Solutions to Assignment 10
10.1 Exercise 13.6 of Boulet's book;

Compute the inverse z-transform of $X(z)=\frac{z^{2}}{z+0.2}, \quad 0.2<|z|<\infty$ using the power series expansion method.

Answer:

$$
X(z)=\frac{z^{1}}{\left(1+0.2 z^{-1}\right)}=\frac{z^{2}}{z+0.2}, \quad 0.2<|z|<\infty
$$

Long division yields:

$$
\begin{aligned}
& \left.1+0.2 z^{-1}\right) \frac{z-0.2+0.04 z^{-1}-0.008 z^{-2} \ldots}{z} \\
& \frac{z+0.2}{-0.2} \\
& \quad \frac{-0.2-0.04 z^{-1}}{0.04 z^{-1}} \\
& \quad \frac{0.04 z^{-1}+0.008 z^{-2}}{-0.008 z^{-2}}
\end{aligned}
$$

Note that the resulting power series converges because the ROC implies $\left|0.2 z^{-1}\right|<1$. The signal is:

$$
\begin{aligned}
x[n] & =\delta[n+1]-0.2 \delta[n]+(0.2)^{2} \delta[n-1]-(0.2)^{3} \delta[n-2]+\ldots \\
& =(-0.2)^{n+1} u[n+1]
\end{aligned}
$$

10.2 Exercise 13.8 of Boulet's book.

Consider a DLTI system with transfer function $H(z)=\frac{z^{-3}-1.2 z^{-4}}{(z-0.8)(z+0.8)}$.
(a) Sketch the pole-zero plot of the system.

Answer:

$$
H(z)=\frac{z^{-5}\left(1-1.2 z^{-1}\right)}{\left(1-0.8 z^{-1}\right)\left(1+0.8 z^{-1}\right)}=\frac{z-1.2}{z^{4}(z-0.8)(z+0.8)}
$$

poles at $-0.8,0.8$ and 0 (multiplicity 4), zeros at 1.2 and at infinity.

(b) Find the ROC that makes this system stable.

Answer:
For stability, the ROC must include the unit circle. Hence, the ROC is $|z|>0.8$, as shown on the above pole-zero plot.
(c) Is the system causal with the ROC that you found in (b)? Justify your answer.

Answer:
For the system to be causal, we must have $\lim _{z \rightarrow \infty} H(z)<\infty$, which is the case here ($=0$). Hence, the system is causal.
(d) Suppose that $H\left(e^{j \omega}\right)$ is bounded for all frequencies. Find the response of the system $y[n]$ to the input $x[n]=u[n]$.

Answer:

This means that the ROC is chosen to be $|z|>0.8$. We have $X(z)=\frac{1}{1-z^{-1}},|z|>1$, and

$$
Y(z)=H(z) U(z)=\frac{z^{-5}\left(1-1.2 z^{-1}\right)}{\left(1-0.8 z^{-1}\right)\left(1+0.8 z^{-1}\right)\left(1-z^{-1}\right)}, 1<|z|
$$

We will treat the time delay later, so let's do a partial fraction expansion of:

$$
\frac{\left(1-1.2 z^{-1}\right)}{\left(1-0.8 z^{-1}\right)\left(1+0.8 z^{-1}\right)\left(1-z^{-1}\right)}=\frac{-0.56}{1-z^{-1}}+\frac{1}{1-0.8 z^{-1}}+\frac{0.56}{1+0.8 z^{-1}}
$$

where the ROC of each term is taken to be the exterior of a circle of radius equal to the magnitude of the pole. This gives:

$$
w[n]=(0.8)^{n} u[n]+0.56(-0.8)^{n} u[n]-0.56 u[n]
$$

and adding the time delay yields:

$$
y[n]=(0.8)^{n-5} u[n-5]+0.56(-0.8)^{n-5} u[n-5]-0.56 u[n-5]
$$

10.3 Exercise 13.10 of Boulet's book

Also, for the $\mathrm{H}(\mathrm{z})$ in this problem, please determine the corresponding difference equation relating the output $\mathrm{y}[\mathrm{n}]$ to the input $\mathrm{x}[\mathrm{n}]$.

