in Chapter 13

Problems with Solutions

Problem 13.1

Sketch the pole-zero plot and compute the impulse response h[n] of the system with transfer function:

$$H(z) = \frac{z(1 - 0.8z^{-1})}{(z^2 - 0.8z + 0.64)(1 + 2z^{-1})}$$

and with ROC: 0.8 < |z| < 2. Specify whether or not the system is causal and stable.

Answer:

$$H(z) = \frac{z(z - 0.8)}{(z^2 - 0.8z + 0.64)(z + 2)} = \frac{z^{-1}(1 - 0.8z^{-1})}{(1 - 0.8e^{j\frac{\pi}{3}}z^{-1})(1 - 0.8e^{-j\frac{\pi}{3}}z^{-1})(1 + 2z^{-1})}, \quad 0.8 < |z| < 2$$

$$= \frac{A}{\underbrace{(1 - 0.8e^{j\frac{\pi}{3}}z^{-1})}_{|z| > 0.8} + \underbrace{\frac{A^*}{(1 - 0.8e^{-j\frac{\pi}{3}}z^{-1})}}_{|z| > 0.8} + \underbrace{\frac{C}{(1 + 2z^{-1})}}_{|z| < 2}$$

The coefficients are given by:

$$A = \frac{z^{-1}(1 - 0.8z^{-1})}{(1 - 0.8e^{-j\frac{\pi}{3}}z^{-1})(1 + 2z^{-1})}\Big|_{z=0.8e^{j\frac{\pi}{3}}} = \frac{1.25e^{-j\frac{\pi}{3}}(1 - e^{-j\frac{\pi}{3}})}{(1 - e^{-j\frac{\pi}{3}})(1 + 2.5e^{-j\frac{\pi}{3}})} = \frac{1.25e^{-j\frac{\pi}{3}}(1 - e^{-j\frac{\pi}{3}})}{(3.5 - e^{-j\frac{\pi}{3}} + 2.5e^{-j\frac{\pi}{3}})} = \frac{1.25e^{-j\frac{\pi}$$

Thus,

$$H(z) = \underbrace{\frac{0.224 - 0.0555j}{(1 - 0.8e^{j\frac{\pi}{3}}z^{-1})}}_{|z| > 0.8} + \underbrace{\frac{0.224 + 0.0555j}{(1 - 0.8e^{-j\frac{\pi}{3}}z^{-1})}}_{|z| > 0.8} - \underbrace{\frac{0.92}{(1 + 2z^{-1})}}_{|z| < 2}$$

The inverse *z*-transform is obtained using the table:

$$h[n] = (0.05 + j0.1) \left(0.8e^{j\frac{\pi}{3}}\right)^n u[n] + (0.05 - j0.1) \left(0.8e^{-j\frac{\pi}{3}}\right)^n u[n] - 1.84(-2)^n u[-n-1]$$

$$= 2\operatorname{Re}\left\{e^{j\frac{\pi}{3}n}(0.05 + j0.1)\right\} \left(0.8\right)^n u[n] - 1.84(-2)^n u[-n-1].$$

$$= 2(0.8)^n \left(0.05\cos\frac{\pi}{3}n - 0.1\sin\frac{\pi}{3}n\right) u[n] - 1.84(-2)^n u[-n-1]$$

The pole-zero plot is in Figure 13.1.

Figure 13.1: Pole-zero plot of transfer function in Problem 13.1.

The system is not causal since the ROC is a ring, but it is stable as it includes the unit circle.

Problem 13.2

Compute the inverse z-transform of $X(z) = \frac{z}{(1 - 0.5z^{-1})}$, |z| < 0.5 using the power series expansion method.

Answer:

$$X(z) = \frac{z}{(1 - 0.5z^{-1})} = \frac{2z^2}{2z - 1},$$

long division yields:

$$\begin{array}{r}
-2z^{2}-4z^{3}-(2)^{3}z^{4}-\dots \\
-1+2z) \overline{2z^{2}} \\
\underline{2z^{2}-4z^{3}} \\
4z^{3} \\
\underline{4z^{3}-8z^{4}} \\
8z^{4}
\end{array}$$

Note that the resulting power series converges because the ROC implies |2z| < 1. The signal is

$$x[n] = -2\delta[n+2] - 4\delta[n+3] - 8\delta[n+4]...$$
$$= -(\frac{1}{2})^{n+1}u[-n-2].$$

Problem 13.3

Consider the stable LTI system defined by its transfer function

$$H(z) = \frac{z^2 + z - 2}{z^2 + z + 0.5}$$

(a) Sketch the pole-zero plot for this transfer function, and give its ROC. Is the system causal?

