Solution to Assignment 7
7.1 Exercise 7.4 of Boulet’s book.
Use the unilateral Laplace transform to compute the output response () to the input

2(t) = cos(10thue(r) of the following causal LTI differential system with imitial conditions

yoy=1 290 _,.
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a0 B | 6= x(r).
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Answer:
Let us transform this differential equation:
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dt
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Using the mitial conditions and simplifying, we obtain:
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5

_ 5 4 s+6
(5+ (s +2)(s” +100) (s +3)s+2)
Res}=0 Re{r}=-1
_S +6s5” +101f+600 Re{s}>0
(5+3)s+2)s" +100)
A B Cs+10D
= + +=
s+2 543 s +100
_3.9808 29725 0.0083s N 10(0.00441)

Y(s)

s+2  s+3 s +100 s +100
Refs}=—2  Reir}>-3 Re{s}=0 Refs}=0

Finally, we use Table D .4 of Laplace transform pairs to get

3(f) =[3.9808¢™" —2.9725¢™" —0.0083 cos10¢ + 0.00441sin10¢Jue(r)



7.2 Exercise 7.8 of Boulet’s book

Consider the causal differential system described bv:

lm+m+2}-(r) = —w—x@,
2 dr dt at

) _;

dt

with mitial conditions 1(07) =2 . Suppose that this system 1s subjected to the input

signal x(f) =u(r). Give the transfer function of the system and specify its ROC. Compute the

steady-state response ¥, (f) and the transient response v, (f) for = 0.

Answer:

Let's take the unilateral Laplace transform on both sides of the differential equation.
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Collecting the terms contaiming f(s5) on the left-hand side and putting everything else on the

right-hand side. we can solve for Uf(s).
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The transfer function 1s ﬁ and since the svstem 1s causal. the ROC is an open RHP to
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the right of the rightmost pole. The poles are p,, =—1iju"_’_; . Therefore. the ROC 1is

Re{s} »—1. The unilateral LT of the input is given by
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Let's compute the overall response:
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Notice that the second term —
5

1s the steady-state response, and thus v, (r) = —0.5u(r) .

Taking the inverse Laplace transform using the table vields

V. (=] ﬁ e sin(ﬁr) +%e" cos(ﬁr} ().

7.3 Consider the system characterized by the differential Eq.
d’y(t) , .d’y@®) ., dy(t)
+6 +11 +6y(t) = x(t
e at? g OYO=x0
(a) Determine the zero-state response of the system for the input x(t)=e™u(t).
(b) Determine the zero-input response of the system for t>0°, given that
y(07) =1,
dy®)  _
dt t=0"
d’y(t)
dt*> |t=0"
(c) Determine the output of the system when the input and the initial conditions are the
same as given in (a) and (b).
(d) Indicate the transient response and steady-state response of the output obtained in (c)




Answer:
Taking the unilateral LT on both sides of the Eq, we get:

Y (s)—s’y(07) —sy'(07) — y"(07) +6s"Y (s) —6sy(0") —6y (07)

(A7.3)
+11sY (s) —11y(07) + 6Y (s) = X (S)

(a) For the zero-state response, all initial conditions y™(0)=0, n=0, 1,2.
Taking the unilateral LT of x(t):
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Taking the inverse unilateral Laplace transform of the partial fraction expansion, we
get

Lo et + Lo - Lo
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(b) For the zero-input response, X(s)=0. From Eq. (A7.3), we get
2
Y(s) = 3s +25s+6 _ 1
[s°+6s°+11s+6] s+1
Taking the inverse unilateral Laplace transform of the above Eq., we get
y(®)=e"u(t)

(c) The total response is
Y1) = Letut) - e tu(t) + =e Put) - —edu(t)
6 6 2 2

(d) According to Boulet’s book, the response determined by the input pole is the steady
response. In this case, however, the response corresponding to the input pole(s= - 4) is

(-1/6)e™u(t), which is transient. Another book mentioned that if the input pole is in the
left half s-plane, the corresponding response is transient. The total response is transient.



7.4 Determine the signal i(t), the current in the following circuit, using the unilateral
Laplace transform. At time t=0, the switch is turned on 2 from 1, and the voltage source
e(t) =Ae'“y u(t). Please indicate the transient response, steady-state response, zero-input
response, zero-state responses of i(t).
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Answer:

Write the differential Eq. about i(t):

dit) . ov  as ot
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and taking unilateral LT on bouth sides:
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Take inverse LT of I(s):
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Where i(0 )=-E/R.

The second term is the steady-state response (determined by the input pole).

The last term is the zero-input response (for A=0).

The sum of the first and the last terms is the transient response ( determined by system
poles)

The sum of the first and the second terms is the zero-state response (for i(0)=0).
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