Solution to Assignment 7

7.1 Exercise 7.4 of Boulet's book.

Use the unilateral Laplace transform to compute the output response $y(t)$ to the input $x(t)=\cos (10 t) u(t)$ of the following causal LTI differential system with initial conditions $y\left(0^{-}\right)=1, \frac{d y\left(0^{-}\right)}{d t}=1:$

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=x(t) .
$$

Answer:

Let us transform this differential equation:

$$
s^{2} \mathscr{Y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}+5 s \mathscr{Y}(s)-5 y\left(0^{-}\right)+6 \mathscr{Y}(s)=x(s)
$$

Using the initial conditions and simplifying, we obtain:

$$
\begin{aligned}
y(s) & =\frac{1}{s^{2}+5 s+6} X(s)+\frac{s+6}{s^{2}+5 s+6} \\
& =\frac{1}{(s+3)(s+2)} X(s)+\frac{s+6}{(s+3)(s+2)}
\end{aligned}
$$

But $X(s)=\frac{s}{s^{2}+100}, \operatorname{Re}\{s\}>0$, thus

$$
\begin{aligned}
\mathscr{Y}(s) & =\frac{s}{\underbrace{(s+2)\left(s^{2}+100\right)}_{\operatorname{Re}(s+3)>0}}+\underbrace{\frac{s+6}{(s+3)(s+2)}}_{\operatorname{Re}(s\}>-2} \\
& =\frac{s^{3}+6 s^{2}+101 s+600}{(s+3)(s+2)\left(s^{2}+100\right)}, \operatorname{Re}\{s\}>0 \\
& =\frac{A}{s+2}+\frac{B}{s+3}+\frac{C s+10 D}{s^{2}+100} \\
& =\underbrace{\frac{3.9808}{s+2}}_{\operatorname{Re}(s)\rangle>-2}-\underbrace{\frac{2.9725}{s+3}}_{\operatorname{Re}\{(s\}>-3}-\underbrace{\frac{0.0083 s}{s^{2}+100}}_{\operatorname{Re}(\{s\}>0}+\underbrace{\frac{10(0.00441)}{s^{2}+100}}_{\operatorname{Re}(s\}\rangle>0}
\end{aligned}
$$

Finally, we use Table D. 4 of Laplace transform pairs to get

$$
y(t)=\left[3.9808 e^{-2 t}-2.9725 e^{-3 t}-0.0083 \cos 10 t+0.00441 \sin 10 t\right] u(t) .
$$

7.2 Exercise 7.8 of Boulet's book

Consider the causal differential system described by:

$$
\frac{1}{2} \frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+2 y(t)=-\frac{d x(t)}{d t}-x(t),
$$

with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=1, \quad y\left(0^{-}\right)=2$. Suppose that this system is subjected to the input signal $x(t)=u(t)$. Give the transfer function of the system and specify its ROC. Compute the steady-state response $y_{s s}(t)$ and the transient response $y_{t r}(t)$ for $t \geq 0$.

Answer:

Let's take the unilateral Laplace transform on both sides of the differential equation.

$$
\left[s^{2} \mathscr{Y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+2\left[s \mathscr{Y}(s)-y\left(0^{-}\right)\right]+4 \mathscr{Y}(s)=-2 s X(s)-2 X(s)
$$

Collecting the terms containing $\boldsymbol{Y}(s)$ on the left-hand side and putting everything else on the right-hand side, we can solve for $\boldsymbol{\mathscr { H }}(s)$.

$$
\begin{aligned}
& \left(s^{2}+2 s+4\right) \boldsymbol{Y}(s)=-2 s X(s)-2 X(s)+s y\left(0^{-}\right)+2 y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \boldsymbol{Y}(s)=\underbrace{\frac{-2(s+1) X(s)}{s^{2}+2 s+4}}_{\text {zero-state resp. }}+\underbrace{\frac{(s+2) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+2 s+4}}_{\text {zero-itpytresp. }}
\end{aligned}
$$