Answer:

The poles are $p_1 = -0.5 + j0.5$, $p_2 = -0.5 - j0.5$. The zeros are $z_1 = -2$, $z_2 = 1$. The system is stable, so its ROC must include the unit circle. With the fact that $H(\infty)$ is finite, we can conclude that the system is causal. The pole-zero plot is shown in Figure 13.2.

Figure 13.2: Pole-zero plot of transfer function in Problem 13.3(a).

(b) Find the corresponding difference system relating the output y[n] to the input x[n].

Answer:

We first write the transfer function as a function of z^{-1} of the form:

$$H(z) = \frac{1 + z^{-1} - 2z^{-2}}{1 + z^{-1} + 0.5z^{-2}}.$$

The corresponding difference system is

$$y[n] + y[n-1] + 0.5y[n-2] = x[n] + x[n-1] - 2x[n-2]$$
.

(c) Sketch the direct form realization of this system.

Answer:

The direct form realization of the system is given in Figure 13.3.

Figure 13.3: Direct form realization of transfer function in Problem 13.3.

Problem 13.4

(a bit of actuarial mathematics using the unilateral z-transform...)

The balance of a bank account after each year with interest compounded annually may be described by the difference equation

$$y[n] = (1+r)y[n-1] + x[n],$$

where r is the annual interest rate, y[n] is the account balance at the beginning of the $(n+1)^{st}$ year, the input "signal" x[n] = M(u[n] - u[n-L]) is composed of L consecutive annual deposits of M dollars, and the initial condition $y[-1] = y_{-1}$ is the initial amount in the account before the first deposit.

(a) Is this system stable?

The system is unstable since the system is causal and the pole 1+r is larger than one, i.e., outside of the unit circle.

(b) Use the unilateral z-transform to compute y(z)

Answer:

Taking the unilateral z-transform on both sides, we obtain:

$$\mathbf{\mathcal{Y}}(z) - (1+r)(z^{-1}\mathbf{\mathcal{Y}}(z) + y[-1]) = \mathbf{\mathcal{X}}(z)$$

$$\mathbf{\mathcal{Y}}(z) = \frac{(1+r)y[-1]}{1-(1+r)z^{-1}} + \frac{\mathbf{\mathcal{X}}(z)}{1-(1+r)z^{-1}}$$

$$\mathbf{\mathcal{Y}}(z) = \frac{(1+r)y[-1]}{1-(1+r)z^{-1}} + \frac{M(1-z^{-L})}{\left[1-(1+r)z^{-1}\right](1-z^{-1})}$$

$$= \frac{(1+r)y[-1](1-z^{-1}) + M(1-z^{-L})}{\left[1-(1+r)z^{-1}\right](1-z^{-1})}$$

more useful form:

$$= \frac{(1+r)y[-1] + M\sum_{k=0}^{L-1}z^{-k}}{\left[1 - (1+r)z^{-1}\right]}$$

(c) Find the annual deposit M as a function of the final balance in the account after L years y[L-1] and the interest rate r. Compute the annual deposit M if you want to accrue \$100,000 after 20 years at 5% annual interest rate with an initial balance of $y_{-1} = 1000 .

Answer:

The account balance at the beginning of the $(n+1)^{st}$ year is

$$y[n] = \mathcal{Z}^{-1} \left\{ \mathcal{Y}(z) \right\}$$

$$= \mathcal{Z}^{-1} \left\{ \frac{(1+r)y[-1] + M \sum_{k=0}^{L-1} z^{-k}}{\left[1 - (1+r)z^{-1}\right]} \right\}$$

$$= \left[(1+r)y[-1] \right] (1+r)^{n} u[n] + M \sum_{k=0}^{L-1} (1+r)^{n-k} u[n-k]$$