Sketch the pole-zero plot and compute the impulse response $h[n]$ of the stable system with transfer function: $H(z)=\frac{2000 z^{3}+1450 z^{2}+135 z}{\left(100 z^{2}-81\right)(5 z+4)}$.

Specify its ROC. Specify whether the system is causal or not.

Answer:

$$
\left.\begin{array}{rl}
H(z) & =\frac{2000 z^{3}+1450 z^{2}+135 z}{\left(100 z^{2}-81\right)(5 z+4)}, \\
& =\frac{4+2.9 z^{-1}+0.27 z^{-2}}{\left(1+0.8 z^{-1}\right)\left(1+0.9 z^{-1}\right)\left(1-0.9 z^{-1}\right)}|z|>0.9 \\
& =(\underbrace{\frac{-3}{\left(1+0.8 z^{-1}\right)}}_{||| | 0.8}+\underbrace{\frac{5}{\left(1+0.9 z^{-1}\right)}}_{||| | 0.9}+\underbrace{\left(1-0.9 z^{-1}\right)}_{|| |>0.9}
\end{array}\right),
$$

The inverse z-transform is obtained using Table D. 10 :

$$
h[n]=-3(-0.8)^{n} u[n]+2(0.9)^{n} u[n]+5(-0.9)^{n} u[n] .
$$

The pole-zero plot is shown below.

The system is causal since ROC is the outside of a disk, including infinity.

For the $\mathrm{H}(\mathrm{z})$, the corresponding difference equation can be derived according to:

$$
\begin{aligned}
& \frac{Y(z)}{X(z)}=\frac{2000+1450 z^{-1}+135 z^{-2}}{500+400 z^{-1}-405 z^{-2}-324 z^{-3}} \\
& Y(z)\left(500+400 z^{-1}-405 z^{-2}-324 z^{-3}\right)=X(z)\left(2000+1450 z^{-1}+135 z^{-2}\right)
\end{aligned}
$$

Thusthe difference equation is:
$500 y[n]+400 y[n-1]-405 y[n-2]-324 y[n-3]=2000 x[n]+1450 x[n-1]+135 x[n-2]$
10.4 See Eq. (14.50) of Boulet's book. Now, the impulse response of a DT filter is defined by

$$
h[n]=\left\{\begin{array}{cc}
1 / 10, & n=0,1, \ldots, 9 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Determine the transfer function of the system.
(b) Determine the frequency response of the filter.
(c) Sketch the poles and zeros of the system in the z-plane.

Answer:
(a) Its transfer function can be obtained from the z-transform of the impulse response:

$$
H(z)=\sum_{n=0}^{9} h[n] z^{-n}=\frac{1}{10}\left[1+z^{-1}+\ldots+z^{-9}\right]=\frac{1}{10} \frac{1-z^{-10}}{1-z^{-1}}=\frac{1}{10} \frac{z^{10}-1}{z^{9}(z-1)}
$$

(b) The frequency response of the filter is

$$
H\left(z=e^{j \omega}\right)=\frac{1}{10} \frac{1-e^{-j 10 \omega}}{1-e^{-j \omega}}=\frac{1}{10} \frac{e^{-j 5 \omega}\left(e^{j 5 \omega}-e^{-j 5 \omega}\right)}{e^{-j \omega / 2}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right)}=\frac{1}{10} e^{-j 9 \omega / 2} \frac{\sin (5 \omega)}{\sin (\omega / 2)}
$$

(c) The pole at $\mathrm{z}=1$ is cancelled by the zero at $\mathrm{z}=1$. Thus, there are 9 poles at $\mathrm{z}=0$, and 9 zeros at $e^{j \frac{2 \pi}{10} k}, k=1,2, \ldots 9$ in the z-plane, as shown in the figure below.