The transfer function is $\frac{-2(s+1)}{s^{2}+2 s+4}$ and since the system is causal, the ROC is an open RHP to the right of the rightmost pole. The poles are $p_{1,2}=-1 \pm j \sqrt{3}$. Therefore, the ROC is $\operatorname{Re}\{s\}>-1$. The unilateral LT of the input is given by

$$
X(s)=\frac{1}{s}, \quad \operatorname{Re}\{s\}>0,
$$

thus,

Let's compute the overall response:

$$
\begin{aligned}
& \boldsymbol{Y}(s)=\frac{2 s^{2}+3 s-2}{\left(s^{2}+2 s+4\right) s}, \quad \operatorname{Re}\{s\}>0 \\
& =\underbrace{\frac{A \sqrt{3}+B(s+1)}{(s+1)^{2}+3}}_{\operatorname{Re}(\{) \gg 1}+\underset{\operatorname{Re}(\overrightarrow{3})>0}{\frac{C}{s}} \\
& =\underbrace{\frac{A \sqrt{3}+B(s+1)}{(s+1)^{2}+3}}_{\operatorname{Re}(s)>1}-\underset{\operatorname{Re}(\bar{s})>0}{\frac{0.5}{s}}
\end{aligned}
$$

Let $s=-1$ to compute $\frac{-3}{-3}=\frac{1}{\sqrt{3}} A+\frac{1}{2} \Rightarrow A=\frac{\sqrt{3}}{2}$, then multiply both sides by s and let $s \rightarrow \infty$ to get $B=2.5$:

$$
\boldsymbol{Y}(s)=\underbrace{\frac{\frac{\sqrt{3}}{2}}{2}(\sqrt{3})+2.5(s+1)}_{\operatorname{Re}(f) \gg-1} \frac{(s+1)^{2}+3}{\frac{0.5}{s}}-\underset{\operatorname{Re}(\vec{s})>0}{\frac{s}{s}}
$$

Notice that the second term $-\frac{0.5}{s}$ is the steady-state response, and thus $y_{s s}(t)=-0.5 u(t)$.

Taking the inverse Laplace transform using the table yields

$$
y_{t r}(t)=\left[\frac{\sqrt{3}}{2} e^{-t} \sin (\sqrt{3} t)+\frac{5}{2} e^{-t} \cos (\sqrt{3} t)\right] u(t)
$$

7.3 Consider the system characterized by the differential Eq.

$$
\frac{d^{3} y(t)}{d t^{3}}+6 \frac{d^{2} y(t)}{d t^{2}}+11 \frac{d y(t)}{d t}+6 y(t)=x(t)
$$

(a) Determine the zero-state response of the system for the input $x(t)=e^{-4 t} u(t)$.
(b) Determine the zero-input response of the system for $\mathrm{t}>0^{-}$, given that

$$
\begin{aligned}
& y\left(0^{-}\right)=1, \\
& \left.\frac{d y(t)}{d t}\right|_{t=0^{-}}=-1 \\
& \left.\frac{d^{2} y(t)}{d t^{2}}\right|_{t=0^{-}}=1
\end{aligned}
$$

(c) Determine the output of the system when the input and the initial conditions are the same as given in (a) and (b).
(d) Indicate the transient response and steady-state response of the output obtained in (c)

Answer:
Taking the unilateral LT on both sides of the Eq, we get:

$$
\begin{align*}
& s^{3} Y(s)-s^{2} y\left(0^{-}\right)-s y^{\prime}\left(0^{-}\right)-y^{\prime \prime}\left(0^{-}\right)+6 s^{2} Y(s)-6 s y\left(0^{-}\right)-6 y^{\prime}\left(0^{-}\right) \tag{A7.3}\\
& +11 s Y(s)-11 y\left(0^{-}\right)+6 Y(s)=X(s)
\end{align*}
$$

(a) For the zero-state response, all initial conditions $y^{(n)}\left(0^{-}\right)=0, n=0,1,2$.

Taking the unilateral LT of $\mathrm{x}(\mathrm{t})$:
$X(s)=\frac{1}{s+4} \operatorname{Re}\{s\}>-4$
Then, $Y(s)\left[s^{3}+6 s^{2}+11 s+6\right]=\frac{1}{s+4}$

$$
\begin{aligned}
Y(s) & =\frac{1}{\left(s^{3}+6 s^{2}+11 s+6\right)(s+4)}=\frac{1}{(s+1)(s+2)(s+3)(s+4)} \\
& =\frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{s+3}+\frac{D}{s+4} \\
& =\frac{\frac{1}{6}}{s+1}+\frac{-\frac{1}{2}}{s+2}+\frac{\frac{1}{2}}{s+3}+\frac{\frac{-1}{6}}{s+4}
\end{aligned}
$$