When the last payment is made at n = L - 1, we get

$$y[L-1] = \left[(1+r)y[-1] \right] (1+r)^{L-1} + M \sum_{k=0}^{L-1} (1+r)^{L-1-k}$$
$$= (1+r)^{L} y[-1] + M \sum_{m=0}^{L-1} (1+r)^{m}$$

which yields:

$$M = \frac{y[L-1] - (1+r)^{L} y[-1]}{\sum_{m=0}^{L-1} (1+r)^{m}} = \frac{y[L-1] - (1+r)^{L} y[-1]}{\frac{1 - (1+r)^{L}}{1 - (1+r)}} = \frac{r \left[y[L-1] - (1+r)^{L} y[-1]\right]}{(1+r)^{L} - 1}$$

$$M = \frac{r \left[y[L-1] - (1+r)^{L} y[-1] \right]}{(1+r)^{L} - 1}$$
$$= \frac{0.05 \left[\$100000 - (1.05)^{20} \cdot \$1000 \right]}{(1.05)^{20} - 1}$$
$$= \$2944$$

Exercises

Problem 13.5

Compute the *z*-transform of each of the following signals and sketch its pole-zero plot, indicating the ROC.

(a) $x[n] = \alpha^n \cos(\omega_0 n + \theta)u[n]$, $|\alpha| > 1$. Use the values $\alpha = 1.5$, $\omega_0 = \frac{3\pi}{4}$, $\theta = -\frac{\pi}{4}$ for the pole-zero plot.

Answer:

$$x[n] = \frac{1}{2} \alpha^{n} \left(e^{j(\omega_{0}n + \theta)} + e^{-j(\omega_{0}n + \theta)} \right) u[n]$$
$$= \frac{1}{2} e^{j\theta} (\alpha e^{j\omega_{0}})^{n} u[n] + \frac{1}{2} e^{-j\theta} (\alpha e^{-j\omega_{0}})^{n} u[n]$$

The *z*-transform:

$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= \frac{1}{2} e^{j\theta} \sum_{n=0}^{\infty} (\alpha e^{j\omega_0} z^{-1})^n + \frac{1}{2} e^{-j\theta} \sum_{n=0}^{\infty} (\alpha e^{-j\omega_0} z^{-1})^n, \ \left| \alpha e^{j\omega_0} z^{-1} \right| < 1 \\ &= \frac{1}{2} \left[\frac{e^{j\theta}}{1 - \alpha e^{j\omega_0} z^{-1}} + \frac{e^{-j\theta}}{1 - \alpha e^{-j\omega_0} z^{-1}} \right], \ \left| z \right| > \left| \alpha \right| \\ &= \frac{1}{2} \left[\frac{e^{j\theta} - \alpha e^{j\theta} e^{-j\omega_0} z^{-1} + e^{-j\theta} - \alpha e^{-j\theta} e^{j\omega_0} z^{-1}}{(1 - \alpha e^{j\omega_0} z^{-1})(1 - \alpha e^{-j\omega_0} z^{-1})} \right], \ \left| z \right| > \left| \alpha \right| \\ &= \frac{\cos \theta - \alpha \cos(\theta - \omega_0) z^{-1}}{1 - 2\alpha \cos \omega_0 z^{-1} + \alpha^2 z^{-2}}, \ \left| z \right| > \left| \alpha \right| \end{split}$$

For the pole-zero plot:

$$X(z) = \frac{\cos \theta - \alpha \cos(\theta - \omega_0) z^{-1}}{1 - 2\alpha \cos \omega_0 z^{-1} + \alpha^2 z^{-2}}, \ |z| > |\alpha|$$

$$= \frac{\frac{1}{\sqrt{2}} - 1.5 z^{-1}}{1 + 2(1.5) \frac{1}{\sqrt{2}} z^{-1} + (1.5)^2 z^{-2}}, \ |z| > 1.5$$

$$= \frac{z(\frac{1}{\sqrt{2}} z - 1.5)}{z^2 + \frac{3}{\sqrt{2}} z + 2.25} = \frac{\frac{1}{\sqrt{2}} z(z - \frac{3}{\sqrt{2}})}{(z - 1.5e^{\frac{j3\pi}{4}})(z - 1.5e^{-\frac{j3\pi}{4}})}, \ |z| > 1.5$$

(b)
$$x[n] = u[n+4] - u[n]$$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