10.5 Find the inverse z-transform of

$$
X(z)=\frac{1-\frac{1}{1024} z^{-10}}{\left(1-\frac{1}{2} z^{-1}\right)}, \quad|z|>0
$$

Answer:
Since the ROC includes the entire z-plane, we know that the signal must be finite length. From the finite sum formula, we have

$$
\left[\frac{1-\frac{1}{1024} z^{-10}}{1-\frac{1}{2} z^{-1}}\right]=\sum_{n=0}^{9}\left(\frac{1}{2}\right)^{n} z^{-n}
$$

Comparing this with the definition of z-transform, we have

$$
x[n]=\left\{\begin{array}{cc}
\left(\frac{1}{2}\right)^{n}, & 0 \leq n \leq 9 \\
0, & \text { otherwise }
\end{array}\right.
$$

10. 6 Consider a system whose input $x[n]$ and output $y[n]$ are related by

$$
y[n-1]+2 y[n]=x[n]
$$

(a) Determine the zero-input response of the system if $\mathrm{y}[-1]=2$.
(b) Determine the zero-state response of the system to the input $x[n]=(1 / 4)^{n} u[n]$.
(c) Determine the output of the system for $\mathrm{n}>=0$ when the initial condition and the input are given as in (a) and (b).

Answer:
Applying the unilateral z-transform to the difference equation, we have:

$$
z^{-1} \mathscr{Y}[z]+y[-1]+2 \mathscr{Y}[z]=X[z]
$$

(a) For the zero-input response, assume that $x[n]=0$. Since we have given that $y[-1]=2$, we have

$$
\begin{aligned}
& z^{-1} \mathcal{Y}[z]+y[-1]+2 \mathcal{Y}[z]=0 \\
& \mathcal{Y}[z]=\frac{-2}{2+z^{-1}}=\frac{-1}{1+\frac{1}{2} z^{-1}}
\end{aligned}
$$

Taking the inverse z-transform, we have the zero-input response:

$$
y[n]=-\left(-\frac{1}{2}\right)^{n} u[n]
$$

(b) For the zero-state response, set $\mathrm{y}[-1]=0$. Also we have

$$
X(z)=\frac{1}{1-\frac{1}{4} z^{-1}}, \quad|z|>1 / 4
$$

Therefore,

$$
\mathcal{Y}[z]=\left(\frac{1}{1-\frac{1}{4} z^{-1}}\right)\left(\frac{1 / 2}{1+\frac{1}{2} z^{-1}}\right)
$$

By doing partial fraction expansion, we get:

$$
y[z]=\frac{1 / 6}{1-\frac{1}{4} z^{-1}}+\frac{1 / 3}{1+\frac{1}{2} z^{-1}}
$$

Taking inverse z-transform, we get the zero-state response:

$$
y[n]=\frac{1}{6}\left(\frac{1}{4}\right)^{n} u[n]+\frac{1}{3}\left(-\frac{1}{2}\right)^{n} u[n]
$$

(c) The total response is the sum of zero-input response and the zero-state response:

$$
y[n]=\frac{1}{6}\left(\frac{1}{4}\right)^{n} u[n]-\frac{2}{3}\left(-\frac{1}{2}\right)^{n} u[n]
$$

10.7 Consider a signal $x(t)=\cos (200 \pi t)$.
(a) Determine the sampling frequency F_{s} such that $\mathrm{x}(\mathrm{t})$ can be recovered via low-pass filtering of the sampled signal $\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right)$, where $\mathrm{T}_{\mathrm{s}}=1 / \mathrm{F}_{\mathrm{s}}$.
(b) If $\mathrm{F}_{\mathrm{s}}=120 \mathrm{~Hz}$, what frequency components are contained in the sampled signal $\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right)$?

Answer:
(a) The frequency of the signal $x(t)$ is 100 Hz .

According to the sampling theory, the sampling frequency F_{s} must be greater than $2 \mathrm{f}_{\mathrm{M}}$, where $\mathrm{f}_{\mathrm{M}}=100$ Hz . Thus, F_{s} must be greater than 200 Hz .
(b) If $\mathrm{F}_{\mathrm{s}}=120 \mathrm{~Hz}$, then the signal $\mathrm{x}\left[\mathrm{nT}_{\mathrm{s}}\right.$] contain frequency components at $\pm \mathrm{f}_{\mathrm{M}}+\mathrm{kF}, \mathrm{k}=\ldots,-3,-2,-1,0$, 1, 2, 3, ...
Considering positive frequencies, we know the frequency components are located at:
$100+120=220 \mathrm{~Hz}$,
$-100+120=20 \mathrm{~Hz}$,
$100+240=340 \mathrm{~Hz}$,
$-100+240=140 \mathrm{~Hz}$,
$100+360=460 \mathrm{~Hz}$,
$-100+360=260 \mathrm{~Hz}$,