Taking the inverse unilateral Laplace transform of the partial fraction expansion, we get

$$
y(t)=\frac{1}{6} e^{-t} u(t)-\frac{1}{2} e^{-2 t} u(t)+\frac{1}{2} e^{-3 t} u(t)-\frac{1}{6} e^{-4 t} u(t)
$$

(b) For the zero-input response, $\mathrm{X}(\mathrm{s})=0$. From Eq. (A7.3), we get

$$
Y(s)=\frac{s^{2}+5 s+6}{\left[s^{3}+6 s^{2}+11 s+6\right]}=\frac{1}{s+1}
$$

Taking the inverse unilateral Laplace transform of the above Eq., we get

$$
y(t)=e^{-t} u(t)
$$

(c) The total response is

$$
y(t)=\frac{7}{6} e^{-t} u(t)-\frac{1}{6} e^{-4 t} u(t)+\frac{1}{2} e^{-2 t} u(t)-\frac{1}{2} e^{-3 t} u(t)
$$

(d) According to Boulet's book, the response determined by the input pole is the steady response. In this case, however, the response corresponding to the input pole(s=-4) is $(-1 / 6) \mathrm{e}^{-4 \mathrm{t}} \mathrm{u}(\mathrm{t})$, which is transient. Another book mentioned that if the input pole is in the left half s-plane, the corresponding response is transient. The total response is transient.
7.4 Determine the signal $i(t)$, the current in the following circuit, using the unilateral Laplace transform. At time $t=0$, the switch is turned on 2 from 1 , and the voltage source $e(t)=A e^{i \omega}{ }_{0} t u(t)$. Please indicate the transient response, steady-state response, zero-input response, zero-state responses of $i(t)$.

Answer:
Write the differential Eq. about $\mathrm{i}(\mathrm{t})$:

$$
L \frac{d i(t)}{d t}+\operatorname{Ri}(t)=A e^{j \omega_{0} t} u(t)
$$

and taking unilateral LT on bouth sides:

$$
L\left[s I(s)-i\left(0^{-}\right)\right]+R I(s)=\frac{A}{s-j \omega_{0}}, \quad R O C \in \operatorname{Re}\{s\}>0
$$

Then

$$
\begin{aligned}
& I(s)[L s+R]=\frac{A}{s-j \omega_{0}}+L i\left(0^{-}\right) \\
& I(s)=\frac{1 / L}{s+R / L}\left\{\frac{A \omega_{0}}{s-j \omega_{0}}+\operatorname{Li}\left(0^{-}\right)\right\} \\
& I(s)=\frac{A \omega_{0}}{L}\left[\frac{C_{1}}{s+R / L}+\frac{C_{2}}{s-j \omega_{0}}\right]+\frac{i\left(0^{-}\right)}{s+R / L}, \quad R O C \in \operatorname{Re}\{s\}>0
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=\left.\frac{1}{s+R / L} \frac{1}{s-j \omega_{0}}(s+R / L)\right|_{s=-R / L}=\frac{1}{\left(\frac{-R}{L}\right)-j \omega_{0}}=\frac{L}{-R-j \omega_{0} L} \\
& C_{2}=\left.\frac{1}{s+R / L} \frac{1}{s-j \omega_{0}}\left(s-j \omega_{0}\right)\right|_{s=j \omega_{0}}=\frac{1}{j \omega_{0}+R / L}=\frac{L}{j \omega_{0} L+R}
\end{aligned}
$$

Take inverse LT of I(s):

$$
i(t)=\frac{A \omega_{0}}{-R-j \omega_{0} L} e^{-R t / L} u(t)+\frac{A \omega_{0}}{R+j \omega_{0} L} e^{j \omega_{0} t} u(t)+i\left(0^{-}\right) e^{-R t / L} u(t)
$$

Where $\mathrm{i}\left(0^{-}\right)=-\mathrm{E} / \mathrm{R}$.
The second term is the steady-state response (determined by the input pole).
The last term is the zero-input response (for $\mathrm{A}=0$).
The sum of the first and the last terms is the transient response (determined by system poles)
The sum of the first and the second terms is the zero-state response (for $i\left(0^{-}\right)=0$).