= $z^4 + z^3 + z^2 + z^1$, $|z| < \infty$

For pole-zero plot:

$$X(z) = (z - e^{j\frac{2\pi}{5}})(z - e^{j\frac{4\pi}{5}})(z - e^{j\frac{6\pi}{5}})(z - e^{j\frac{8\pi}{5}}), \quad |z| < \infty$$

(c)
$$x[n] = (-2)^n u[-n+3]$$

$$x[n] = (-2)^n u[-n+3] = (-2)^3 (-2)^{n-3} u[-(n-3)]$$

$$X(z) = z^{-3} \sum_{n=-\infty}^{\infty} w[n] z^{-n} = -8z^{-3} \sum_{n=-\infty}^{0} (-2z^{-1})^{n}$$

$$= -8z^{-3} \sum_{m=0}^{+\infty} (-2z^{-1})^{-m} = -8z^{-3} \sum_{m=0}^{+\infty} (-0.5z)^{m}$$

$$= \frac{-8z^{-3}}{1 - (-0.5)z}, \ |(-0.5)z| < 1 = \frac{-8z^{-3}}{1 + 0.5z}, \ |z| < 2$$

$$= \frac{-16z^{-4}}{1 + 2z^{-1}}, \ |z| < 2$$

Pole zero-plot:

$$X(z) = \frac{-16}{z^3(z+2)}, |z| < 2$$

Problem 13.6

Compute the inverse z-transform of $X(z) = \frac{z^2}{z + 0.2}$, $0.2 < |z| < \infty$ using the power series expansion method.

Problem 13.7

Consider the following so-called auto-regressive moving-average causal filter *S* initially at rest:

S:
$$y[n] - 0.9y[n-1] + 0.81y[n-2] = x[n] - x[n-2]$$
.

(a) Compute the z-transform of the impulse response of the filter H(z) (the transfer function) and give its region of convergence. Sketch the pole-zero plot.

Answer:

The *z*-transform of this filter is given by:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-2}}{1 - 0.9z^{-1} + 0.81z^{-2}} = \frac{(1 - z^{-1})(1 + z^{-1})}{(1 - 0.9e^{j\frac{\pi}{3}}z^{-1})(1 - 0.9e^{-j\frac{\pi}{3}}z^{-1})}, \quad |z| > 0.9$$

Pole zero plot:

(b) Compute the impulse response h[n] of the filter.

Using the table, we identify the angles and magnitude of the poles: r = 0.9, $\omega_0 = \frac{\pi}{3}$, thus

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-2}}{1 - 0.9z^{-1} + 0.81z^{-2}} = A + \frac{B(1 - 0.45z^{-1}) + 0.7794Cz^{-1}}{1 - 0.9z^{-1} + 0.81z^{-2}}, \quad |z| > 0.9$$

Letting z tend to infinity, we find that A + B = 1. We find the remaining two equations by multiplying on both sides by the denominator:

$$1-z^{-2} = A - 0.9Az^{-1} + 0.81Az^{-2} + B(1 - 0.45z^{-1}) + 0.7794Cz^{-1}$$

$$\Rightarrow -0.9A - 0.45B + 0.7794C = 0, \text{ and } 0.81A = -1$$

We obtain:

$$A = -1.235$$
, $B = 2.235$, $C = -0.1354$,

so that

$$H(z) = -1.235 + \frac{2.235(1 - 0.45z^{-1}) + (-0.1354)0.7794z^{-1}}{1 - 0.9z^{-1} + 0.81z^{-2}}, \quad |z| > 0.9.$$

From the table:

$$h[n] = -1.235\delta[n] + 2.235(0.9)^n \cos\left(\frac{\pi}{3}n\right)u[n] - 0.1354(0.9)^n \sin\left(\frac{\pi}{3}n\right)u[n]$$

(c) Compute the frequency response of the filter. Plot its magnitude. What type of filter is it? Low-pass, high-pass or band-pass?

$$H(e^{j\omega}) = \frac{1 - e^{-2j\omega}}{1 - 0.9e^{-j\omega} + 0.81e^{-2j\omega}}$$
$$\left| H(e^{j\omega}) \right| = \left| \frac{1 - e^{-2j\omega}}{1 - 0.9e^{-j\omega} + 0.81e^{-2j\omega}} \right|$$

Magnitude:

This is clearly a bandpass filter.

(d) Compute and sketch the unit step response s[n] of the filter.

$$\begin{split} S(z) &= \frac{1}{1-z^{-1}} H(z) = \frac{1+z^{-1}}{1-0.9z^{-1}+0.81z^{-2}} = \frac{A(1-0.45z^{-1})+0.7794Bz^{-1}}{1-0.9z^{-1}+0.81z^{-2}}, \quad \left|z\right| > 0.9 \\ &= \frac{(1-0.45z^{-1})+0.7794(1.86)z^{-1}}{1-0.9z^{-1}+0.81z^{-2}}, \quad \left|z\right| > 0.9 \end{split}$$

From the table:

$$s[n] = (0.9)^n \cos\left(\frac{\pi}{3}n\right) u[n] + 1.86(0.9)^n \sin\left(\frac{\pi}{3}n\right) u[n]$$

Problem 13.8

Consider a DLTI system with transfer function $H(z) = \frac{z^{-3} - 1.2z^{-4}}{(z - 0.8)(z + 0.8)}$.

- (a) Sketch the pole-zero plot of the system.
- (b) Find the ROC that makes this system stable.
- (c) Is the system causal with the ROC that you found in (b)? Justify your answer.
- (d) Suppose that $H(e^{j\omega})$ is bounded for all frequencies. Find the response of the system y[n] to the input x[n] = u[n].

Problem 13.9

Compute the inverse z-transform x[n] of $X(z) = \frac{1}{z(z+0.4)}$, |z| > 0.4 using the method of long division and sketch it.

$$X(z) = \frac{1}{z(z+0.4)} = \frac{z^{-2}}{(1+0.4z^{-1})}, \quad 0.4 < |z|$$

Long division yields:

$$\frac{z^{-2} - 0.4z^{-3} + 0.16z^{-4} - 0.064z^{-5} \dots}{1 + 0.4z^{-1} z^{-2}}$$

$$\frac{-(z^{-2} + 0.4z^{-3})}{-0.4z^{-3}}$$

$$\frac{-(-0.4z^{-3} - 0.16z^{-4})}{0.16z^{-4}}$$

$$\frac{-(0.16z^{-4} + 0.064z^{-5})}{-0.064z^{-5}}$$

Note that the resulting power series converges because the ROC implies $\left|0.4z^{-1}\right| < 1$. The time-domain signal is:

$$x[n] = \delta[n-2] - 0.4\delta[n-3] + (0.4)^2 \delta[n-4] - (0.4)^3 \delta[n-5] + \dots$$

= $(-0.4)^{n-2} u[n-2]$

This signal is plotted below.

Problem 13.10

Sketch the pole-zero plot and compute the impulse response h[n] of the stable system with

transfer function:
$$H(z) = \frac{2000z^3 + 1450z^2 + 135z}{(100z^2 - 81)(5z + 4)}$$
.

Specify its ROC. Specify whether the system is causal or not.

Problem 13.11

Consider the DLTI system with transfer function $H(z) = \frac{z-1}{z^{-1}(z+0.4)}$.

(a) Sketch the pole-zero plot of the system.

Answer:
$$H(z) = \frac{z-1}{z^{-1}(z+0.4)} = \frac{z^2-z}{(z+0.4)}$$

poles at -0.4 and at infinity, zeros at 0 and 1.

(b) Find the ROC that makes this system stable.

Answer:

For stability, the ROC must include the unit circle, so it is |z| > 0.4, excluding infinity.

(c) Is the system causal with the ROC that you found in (b)? Justify your answer.

Answer:

For the system to be causal, we must have $\lim_{z\to\infty} H(z) < \infty$, which is not the case here. Hence the system is not causal.

(d) Suppose that $H(e^{j\omega})$ is bounded for all frequencies. Calculate the response of the system y[n] to the input x[n] = u[n].

Answer:

This means that the ROC is chosen as |z| > 0.4. We have $X(z) = \frac{1}{1 - z^{-1}}, |z| > 1$, and

$$Y(z) = H(z)U(z) = \frac{z^{2}(z-1)}{(z+0.4)(z-1)} = \frac{z^{2}}{(z+0.4)} = \frac{z}{(1+0.4z^{-1})}, 0.4 < |z| < \infty$$

thus, $y[n] = (-0.4)^{n+1} u[n+1]$.